
An Example of a Derived Credentials Architecture

Francisco Corella, PhD
fcorella@pomcor.com

Karen Lewison, MD
kplewison@pomcor.com

Original: March 31, 2014; updated:∗April 27, 2014

Abstract

NIST has released drafts of two documents containing guidelines for issuing cre-
dentials to federal employees or contractors upon presentation of a PIV/CAC card and
storing them on mobile devices, such credentials being known as derived credentials.
The guidelines permit the storage of credentials in a software token, i.e. a software cryp-
tographic module, protected by an activation passcode with 20 bits of entropy. While
mere encryption under a key derived from such a passcode would not provide sufficient
security, we propose a method of achieving strong security with such a passcode, by
wrapping the credentials using a high-entropy key-wrapping key (KWK), storing the
KWK in a secure back-end, and retrieving the KWK by authenticating to the back-
end with a device credential regenerated from the passcode and a protocredential, in
such a way that an adversary who captures the mobile device while the software token
is inactive is not able to mount an offline guessing attack against the passcode. We
suggest that the use of this method could serve as a compensating control to justify the
storage of derived credentials in cryptographic modules that are not removable from
the device and do not provide sufficient tamper resistance. We describe the use of the
compensating control to increase the security provided by a software token, a TEE to-
ken (i.e. a cryptographic module embedded in a Trusted Execution Environment), and
a traditional hardware token. We describe an example of a derived credentials architec-
ture where the KWK is stored in a device record within a Mobile Device Management
(MDM) database.

Contents

List of Figures 2

1 Introduction 2

2 A Compensating Control 6
2.1 Using the Control with a Software Token (i.e. with a Cryptographic Module

Implemented Entirely in Software) . 6
2.2 Using the Control with a TEE Token (i.e. with a Cryptographic Module Em-

bedded in a Trusted Execution Environment) 9

∗Updated on 4/24 as explained in footnote 2, and on 4/27 to correct Figure 4.

1

2.3 Using the Control with a Traditional Hardware Token (i.e. a Hardware Cryp-
tographic Module Not Embedded in a TEE) 12

3 Example: An MDM-Based Derived Credentials Architecture 13
3.1 System Architecture . 13
3.2 Access to the Mobile Cryptographic Module through APIs 16
3.3 Module Activation and Deactivation . 17
3.4 Device Registration and Provisioning . 18

3.4.1 Remote Device Registration with the MDM Back-End 18
3.4.2 Remote Provisioning of the Derived Credentials 23
3.4.3 In-Person Registration and Provisioning 26

3.5 Local Escrow . 26
3.6 Data Protection and Device Locking . 27
3.7 Open Standards . 27

4 Conclusion 28

5 Disclosure 29

References 29

A Credential Regeneration from a Protocredential 31

B Initial Generation of a Protocredential and the Corresponding Credential 33

List of Figures

1 Software token with compensating control 7
2 TEE token with compensating control . 11
3 Traditional hardware token with compensating control 14
4 MDM-Based Derived Credentials Architecture 15
5 Remote device registration . 19
6 States of the device record during remote registration 22
7 Remote provisioning . 24
8 Regeneration of a credential from a protocredential and a passcode 31
9 Regeneration of a DSA credential from a protocredential and a passcode . . 32
10 Generation of a DSA protocredential and its corresponding credential 34

1 Introduction

To comply with presidential directive HSPD-12 [1], US federal employees and contractors
use Personal Identity Verification (PIV) cards, specified by NIST in FIPS 201-2 [2], Spe-
cial Publication 800-73-4 (Draft) [3] and other special publications, for physical access to
federal facilities and logical access to federal information systems. PIV cards used at the
Department of Defense are called Common Access Cards (CAC). When used for logical ac-
cess, a PIV/CAC card is typically plugged into a card reader connected to a desktop or

2

laptop personal computer (PC). The PC authenticates the user to an information system of
a federal agency by presenting a PIV Authentication certificate contained in the card to the
information system together with a signature on a challenge executed within the card using
a PIV Authentication private key associated with the certificate. Such authentication may
take place, for example, during the establishment of a TLS connection from the PC to the
information system, in which case the PIV Authentication certificate plays the role of a TLS
client certificate.

Usually, a PIV/CAC card also contains credentials used for exchanging signed and en-
crypted S/MIME mail messages, including a “Digital Signature” private key and associated
certificate, a current “Key Management” private key and associated certificate, and a col-
lection of up to 20 retired key management private keys and certificates. Although it is
not obvious from the name, the key management private key is used to decrypt mail mes-
sages. More specifically, it is used to unwrap the symmetric keys used to encrypt messages
addressed to the user of the card, while the public key contained in the key management
certificate is used by senders to wrap those keys. The retired key management private keys
are used to decrypt older messages that the user has saved in their encrypted form.

In December 2011, NIST Special Publication 800-63-1 [4] introduced the concept of a
derived credential, defined as

A credential issued based on proof of possession and control of a token associated
with a previously issued credential, so as not to duplicate the identity proofing
process.

with the purpose of allowing users to carry such credentials in mobile devices rather than
PIV/CAC cards [5].

Storing derived credentials in mobile devices is complicated by the fact that many mobile
devices do not provide tamper resistant storage, while HSPD-12 specifically requires tamper
protection for federal credentials, and FIPS 201-2 [2] requires a PIV card to provide physical
security level 3 as specified in FIPS 140-2 [6].

To address this difficulty, at the NIST Cryptographic Key Management workshop of
September 2012 [7] we proposed to use as authentication credential an uncertified RSA key
pair that, instead of being stored in the mobile device, would be regenerated before use
from parameters including the prime factors of the RSA modulus together with user secrets
consisting of a PIN and/or a biometric key, the biometric key being itself derived from a
biometric sample and auxiliary data [8, 9, 10]. An adversary who captured the mobile device
would not find the key pair in the device, and furthermore could not mount an offline guessing
attack against the user secrets, because each guess could only be tested by attempting online
authentication against a back-end that would limit the number of attempts.

We also proposed an architecture where a prover black-box (PBB) in the mobile device
authenticates to a verifier black-box (VBB) in an agency back-end, obtaining a code1 that
front-ends of native and web-based applications use for authentication to their back-ends.

All this would have greatly simplified the development of new mobile applications, but
would have meant a sharp departure from the certificate-based authentication method used
by existing applications in federal agencies.

1The code plays the role of a “bearer token,” and we referred to it as an “authentication token.” In the
present paper, however, we use the word “token” to refer to a cryptographic module, for consistency with
the NIST documents, and we avoid other uses of the word as much as possible.

3

In subsequent work [11] we extended the credential regeneration method to other cryp-
tosystems besides RSA, viz. DSA and ECDSA; we introduced the concept of a protocredential
to refer to parameters stored in the device and combined with user-supplied secrets to re-
generate a credential; and we devised a method for enterprise single sign-on (SSO) based
on the sharing of a login session created by the VBB, among both native and web-based
applications. We also proposed a method for storing a traditional credential consisting of
a certificate and associated private key in a mobile device, the credential being encrypted
under a data encryption key stored in a secure back-end and retrieved by authenticating to
the back-end with a credential regenerated from a protocredential and user-supplied secrets
[11, §5.5].

Recently NIST has published drafts of two documents providing guidelines for the im-
plementation of derived credentials, NIST Interagency Report 7981 (NISTIR 7982) [12] and
Special Publication 800-157 (SP 800-157) [13], and has asked for comments on the drafts.
We have sent comments to NIST, and published them at [14]. This paper expands on some
of the points made in the comments.

The NIST documents discuss the storage in a mobile device of an authentication private
key and certificate, a digital signature private key and certificate, a current key manage-
ment key and certificate and a collection of retired management keys and certificates. The
authentication and digital signature keys and certificates are of the same type as those in a
PIV card, but distinct from those in the card. On the other hand, the current and retired
key management keys must be identical to those in the card, since they are to be used for
decrypting the same mail messages.

Although SP 800-157 discusses mail-related credentials in informative appendix A and
normative appendix B, it insists that only the authentication credential is to be considered
a “Derived PIV Credential”:

The Derived PIV Credential is a PIV Derived Authentication certificate, which is
an X.509 public key certificate that has been issued in accordance with the require-
ments of this document and the X.509 Certificate Policy for the U.S. Federal PKI
Common Policy Framework [COMMON]. While the PIV Card may be used as
the basis for issuing other types of derived credentials, the issuance of these other
credentials is outside the scope of this document. Only derived credentials issued
in accordance with this document are considered to be Derived PIV credentials.

As a practical matter, a term is needed to refer jointly to authentication and mail-related
credentials stored in a mobile device. In this paper we shall use the term derived credentials
for that purpose.

The NIST documents direct agencies to store derived credentials in hardware or software
tokens, using the word “token” to refer to a cryptographic module. Although this is not
completely clear, the documents seem to suggest that derived credentials stored in a software
token are to be protected by encrypting them under a key derived from a randomly generated
6-digit PIN or from a password with equivalent entropy, i.e. with 20 bits of entropy. In our
comments we point out that such low entropy provides no protection against an offline
attack using a botnet, which the attacker could easily rent for a low fee; we propose instead
protecting the derived credentials in a software token by encrypting their private keys under
a high-entropy key stored in a secure back-end and retrieved by authenticating to the back-
end with a credential regenerated from a protocredential and the PIN or password (i.e. using

4

the technique of [11, §5.5] in the special case where the user-supplied secrets consist of a
single PIN or password).

Henceforth we shall use the term passcode to refer a PIN, password or passphrase.
SP 800-157 observes that the OMB memorandum M-07-16 [15] requires storing derived

credentials in a “device separate from the computer gaining access,” but anticipates that
OMB will issue alternative guidance allowing compensating controls to make up for the use
of tokens integrated into the device, including software tokens. In our comments we point
out that a compensating control is also needed for the lack of the protection against tam-
pering required by HSPD-12, and we suggest framing the proposed technique for protecting
derived credentials stored in a software token as a compensating control for both the lack
of separation and the lack of tamper resistance of software tokens. Storing the proposed
high-entropy key used to encrypt the derived credentials away from the mobile device seems
a suitable compensating control for not storing the derived credentials themselves away from
the device; and encrypting the derived credentials under a high-entropy key can be viewed as
a form of virtual tamper resistance, compensating for the lack of physical tamper resistance.

The same compensating control is applicable to hardware tokens that provide no tam-
per resistance, such as a token implemented in the Trusted Execution Environment (TEE)
provided by an ARM Cortex-A processor [16]; and it is useful even for hardware tokens that
provide tamper resistance because, as discussed below, tamper resistance is never absolute.
For all tokens, the compensating control provides the following security baseline:

An adversary who captures a mobile device containing a token (i.e. a crypto-
graphic module) that is not active (i.e. that must be activated by a passcode before
it can be used), and who does not know the passcode, has a negligible probability of
extracting the private keys of the derived credentials protected by the compensating
control, even if the passcode has as little as 20 bits of entropy.

where the meaning of the term negligible is made precise below in Section 2.1. Security
features of some kinds of tokens provide further security beyond the baseline, as discussed
below.

As mentioned above, in previous papers [10, 11] we have discussed a technique for using a
biometric key to regenerate a credential from a protocredential, instead of, or in addition to,
a passcode. The technique could be used for token activation. However, while FIPS 201-2
[2] mentions the possibility of using a biometric sample to activate a PIV card, SP 800-157
only considers activation with a passcode. To keep this paper narrowly focused, we shall
not further discuss the use of biometrics, and we shall only consider token activation with a
passcode, and credential regeneration from a protocredential and a passcode.

The rest of the paper is organized as follows. Section 2 describes the compensating con-
trol in more detail, and how it can be used to increase the security provided by a mobile
cryptographic module, which can be a software token, a hardware token implemented in a
TEE, or a traditional hardware token. Section 3 provides a particular example of a system
architecture that takes advantage of a mobile device management (MDM) infrastructure
to implement the compensating control. Subsection 3.1 describes the overall system. Sub-
section 3.2 describes how the mobile cryptographic module is used via one or more APIs.
Subsection 3.3 describes procedures for activating and deactivating the mobile cryptographic
module. Subsection 3.4 describes procedures for registering the device and provisioning the
derived credentials. Subsection 3.6 explains how the mobile cryptographic module can be

5

used to implement effective data protection and how token activation can be integrated with
effective device locking when the operating system itself implements the module. Subsec-
tion 3.5 suggests an optional enhancement of the architecture that can be used to increase
the availability of derived credentials and allow offline decryption of saved mail messages.
Subsection 3.7 envisions the specification of open API standards to facilitate the develop-
ment of an ecosystem of interoperable components of the architecture. Finally, Section 4
recapitulates and Section 5 makes an intellectual property disclosure.

The paper also includes two appendices. Appendix A explains the process of regenerating
a credential from a protocredential and a passcode, and Appendix B explains the process of
initially generating a protocredential and the corresponding credential from the passcode.

2 A Compensating Control

Recall that the word token is used in the NIST documents to refer to a cryptographic module.
In this section we describe the method of protecting derived credentials that can serve as a
compensating control for software tokens and hardware tokens that do not provide tamper
resistance, and can generally improve security for any kind of token. We first discuss the
use of the compensating control to protect credentials in a software token, then in a token
embedded in a TEE, and finally in a traditional hardware token.

2.1 Using the Control with a Software Token (i.e. with a Crypto-
graphic Module Implemented Entirely in Software)

Figure 1 illustrates the use of the control in conjunction with a software token. The private
keys of the derived credentials, including the derived PIV authentication key, as well as
the derived digital signature (DS) and current and retired key management (KM) private
keys if the user has an agency mail account, are stored encrypted under a high-entropy key-
wrapping key (KWK, which could also be called a key-encryption key, KEK), which is stored
in a device record within the agency back-end. Section 3 provides an example of a system
architecture in which the device record is part of a database of device records maintained
by a mobile device management (MDM) back-end; but an MDM back-end is not necessarily
involved.

The KWK is retrieved from the back-end when the user activates the software token by
entering a passcode. It is then used to unwrap the private keys of the derived credentials,
and deleted immediately after use as illustrated by dark grey shading in the figure. The
private keys remain present in the clear in the software token until the token is deactivated,
as illustrated by light grey shading in the figure. Deactivation may occur upon explicit
request by the user, when the user powers off or locks the device, after the token has been
inactive for a configured period of time, or after a configured period of time has elapsed since
activation.

To retrieve the KWK, the device authenticates to the agency back-end using a device
credential, which consists of a device record handle that uniquely identifies the device record
within the agency back-end, and a key pair pertaining to a digital signature cryptosystem
such as a DSA, ECDSA or RSA. To that purpose the device establishes a TLS connection
to the back-end. During the handshake, the back-end authenticates to the device using

6

AGENCY BACK-END

Mobile device

Device record handle

Hash of device pub. key

KWK

Consec. failure counter

etc.

Current &
retired KM
priv. keys

KWK = Key-wrapping key
KM = Key Management (KM private keys decrypt mail messages)
DS = Digital Signature (DS private keys sign mail messages)

Data present while token is active

Activation
passcode

KWKUnwrap

C
E
R
T

KWK-wrapped
derived

PIV auth.
priv. key

KWK-wrapped
derived

DS
priv. key

KWK-wrapped
current &

retired KM
priv. keys

Derived
DS

priv. key

C
E
R
T

Derived
PIV auth.
priv. key

C
E
R
T

Device
authentication:

handle, pub. key,
signature on

 challenge

Data deleted after use

Device record

Software token

Proto-
credential

Device
credential
(device
record
handle,

 key pair)

Figure 1: Software token with compensating control

7

a TLS server certificate. After the handshake, the device sends to the back-end the device
record handle, the public key component of the device key pair, and a signature on a challenge
derived by hashing together the TLS master secret and the back-end’s TLS server certificate.2

The back-end verifies the signature and compares a hash of the device public key to a hash
stored in a field of the record during the device registration procedure. If authentication
fails, the back-end increments a counter of consecutive authentication failures maintained
in another field of the record, and disables the record if the counter reaches a limit set by
agency policy. Any number in the range 3-10 would be a reasonable limit.

The device credential is regenerated from the activation passcode supplied by the user and
a protocredential, as described in Appendix A. It is deleted after being used to authenticate
the device to the back-end and retrieve the KWK, as illustrated by dark grey shading in the
figure.

Recall the security baseline provided by the compensating control:

An adversary who captures a mobile device containing a token that is not active,
and who does not know the passcode, has a negligible probability of extracting the
private keys of the derived credentials protected by the compensating control, even
if the passcode has as little as 20 bits of entropy.

The following informal argument explains how the security baseline is achieved:

• The private keys of the derived credentials are not present in the clear in the device
when the device is captured, because the device is assumed not to be active.

• The wrapped private keys are present in the device, and could be unwrapped with
the KWK, but the KWK is not present in the clear in the device when the device is
captured, because the plaintext KWK is always deleted after use.

• The KWK could be retrieved from the agency back-end by authenticating with the
device credential, but the device credential is not present in the device, because it is
always deleted after use.

• The protocredential is present in the device and could be used to regenerate the device
credential, but that requires the activation passcode.

• The adversary may try to guess the passcode, but, as discussed below, has no informa-
tion that would make it possible to test passcode guesses offline. The adversary can
only test each passcode guess by regenerating the device credential and attempting to
authenticate to the back-end, which can limit the number of attempts to not more
than 10. The probability of guessing a passcode with 20 bits of entropy in no more
than 10 tries may be deemed negligible based on the fact that Table 6 of SP800-63-2
[18] allows 100 tries every 30 days for that amount of entropy.

2In the original version of the paper, the challenge was derived from the master secret only. However,
using an Unknown Key-Share (UKS) vulnerability of TLS recently reported in [17], an attacker might be
able to trick the device into establishing a TLS connection to the attacker, while simultaneously establishing
a TLS connection from the attacker to the back-end having the same master secret. The attacker might then
be able to obtain a signature by the device on a challenge derived from the common master secret, and use
it to authenticate to the back-end. We discussed another, less compelling reason for including the back-end
certificate in the challenge material in [11, §2.1].

8

An adversary who captures a device that is not active does not have information for testing
a passcode guess offline for the following reasons:

• No information related to the device credential is stored in the device other than the
protocredential, and every passcode yields a well-formed credential when combined
with the protocredential.3

• After regenerating a credential from the passcode guess, the adversary cannot match
the public key of the credential against a public key contained in a certificate because
no certificate is issued for the public key in the device credential.

• When the device authenticates to the back-end while in possession of the legitimate
user, the public key and the signature on the challenge sent to the back-end cannot be
sniffed by the adversary for future use in an offline test after device capture, because
they are sent encrypted after the TLS connection has been established.

• The hash of the public key stored in the device record is treated by the back-end as a
secret.

The requirement to treat as secrets the hashes of public keys stored in a database of device
records is reminiscent of the requirement to treat as secrets the salted hashes of passwords
stored in a traditional database of user records. However the consequences of a database
security breach are very different in the two cases. An adversary who breaches the security
of the database of salted password hashes can mount an offline dictionary attack against
each password, and many passwords will fall to the attack. On the other hand, an adversary
who breaches the security of the database of device records also needs to breach the security
of an individual device in order to acquire credentials pertaining to the device.

2.2 Using the Control with a TEE Token (i.e. with a Crypto-
graphic Module Embedded in a Trusted Execution Environ-
ment)

In our comments [14] on the NIST documents we argue that a particular kind of embedded
hardware token, which may be called a TEE token, deserves special mention. A TEE token
is a cryptographic module within a Trusted Execution Environment (TEE). A TEE, a.k.a.
a TrustZone, is a computing environment provided by a secure OS running on the same
processor as a normal OS. One or more trusted applications (TAs) run under the secure
OS. A hardware bus architecture ensures that a portion of the flash storage can only be
accessed by the secure OS. Both OSes can access the touchscreen, but a security indicator
lets the user know when the screen is controlled by the secure OS and the user interface
can be trusted. TEE specifications are being developed by GlobalPlatform [19]. TEEs are
provided by ARM Cortex-A processors, where a TEE is also referred to as a TrustZone [16].
Development of trusted applications is supported at least by Trustonic [20] and Sierraware

3This is strictly true when the regenerated credential pertains to the DSA or ECDSA cryptosystems.
Regeneration of an RSA credential may fail, but the probability of failure is very small, so regeneration
success cannot be used to test passcode guesses in an offline attack.

9

[21]. The cryptographic module functionality of a TEE token is to be implemented by a
trusted application, which we shall call the token TA, running under the secure OS.

A TEE token has important advantages as well as disadvantages for the storage of derived
credentials. The GlobalPlatform TEE specifications include a Trusted User Interface API
specification [22] that can be used to protect the activation PIN from being phished by
malware. On the other hand, since the secure OS runs on the same processor as the normal
OS and uses a portion of the same flash storage, a TEE token does not typically provide any
tamper resistance.4 The compensating control remedies this drawback of a TEE token.

Figure 2 illustrates how the compensating control is used in conjunction with a TEE
token. While the TEE token is active, the plaintext private keys of the derived credentials
are stored within the token and designated as not being extractable by software.5 They
thus have some protection against malware running on the device while the token is active:
malware can use the private keys, by instructing the TEE token to perform cryptographic
operations with them, but cannot extract them and send them to an adversary for use in a
machine owned by the adversary.

The wrapped private keys, on the other hand, are stored outside the TEE token. This is
because a typical cryptographic module API expects the wrapped argument to an unwrap-
ping operation to be in working memory, which would require the wrapped private keys to
be extracted before unwrapping if they were kept in the TEE token.

While the KWK used with the software token in Figure 1 is stored and retrieved in the
clear, the KWK used with the TEE token is stored and retrieved wrapped under a KWK-
wrapping key, which is permanently stored within the TEE. Otherwise malware running on
the mobile device as the device is activated could capture the KWK and use it to unwrap
the private keys stored outside the token.6 A TEE token protects the activation passcode
against being phished by malware running on the mobile device while the device is being
used by the legitimate user. When the user activates the token, the passcode is prompted
for by the token TA using the Trusted User Interface API specification [22], while the mobile
device displays a security indicator7 to let the user know that the touchscreen is controlled
by the secure OS, that the passcode is being requested by a trusted application and that the
passcode will be imported into the TEE token via a trusted path protected from malware.

Once it has been imported, the passcode never leaves the TEE token. The protocredential

4Tamper resistance is of course not incompatible with a TEE architecture. A GlobalPlatform specification
[23] proposes to compensate for the lack of tamper resistance by using a secure element in addition to a TEE,
the secure element providing tamper resistance while the TEE provides a trusted user interface. (However
this negates the TEE cost savings achieved by using the same processor for the secure OS and the normal
OS, since the secure element has its own processor; and it is a very complex solution, because the TEE and
the secure element must communicate via the normal OS using an encrypted channel.) And the M-Shield
technology of Texas Instruments [24] claims to be software-compatible with the ARM Trustzone technology
while providing “tampering detection [that] triggers effective protection actions.”

5The TEE token could be accessible through a variety of APIs, such as a future extension of the PKCS#11
API, or a future TEE Functional API envisioned in the GlobalPlatform TEE white paper [19]. If accessed
through an extension of PKCS#11, the private keys could be made non-extractable by setting the value of
their CKA EXTRACTABLE attribute to CK FALSE.

6The database of device records may contain records of devices with software tokens where the KWK is
unwrapped and records of devices with TEE or other hardware tokens where the KWK is wrapped. Whether
the KWK is wrapped or not is only of concern to the device, not to the back-end.

7The security indicator could be an LED controlled by the secure OS, or an image and/or phrase chosen
by the user, stored in the TEE, and treated as a shared secret between the TEE and the user.

10

AGENCY BACK-END

Mobile device

Device record handle

Hash of device pub. key

Wrapped KWK

Consec. failure counter

etc.

Current &
retired KM
priv. keys

KWK = Key-wrapping key
KM = Key Management (KM private keys decrypt mail messages)
DS = Digital Signature (DS private keys sign mail messages)

Data present while token is active

Proto-
credential

Activation
passcode

Device
credential
(device
record
handle,

 key pair)

KWKUnwrap

C
E
R
T

KWK-wrapped
derived

PIV auth.
priv. key

KWK-wrapped
derived

DS
priv. key

KWK-wrapped
current &

retired KM
priv. keys

Derived
DS

priv. key

C
E
R
T

Derived
PIV auth.
priv. key

C
E
R
T

Device
authentication:

handle, pub. key,
signature on

 challenge

Data deleted after use

Device record

KWK-
wrapping key

Unwrap

TEE token

Security
indicator

Figure 2: TEE token with compensating control

11

is stored within the token, and the device credential is regenerated within the token from the
passcode and the protocredential. This requires, of course, that the token TA be programmed
to support credential regeneration functionality and the token API provide access to the
functionality.

As in the case of a software token, the compensating control used with a TEE token pre-
vents an adversary who captures a mobile device while the token is not active from extracting
the private keys, thus compensating for the lack of tamper resistance; but furthermore, the
trusted interface feature of the TEE token protects the passcode from being phished by
malware running on the mobile device while the legitimate user is using the device. This
prevents the following two-phase attack. In phase I, the adversary uses malware while the
legitimate user is using the device to phish the passcode. In phase II, the adversary captures
the device and takes advantage of the lack of tamper resistance to extract the protocreden-
tial, the wrapped private keys and the KWK-wrapping key. Then the adversary computes
the device credential from the protocredential and the passcode, uses the device credential to
retrieve the wrapped KWK, uses the KWK-wrapping key to unwrap the KWK, and uses the
KWK to unwrap the private keys of the derived credentials. (Another, minor advantage of
a TEE token is that malware running on the device cannot activate the token, and therefore
can only use the private keys if and when the user of the device activates the token.)

2.3 Using the Control with a Traditional Hardware Token (i.e. a
Hardware Cryptographic Module Not Embedded in a TEE)

Traditional hardware tokens considered in the NIST documents include MicroSD cards, de-
vices that plug into a USB port, UICC cards, and chips embedded into mobile devices.8 Such
hardware tokens do not provide a trusted interface feature that can be used to protect the
passcode against phishing by malware. On the other hand, they may provide tamper resis-
tance features. Traditional hardware tokens may use chips similar or identical to chips used
for Digital Rights Management (DRM), which must be tamper proof against the intended
user of the device and often incorporate sophisticated tamper resistance features.

A detailed account of the many tamper countermeasures included in a family of Infineon
chips was presented at Black Hat DC 2010 [25]. The presentation shows that manufacturers
of security hardware go to great lengths to prevent the hacking of tamper resistant chips. But
it also illustrates the principle that tamper resistance is never absolute. Even though some of
the chips in the family had passed Common Criteria certification [26], the countermeasures
were defeated by a Class I attacker, i.e. a single attacker with no insider knowledge [27]. The
attack required equipment that would be very expensive to buy, but is affordable if rented
by the hour. It took the attacker months to discover the countermeasures and develop
techniques to circumvent them, but it might take only hours to extract secrets from one of
the chips in the family after developing the techniques.

Since tamper resistance is not absolute, the compensating control provides a useful com-
plement to whatever tamper resistance is provided by a traditional hardware token. Figure 3
illustrates how the control can be used to improve the security of the token. The security
baseline achieved by the control means that even an adversary who is able to circumvent the

8The NIST documents also mention “hardware security modules [. . .] built into the SoC at the heart
of the device.” This may be a reference to what we call a TEE token, except that a TEE token is not a
separate hardware module, since it uses the main processor of the device.

12

countermeasures against tampering will not be able to extract the private keys of the derived
credentials from a captured device, as long as the device is not active. On the other hand,
the tamper resistance provided by the device protects the private keys against adversaries
who capture the device while active but are not able to circumvent the countermeasures.

As in the case of a TEE token, the plaintext private keys of the derived credentials are
marked as not extractable, hence malware running on the device while the token is active
can use but cannot extract the keys. However, there is no trusted interface, so malware may
be able to phish the passcode, after which it will be able to activate the token at will in
order to use the keys.

We assume that a traditional hardware token is not able to regenerate a credential from
the passcode and a protocredential. Regeneration must therefore take place outside the
token. The protocredential is kept outside the token to avoid having to extract it from the
token before use.9

3 Example: An MDM-Based Derived Credentials Ar-

chitecture

Figure 4 illustrates a derived credentials architecture that leverages an existing MDM infras-
tructure. An MDM back-end must implement a database of managed devices, and device
records in the MDM database can be used to store the KWKs used by the compensating
control. The KWK is stored unwrapped in a device record if the corresponding device uses
a software token, wrapped if the device uses a TEE token or a traditional hardware token.

However this is only an example. The compensating control can be implemented in
environments where there is no MDM infrastructure, or independently of an existing MDM
infrastructure. All that the compensating control requires architecturally is a device record
in a secure back-end where the KWK (wrapped or unwrapped) can be stored, and client
code to retrieve and use the KWK.

3.1 System Architecture

Derived credentials are stored within a mobile device in a mobile cryptographic module, which
may be implemented as a software token, a TEE token, or a hardware token; a software
token is shown in the figure as an example. The derived credentials include a derived PIV
authentication private key and its associated certificate, as well as a digital signature (DS)
private key and current and retired key management (KM) private keys and their certificates
if the user has an agency mail account. The authentication and digital signature credentials
are provisioned by a CA while the key management credentials are provisioned by an escrow
server as described below in Section 3.4.2. The CA and the escrow server may be the same
entity, which interacts with the agency’s identity management system (IDMS), as illustrated
in the figure.

The user can process electronic mail using any mail client that supports one of the APIs
exposed by the mobile cryptographic module. The client can be adapted to use the mobile

9An argument could be made in favor of storing the protocredential inside the token to benefit from
tamper protection provided by the token. But the protocredential would have to be marked extractable,
making it easy for an attacker to circumvent the tamper protection.

13

AGENCY BACK-END

Mobile device

Device record handle

Hash of device pub. key

Wrapped KWK

Consec. failure counter

etc.

Current &
retired KM
priv. keys

KWK = Key-wrapping key
KM = Key Management (KM private keys decrypt mail messages)
DS = Digital Signature (DS private keys sign mail messages)

Data present while token is active

Activation
passcode

KWKUnwrap

C
E
R
T

KWK-wrapped
derived

PIV auth.
priv. key

KWK-wrapped
derived

DS
priv. key

KWK-wrapped
current &

retired KM
priv. keys

Derived
DS

priv. key

C
E
R
T

Derived
PIV auth.
priv. key

C
E
R
T

Device
authentication:

handle, pub. key,
signature on

 challenge

Data deleted after use

Device record

KWK-
wrapping key

Unwrap

Traditional hardware token

Proto-
credential

Device
credential
(device
record
handle,

 key pair)

Figure 3: Traditional hardware token with compensating control

14

Mail server,
e.g.

MS Exchange

MDM back-end

App back-ends

Agency's Identity Management System
Agency's CA

and
escrow server

APIs for
native apps

APIs for
native apps

Mail client

Agency back-end

MDM database

APIs for
web apps

APIs for
native apps

Web
browser

Other
native apps

Mobile cryptographic module (software token shown as an example)

Mobile device

Sync

Device record handle

Hash of device pub. key

KWK

Consec. failure counter

etc.

Current &
retired KM
priv. keys

KWK = Key-wrapping key MDM = Mobile device management
KM = Key Management (KM private keys decrypt mail messages)
DS = Digital Signature (DS private keys sign mail messages)

Data present while token is active

Proto-
credential

Activation
passcode

Device
credential
(device
record
handle,

 key pair)

KWKUnwrap

C
E
R
T

KWK-wrapped
derived

PIV auth.
priv. key

KWK-wrapped
derived

DS
priv. key

KWK-wrapped
current &

retired KM
priv. keys

Derived
DS

priv. key

C
E
R
T

Derived
PIV auth.
priv. key

C
E
R
T

MDM
client

handle, pub. key,
signature on

 challenge

Data deleted after use

Figure 4: MDM-Based Derived Credentials Architecture

15

cryptographic module by replacing the library that implements the API. For example, the
user may use an Exchange ActiveSync (EAS) client that synchronizes mail messages (as well
as calendar entries and contacts) with an existing Microsoft Exchange server. The client
authenticates to the server using the derived PIV authentication private key and certificate,
signs messages with the digital signature private key, and decrypts messages, new or old,
with the key management private keys. The Exchange server requires no modification.

Native applications may authenticate to back-end APIs using the derived PIV authenti-
cation private key and certificate for TLS client authentication during the establishment of
a TLS connection.

A web browser may also use the derived PIV authentication private key and certificate to
establish TLS connections. Some manufacturers of PIV/CAC cards or readers supply their
own web browsers. Some of those browsers could be interfaced to a mobile cryptographic
module instead of a cryptographic module that accesses a card, by replacing the crypto-
graphic libraries that they use. A browser interfacing to a mobile cryptographic module
could also be built from scratch using WebKit [28].

The derived PIV authentication private key and certificate may be also used to set up a
VPN tunnel from the mobile device to the agency back-end.

The mobile cryptographic module also contains the device credential used to authenticate
the device to the back-end and retrieve the KWK, wrapped or unwrapped, as described above
in Section 2. The device authentication and KWK retrieval protocol is carried out by a native
MDM client application running on the mobile device and an MDM back-end included in
the agency back-end.

3.2 Access to the Mobile Cryptographic Module through APIs

The derived credentials are used by applications such as a mail client, a web browser and
other native applications. To accommodate existing applications, the module may expose
one or more of the same APIs that are used today by applications to access the corresponding
credentials in a PIV/CAC card, such as a subset of the PIV Client API [3, Part 3], a subset of
PKCS#11 [29], or a subset of PC/SC [30, Part 8]. For the convenience of future applications,
the module should also expose a new API to be designed and standardized with the specific
purpose of using the derived credentials stored in a mobile cryptographic module.

Each mobile cryptographic module API is implemented by a library linked to each native
application that uses the module. If the module is a TEE token or a traditional hardware
token, the library in turn calls an API provided by the operating system for having cryp-
tographic operations performed by the secure OS of the TEE or the separate processor or
ad-hoc cryptographic hardware of the traditional hardware token. We shall refer to this
second API as an inner API, and to the mobile cryptographic module API used by native
applications to make use of the derived credentials as an outer API. An inner API is also
used by the MDM client to perform tasks such as unwrapping the private keys of the derived
credentials and regenerating the device credential.

Data used by the mobile cryptographic module but not stored within a TEE token
or traditional hardware token, including all data used by a software token, the wrapped
credentials kept outside a TEE token or traditional hardware token, and the protocredential
and device credential kept outside a traditional hardware token, are stored in shared storage
accessed by the code of the libraries that implement the outer API, which is linked to the

16

native applications that use the derived credentials. The shared storage, and the inner API
in the case of a TEE token or traditional hardware token, are accessed directly by the MDM
client, but only through API library code by the native applications that use the derived
credentials. Hence they need not be visible to developers of native applications.

In iOS, shared storage is provided by the keychain, with access to shared keychain items
based on an “app ID prefix” shared by iOS applications deployed by the federal agency that
issues the derived credentials. In Android, shared storage can be supplied by an SQLite
database accessed via a ContentProvider implemented by the MDM client, with access to
the ContentProvider restricted to applications signed with a code-signing credential used for
agency-deployed Android applications.

Alternatively, the mobile cryptographic module and the MDM client may be implemented
by the operating system, either in a standard OS version, or in a tailored version of an open-
source OS such as Android. In that case the shared storage is internal to the operating
system.

3.3 Module Activation and Deactivation

The module activation procedure comprises the following steps:

1. The MDM client asks the user to enter the passcode and regenerates the device cre-
dential from the passcode and the protocredential. If the mobile cryptographic module
is a TEE token, the passcode is imported into the module via a trusted path from a
trusted user interface, and the device credential is regenerated within the module.

2. The MDM client establishes a TLS connection with server-only authentication to the
MDM back-end, then authenticates with the device credential over the TLS connection
as described above in Section 2.1.

3. The MDM client retrieves the KWK, wrapped or unwrapped, over the TLS connec-
tion. The KWK is wrapped if the mobile cryptographic module is a TEE token or a
traditional hardware token, unwrapped if the module is a software token.

4. The MDM client deletes the device credential from the mobile cryptographic module.

5. If the mobile cryptographic module is a TEE token or a traditional hardware token, the
KWK is unwrapped using the KWK-wrapping key. The plaintext KWK is imported
into the token and the wrapped KWK is deleted.

6. The KWK is used to unwrap the private keys of the derived credentials. If the mobile
cryptographic module is a TEE token or a traditional hardware token, the plaintext
private keys are imported into the token.

7. The MDM client deletes the plaintext KWK from the mobile cryptographic module.

The procedure for deactivating the mobile cryptographic module comprises just one step:

1. The MDM client deletes the plaintext private keys of the derived credentials from the
module.

17

3.4 Device Registration and Provisioning

Preparing a mobile device so that it can provide logical access to the agency’s information
systems and handle signed and encrypted mail requires three steps: installing an KWK-aware
MDM client in the device, registering the device with the MDM back-end, and provision-
ing derived credentials to the device. The code of a KWK-aware MDM client need not
contain any confidential information, so it may be downloaded by the user from an agency
application store without authentication. A remote registration process is described below
in Section 3.4.1, and a remote provisioning process in Section 3.4.2. SP 800-157 requires
in-person issuance of the derived PIV-credential at Level Of Assurance 4 (LOA-4); in-person
registration and provisioning processes are described below in Section 3.4.3.

3.4.1 Remote Device Registration with the MDM Back-End

As illustrated in Figure 5, during the remote device registration process the user interacts
both with a laptop or desktop personal computer (PC) and with the mobile device being
registered. The process comprises the following steps, illustrated by numbered arrows in the
figure:

1. The user plugs his or her PIV/CAC card to a card reader connected to the PC, activates
the card by entering a PIN, and uses a web browser running on the PC to access the
MDM back-end. The browser establishes a mutually authenticated TLS connection to
the back-end using the PIV Authentication Key and certificate stored in the PIV/CAC
card for TLS client authentication, and requests initiation of the registration process.

The MDM back-end creates a device record in the MDM database, containing the
device record handle, the certificate associated with the PIV Authentication Key, a
cross-site request forgery (CSRF) prevention code, a registration code, a confirmation
code, and a confirmation deadline, as illustrated in Figure 6(a). (The record also has
fields left empty as shown in the figure, and may have fields besides those shown in the
figure, used for other purposes by the MDM infrastructure.)

The handle is a permanent identifier that uniquely identifies the record among all
device records in the MDM database; it may be the value of a counter of device records
maintained by the database management system. The certificate serves to associate
the device record with the user and to include in the record user data that will be used
later during the provisioning process.10 The CSRF-prevention code, the registration
code, and the confirmation code are generated by the MDM back-end: the CSRF-
prevention code is a random high-entropy string; the registration code is a random
medium-entropy code, such as an 8-digit number, unique among registration codes,
which will be deleted after use; and the confirmation code is a random low-entropy
code, such as a 4-digit number. (The reasons why medium entropy is suitable for the
registration code and low entropy for the confirmation code are explained below.) The
confirmation deadline is a time, a few minutes in the future, set according to policy; if
confirmation has not been completed by the deadline, the device record will be deemed
invalid and eligible for garbage-collection.

10This certificate is not a credential. It is a copy of the certificate in the PIV card. The private key is
in the PIV card. Data extracted from the certificate could be stored in the record instead of the certificate
itself.

18

MDM
back-end

MDM database

Agency back-end

Device record

MDM
client

Mobile cryptographic module

Mobile device

Agency's CA
and

escrow server

21436587

MDM web page

PC display

1 7

3

45

6

Please
enter this
registration
code into
your mobile
device

Please enter
the confirmation
code from your

mobile device Submit

2

Agency's Identity Management System

Figure 5: Remote device registration

19

2. In response to the registration initiation request, the MDM back-end returns a web
page showing the registration record, both as a QR code and as a string of digits,
and a form including: a field where the user will later enter the confirmation code;
a hidden field containing the device record handle; and a hidden field containing the
CSRF-prevention code. After downloading the web page the MDM back-end closes
the TLS connection, in order to force the browser to authenticate again later when the
user submits the form.

3. The user enters the registration code shown on the PC into the MDM client running
in the mobile device, either by manually copying the string of digits, or, if the mobile
device has a camera and the camera has not been disabled, by letting the MDM client
use the camera to read the QR code.

4. The MDM client establishes a TLS connection to the MDM back-end where the back-
end authenticates with a TLS server certificate, and sends the registration code.

The MDM back-end finds the device record containing the registration code and returns
the handle of the record over the TLS connection.

The MDM client obtains a passcode to be used for activation of the mobile crypto-
graphic module, either by prompting the user, or, if the module is a TEE token, by
asking the TEE token to request the passcode using the trusted interface and import
it into the token.

The MDM client causes a protocredential and corresponding device credential to be
generated from the device record handle and the passcode as described in Appendix B,
either by generating them itself, or by instructing the mobile cryptographic module to
generate them internally through the module API if the module is a TEE token.

The MDM client also generates a random high-entropy KWK, as follows:

• If the cryptographic module is a TEE token or a traditional hardware token,
the MDM client asks the token to generate the KWK and a random high-entropy
KWK-wrapping key (KWKWK), to wrap the KWK with the KWKWK, to export
the wrapped KWK, and to delete the KWK from the token while retaining the
KWKWK.

• If the cryptographic module is a software token, the MDM client generates the
KWK itself and does not wrap it.

The wrapped or unwrapped KWK is not stored in the mobile cryptographic module.
The MDM client keeps it in temporary storage, which could be volatile working memory
or persistent private storage, until it sends it to the MDM back-end as described below.

The MDM client obtains a push notification identifier, which can be used to send push
notifications to the client. In iOS, the push notification identifier is called a “device
token,” and is issued by the Apple Push Notification service (APNs). In Android, the
push notification ID is called a “Registration ID” and is issued by the Google Cloud
Messaging for Android (GCM) service.

The MDM client sends the following to the MDM back-end over the TLS connection:
the wrapped or unwrapped KWK; the push notification identifier; the device record

20

handle; the public key component of the device credential, and a signature computed
with the associated private key on a challenge derived from the TLS master secret and
the back-end’s TLS server certificate..

The MDM client deletes the wrapped or unwrapped KWK from temporary storage,
and causes the device credential to be deleted from the mobile cryptographic module,
either by deleting it itself, or by instructing the module to perform the deletion through
the module API if the module is a TEE token.

5. If the confirmation deadline has not been reached, the MDM back-end uses the public
key to verify the signature on the challenge.

Then it generates a provisioning session code and provisioning session expiration time,
which will allow the user to request provisioning immediately after registration without
having to reenter the passcode. The code is a high-entropy random string.

Then it computes a hash of the public key, and stores the following in the device record:
the hash of the public key; the wrapped or unwrapped KWK; the push notification
identifier; the provisioning session code; and the provisioning session expiration time.

Then it deletes the registration code from the device record, after which the state of
the device record is as illustrated in Figure 6(b).

Then it downloads the provisioning session code and the confirmation code to the
MDM client over the TLS connection. The client stores the provisioning session code
in its own private storage, displays the confirmation code and asks the user to enter
the confirmation code into the web page shown on the PC.

6. The user manually copies the confirmation code from the mobile device to the form
field in the web page shown on the PC.

7. The user clicks a button on the web page to submit the form containing the confirma-
tion code. The browser establishes a new mutually authenticated TLS connection to
the back-end using the PIV Authentication Key and certificate stored in the PIV/CAC
card for TLS client authentication, which requires the user’s PIV/CAC card to still be
plugged into the card reader connected to the PC. Then the browser submits the form
over the TLS connection, conveying the confirmation code, the device record handle,
and the CSRF-prevention code to the MDM back-end.

When it receives the form, the MDM back-end uses the device record handle to locate
the device record, checks that the device record contains a CSRF-prevention code
and a confirmation code that coincide with the ones in the form, and verifies that the
confirmation deadline has not been reached. If so it deletes the CSRF-prevention code,
the confirmation code and the confirmation deadline from the record, which is then as
shown in Figure 6(c).

In response to successful submission of the confirmation code, the MDM back-end uses
the push notification identifier to send a notification to the mobile device informing
the user that the registration process has been successfully completed and instructing
the user to initiate the provisioning process on the mobile device, which the user can
do by tapping on the notification.

21

(c)(b)(a)

Handle

Authentication
certificate from

PIV card

CSRF-prevention
token

Registration code

Confirmation code

Confirmation
deadline

(Empty field for hash
of public key of MDM

credential)

(Empty field for KWK)

(Empty field for push
notification identifier)

(Empty field for
provisioning session

code)

(Empty field for
provisioning session

expiration time)

Handle

Authentication
certificate from

PIV card

CSRF-prevention
token

(Empty field for
registration code)

Confirmation code

Confirmation
deadline

Hash of public key of
MDM credential

KWK, wrapped or
unwrapped

Push notification
identifier

Provisioning session
code

Provisioning session
expiration time

Handle

Authentication
certificate from

PIV card

(Empty field for
CSRF-prevention

token)

(Empty field for
registration code)

(Empty field for
confirmation code)

(Empty field for
confirmation

deadline)

Hash of public key of
MDM credential

KWK, wrapped or
unwrapped

Push notification
identifier

Provisioning session
code

Provisioning session
expiration time

Figure 6: States of the device record during remote registration

22

An adversary may submit guesses of registration codes from one or more computers
having connectivity to the MDM back-end. Submission of a correct guess will result in data
sent by the adversary being stored in fields of the device record, instead of data sent by
the user. The adversary will receive the confirmation code, but the CSRF-prevention code
will prevent the adversary from submitting it via the user’s browser in a cross-site request
forgery. Medium entropy is sufficient for the registration code because a correct guess of the
code by the adversary only results in the user having to restart the registration process. The
purpose of using a medium rather than low entropy code is to minimize the chances that the
code will be guessed and the user will be inconvenienced.

The confirmation code is not strictly necessary. It would be sufficient for the MDM
client to show a message asking the user to click a confirmation button on the PC, which
would result in the submission of a form containing just the device record handle and the
CSRF-prevention code in hidden fields; but an impatient user might submit the form with-
out waiting for the message to be displayed on the mobile device. Requiring entry of the
confirmation code forces the user to wait for the message. A low entropy confirmation code
is sufficient for that purpose.

3.4.2 Remote Provisioning of the Derived Credentials

Provisioning makes use of the MDM back-end in a role similar to that of a registration
authority (RA). To simplify the description of the process we make the following assumptions:

• The user initiates the process immediately after registration. Otherwise the provision-
ing session could expired, in which case the user would have to reenter the passcode
needed to regenerate the device credential, and the MDM client would use the de-
vice credential instead of the provisioning session code to authenticate to the MDM
back-end.

• The user has a government-issued electronic mail account. Otherwise the digital sig-
nature credential and the current and retired key management credentials would not
be provisioned.

• The roles of CA and escrow server are fulfilled by the same entity.

• The combined CA and escrow server provisions certificates and escrowed keys automat-
ically without waiting for manual approval by a human operator. Otherwise the user
would have to wait for approval, and push notifications would be sent to the mobile
device when the certificates and/or keys become ready for download.

Under this assumptions the process comprises the following steps, illustrated by numbered
arrows in Figure 7:

1. The MDM client establishes a TLS connection to the MDM back-end with server-
only authentication and sends to the MDM back-end a provisioning request. The
request includes the provisioning session code, which the back-end uses to locate the
device record. (With high probability there is only one record containing the code,
since the code is a high-entropy random string.) The MDM back-end verifies that the
provisioning session expiration time has not been reached.

23

Agency back-end

MDM
client

Mobile cryptographic module

Mobile device

14

3

2
MDM

back-end

MDM database

Device record
Agency's CA

and
escrow server

Agency's Identity Management System

Figure 7: Remote provisioning

24

Then the back-end verifies that the PIV Authentication certificate found in the device
record is still valid, and uses data in the certificate and/or in the agency’s IDMS to
assemble a set of user data to be included in the derived PIV authentication certificate
to be provisioned, and a set of user data to be included in the digital signature certificate
to be provisioned. (The two sets of user data may or may not be identical.)

The back-end sends the two sets of user data and the wrapped or unwrapped KWK
found in the device record to the MDM client.

The MDM client generates key pairs and certificate signing requests (CSRs) for the
derived PIV authentication and digital signature credentials, wraps the private keys
with the KWK, stores the wrapped private keys, deletes the plaintext versions of the
private keys, and deletes the KWK. (If the mobile cryptographic module is a TEE
token or a traditional hardware token, the KWK must be unwrapped before use, and
all the cryptographic operations are performed within the token.) With the purpose of
protecting the escrowed key management private keys, the MDM client also generates
an ephemeral Diffie-Hellman (DH) key pair using domain parameters that may have
been chosen and published by the agency [31], and retains the DH private key.

Then the MDM client sends the CSRs and the DH public key to the MDM back-end.

2. The MDM back-end verifies that the sets of user data in the CSRs have not been
altered, and forwards the CSRs, the DH public key, and the PIV Authentication cer-
tificate found in the device record to the entity that plays the role of CA and escrow
server. (It should be noted that the back-end is not using the certificate for authen-
tication, since it does not have the private key. Instead it authenticates itself to the
entity as a kind of RA, and it will be trusted by the entity to forward the provisioned
credentials to a mobile device pertaining to the subject of the certificate.)

3. The entity playing the role of CA and escrow server verifies the user data, generates
its own ephemeral DH key pair using the same domain parameters as the MDM client,
computes the DH shared secret, derives a symmetric key from the shared secret that
it uses to wrap the escrowed current and retired key management private keys, issues
the derived PIV authentication certificate and the derived digital signature certificate,
and sends those certificates as well as its DH public key and the wrapped current
and retired key management private keys and corresponding certificates to the MDM
back-end.

4. The MDM back-end forwards everything received from the entity to the MDM client,
adding the wrapped or unwrapped KWK found in the device record, in a response to
the provisioning request of step 1 sent over the same TLS connection through which
the request was received.

The MDM client computes the DH shared secret, derives the symmetric key, unwraps
the key management private keys, rewraps them with the KWK, stores the wrapped
versions, and deletes the plaintext versions as well as the KWK. (If the mobile cryp-
tographic module is a TEE token or a traditional hardware token, the KWK must be
unwrapped before use, and all the cryptographic operations are performed within the
token.)

25

The MDM client also stores all the certificates in the module, where they will be
associated with the corresponding private keys whenever the mobile cryptographic
module is active and the private keys are in the clear.

3.4.3 In-Person Registration and Provisioning

SP 800-157 requires in-person issuance of the derived PIV credential at LOA-4, with ap-
plicant identification using a biometric sample verified against the applicant’s PIV Card.
The above registration and provisioning processes can be modified as follows to meet this
requirement.

For in-person registration, the PC used to request the registration code is replaced with
a dedicated workstation located on agency premises. Access to the workstation is provided
to the applicant after verification of a biometric sample against the applicant’s PIV card.

For in-person provisioning, step 4 of the provisioning process of Section 3.4.2 (where the
MDM back-end forwards credentials to the MDM client) does not take place in response to
step 1. Instead it takes place in response to a new request, where the MDM client supplies
an in-person provisioning code entered by the applicant, which the applicant obtains from
an administrator after verification of a biometric sample against the applicant’s PIV card.
The in-person provisioning code is an additional field of the device record, whose value is set
when the record is created.

3.5 Local Escrow

Recall that the KWK is needed to unwrap the private keys of the derived credentials, and is
retrieved from the MDM back-end when the user activates the mobile cryptographic module.
If the MDM back-end is down and the module is not active, the user cannot retrieve the
KWK and unwrap the private keys, and thus is not able to authenticate to application
back-ends, sign mail messages or decrypt mail messages. Also, the user may want to be able
to read encrypted mail messages while offline; but if the mobile cryptographic is not active
and the mobile device is offline, the key management keys needed to decrypt mail messages
cannot be unwrapped.

Therefore it may be desirable to provide the user with an alternative method of obtaining
the plaintext versions of the private keys of some or all of the derived credentials. One such
alternative method is to also wrap those private keys separately under a random high-entropy
key that would be printed as a long string of characters or as a QR code readable by the
device camera. The printed QR code would ordinarily be stored in a secure cabinet, but the
user could retrieve it when necessary and use it to unwrap the private keys of the desired
credentials.

This method would amount to a local escrow of some or all of the private keys in the
mobile device itself, protected by the high-entropy key. Which keys are locally escrowed
would be a matter of policy. For example, the key management private keys used for mail
decryption could be locally escrowed to allow the user to read mail offline, while the derived
PIV authentication and digital signature private keys could by prohibited from being locally
escrowed for the sake of security.

26

3.6 Data Protection and Device Locking

Besides protecting derived credentials, the mobile cryptographic module can be used to
protect sensitive data such as decrypted mail attachments, documents downloaded from the
agency back-end, and documents created or edited on the mobile device. To that purpose the
mobile cryptographic module can store one or more symmetric data encryption keys wrapped
by the KWK. When the user activates the module, the KWK is used to decrypt the data
encryption keys, after which encryption/decryption services using the data encryption keys
can be made available to authorized native applications installed on the device.

When the mobile cryptographic module is implemented by the operating system, it can
be used to provide file system encryption in combination with device locking, as follows. A
symmetric file system encryption key is stored in the mobile cryptographic module wrapped
by the KWK. The user unlocks the device by entering a passcode. The activation procedure
of Section 3.3 is then carried out using the unlocking passcode as activation passcode, and
the file system key is unwrapped using the KWK retrieved from the MDM back-end. While
the device remains unlocked the operating system uses the unwrapped file system key to
decrypt files on the fly as they are accessed by applications.

It is also possible to implement two levels of file system encryption. In a two-level
encryption scheme, ordinary data becomes available when the user unlocks the device by
entering a passcode, but derived credentials and sensitive agency data only become available
later, if and when the user enters a second passcode, which may or may not be the same
as the first. A two-level scheme may be implemented, for example, by setting up two file
systems in the mobile device, protected by different file system encryption keys.

3.7 Open Standards

The MDM-based derived credentials architecture involves the following components:

• A mobile operating system.

• Optional security hardware such as a TEE token or a traditional hardware token.

• An MDM client.

• An MDM back-end.

• A CA and an escrow server or a single entity playing the role of CA and escrow server.

• One or more mail clients.

• One or more mobile web browsers.

• Native applications other than the mail clients and web browsers.

Mail servers, web applications and back-ends of native applications are also part of the
architecture, but without being aware of it.

Deployment of the architecture will be greatly facilitated by standard APIs that will
allow components to interoperate even when developed and supplied by different parties.

The following interfaces could be standardized:

27

• A new API for using derived credentials stored in a mobile cryptographic module,
which will play the role of outer API in mobile cryptographic modules, and may co-
exist in that role with other APIs used by existing applications, as discussed above in
Section 3.2.

• An API for directing a TEE token to perform cryptographic operations. Such an API,
under the name GlobalPlatform TEE Functional API, is envisioned in the GlobalPlat-
form TEE white paper [19], but is not yet available on the GlobalPlatform web site.
When available, it could be used as the inner API in TEE tokens. To that purpose,
the cryptographic functionality exposed by the API should include regeneration of a
credential from a protocredential as described in Appendix A and initial generation of
a protocredential and its corresponding credential as described in Appendix B.

• The interface between the MDM client and the MDM back-end. Today’s MDM in-
frastructures are monolithic: the MDM client and back-end are provided by the same
party. However, in the context of derived credentials, it would be useful to enable dif-
ferent parties to provide the client and the back-end. A party providing MDM clients
could then focus on supporting a variety of mobile platforms, traditional hardware
tokens and TEE tokens, while a party providing MDM back-ends could focus on sup-
porting a variety of enterprise IT architectures and providing good user interfaces to
administrators.

• The interface between the MDM back-end and the entity or entities playing the role
of CA and escrow server.

4 Conclusion

We have proposed a compensating control that can be used to increase the security of derived
credentials stored in mobile devices, the derived credentials being issued by a federal agency
to a user upon authentication of the user with a PIV card. The control compensates for
the storage of derived credentials in tokens (cryptographic modules) that cannot be removed
from the device and do not provide tamper resistance, such as software tokens (software cryp-
tographic modules) and TEE tokens (cryptographic modules implemented within a Trusted
Execution Environment). As compensation, the private keys of the derived credentials are
wrapped under a random high-entropy key-wrapping key (KWK) that is stored in a secure
back-end and retrieved by authenticating to the back-end with a device credential regener-
ated from a protocredential and a token activation passcode in such a way that an adversary
who captures the mobile device is not able to mount an offline guessing attack against the
passcode. The control is also useful in conjunction with traditional hardware modules that
do provide tamper resistance, because tamper resistance is never absolute.

We have provided an example of a particular derived credentials architecture that takes
advantage of the compensating control and leverages an existing MDM infrastructure by stor-
ing the KWK in a device record within an MDM database. We have described a procedure
for registering the device credential with the MDM database upon user authentication with
a PIV/CAC card, and a procedure for provisioning derived credentials to the device where
the MDM back-end plays a role similar to that of a registration authority. Certificates for a

28

derived PIV public key and a digital signature public key are issued by an agency certificate
authority (CA), while current and retired key management private keys used for decryption
of email messages, and their corresponding certificates, are downloaded securely from an
escrow service that may be provided by the CA or by a separate entity within the agency.
An optional local escrow mechanism may by used, in particular, to enable offline decryption
of saved email messages. We have shown how the token storing derived credentials can also
be used to store encryption keys for protecting sensitive data; if the token is implemented
by the operating system, token activation can be integrated with device unlocking, and the
compensating control can provide effective protection for all data stored in the device.

5 Disclosure

Pomcor has filed patent applications related to the compensating control and to the derived
credentials architecture described in this paper.

References

[1] George W. Bush. Homeland Security Presidential Directive 12: Policy for a Common Identification
Standard for Federal Employees and Contractors, August 2004.
http://www.dhs.gov/xabout/laws/gc_1217616624097.shtm.

[2] NIST. FIPS 201-2 Personal Identity Verification (PIV) of Federal Employees and Contractors, August
2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.201-2.pdf.

[3] NIST. NIST Special Publication 800-73-4, DRAFT Interfaces for Personal Identity Verification (3
Parts)
Part 1- PIV Card Application Namespace, Data Model and Representation
Part 2- PIV Card Application Card Command Interface
Part 3- PIV Client Application Programming Interface
May 13, 2013. http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-73--4.

[4] W. E. Burr, D. F. Dodson, and W. T. Polk. NIST SP 800-63-1 Electronic Authentication Guideline,
December 2011. http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf.

[5] Hildegard Ferraiolo. FIPS 201-2 and Derived Credentials. Presentation at the Information Security
and Privacy Advisory Board Meeting, February 1, 2012.
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2012-
02/feb1_der_cred_ferraiolo_h_fips_201-2.pdf.

[6] NIST. FIPS 140-2 Security Requirements for Cryptographic Modules, May 2001.
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

[7] NIST. Cryptographic Key Management Workshop. September 2012.
http://www.nist.gov/itl/csd/ct/ckm_workshop_2012.cfm.

[8] F. Corella and K. Lewison. Techniques for implementing derived credentials. Presentation at the 2012
NIST Key Management Workshop. http://csrc.nist.gov/groups/ST/key_mgmt/documents/
Sept2012_Presentations/CORELLA_DerivedCredentials.pdf.

[9] F. Corella and K. Lewison. Techniques for Implementing Derived Credentials on Mobile Devices. Blog
post. August 22, 2012. http://pomcor.com/2012/08/22/techniques-for-implementing-derived-
credentials-on-mobile-devices/.

[10] F. Corella and K. Lewison. Techniques for Implementing Derived Credentials. Revised September 13,
2012. http://pomcor.com/whitepapers/DerivedCredentials.pdf.

29

http://www.dhs.gov/xabout/laws/gc_1217616624097.shtm
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.201-2.pdf
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-73--4
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2012-02/feb1_der_cred_ferraiolo_h_fips_201-2.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2012-02/feb1_der_cred_ferraiolo_h_fips_201-2.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.nist.gov/itl/csd/ct/ckm_workshop_2012.cfm
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Sept2012_Presentations/CORELLA_DerivedCredentials.pdf
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Sept2012_Presentations/CORELLA_DerivedCredentials.pdf
http://pomcor.com/2012/08/22/techniques-for-implementing-derived-credentials-on-mobile-devices/
http://pomcor.com/2012/08/22/techniques-for-implementing-derived-credentials-on-mobile-devices/
http://pomcor.com/whitepapers/DerivedCredentials.pdf

[11] F. Corella and K. Lewison. A Comprehensive Approach to Cryptographic and Biometric
Authentication from a Mobile Perspective. Revised April 2013.
http://pomcor.com/whitepapers/CryptographicAuthentication.pdf.

[12] Hildegard Ferraiolo, Andrew Regenscheid, David Cooper, Salvatore Francomacaro, and William Burr.
Mobile, PIV, and Authentication. Draft NIST Interagency Report 7981. March 2014.
http://csrc.nist.gov/publications/PubsDrafts.html#NIST-IR-7981.

[13] Hildegard Ferraiolo, David Cooper, Salvatore Francomacaro, Andrew Regenscheid, Jason Mohler,
Sarbari Gupta, and William Burr. Guidelines for Derived Personal Identity Verification (PIV)
Credentials. Draft NIST Special Publication 800-157.
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-157.

[14] Francisco Corella and Karen Lewison. Comments on the NIST Guidelines on Derived Credentials.
March 31, 2014. http://pomcor.com/documents/CommentsOnDerivedCredentials.txt.

[15] Office of Management and Budget (OMB). Safeguarding Against and Responding to the Breach of
Personally Identifiable Information. M-07-16. May 22, 2007.
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2007/m07-16.pdf.

[16] ARM. TrustZone.
http://www.arm.com/products/processors/technologies/trustzone/index.php.

[17] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournety, Alfredo Pironti, and Pierre-Yves
Strub. Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS. March
2014. https://secure-resumption.com/tlsauth.pdf.

[18] William E. Burr, Donna F. Dodson, Elaine M. Newton, Ray A. Perlner, W. Timothy Polk, Sarbari
Gupta, and Emad A. Nabbus. NIST SP 800-63-2 Electronic Authentication Guideline, August 2013.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf.

[19] GlobalPlatform. The Trusted Execution Environment: Delivering Enhanced Security at a Lower Cost
to the Mobile Market. February 2011.
http://www.globalplatform.org/documents/GlobalPlatform_TEE_White_Paper_Feb2011.pdf.

[20] Trustonic. TrustZone and TEE. http://www.trustonic.com/technology/trustzone-and-tee.

[21] Sierraware. Open Virtualization for ARM TrustZone.
http://www.openvirtualization.org/open-source-arm-trustzone.html.

[22] GlobalPlatform. Trusted User Interface API Version 1.0. June 2013. Available for licensed download
at http://www.globalplatform.org/.

[23] GlobalPlatform. TEE Secure Element API. July 2013. Available for licensed download at
http://www.globalplatform.org/.

[24] Jerome Azema and Gilles Fayad. M-Shield Mobile Security Technology: making wireless secure.
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf.

[25] Christopher Tarnovsky. Hacking The Smartcard Chip (Blackhat 2010). Video broken into eight
10-minute segments. http://www.securitytube.net/video/945.

[26] Infineon. World’s Most Stringent Security Tests Confirm Infineon’s Security Competence in Smart
Card ICs. http://www.smartcardalliance.org/articles/2006/01/04/worlds-most-stringent-
security-tests-confirm-infineons-security-competence-in-smart-card-ics.

[27] Ross Anderson and Markus Kuhn. Tamper Resistance – a Cautionary Note. Second USENIX
Workshop on Electronic Commerce, 1996. http://www.cl.cam.ac.uk/users/mgk25/tamper.pdf.

[28] The WebKit Open Source Project. http://www.webkit.org/.

[29] RSA Laboratories. PKCS #11: Cryptographic Token Interface Standard.
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-
token-interface-standard.htm.

30

http://pomcor.com/whitepapers/CryptographicAuthentication.pdf
http://csrc.nist.gov/publications/PubsDrafts.html#NIST-IR-7981
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-157
http://pomcor.com/documents/CommentsOnDerivedCredentials.txt
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2007/m07-16.pdf
http://www.arm.com/products/processors/technologies/trustzone/index.php
https://secure-resumption.com/tlsauth.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://www.globalplatform.org/documents/GlobalPlatform_TEE_White_Paper_Feb2011.pdf
http://www.trustonic.com/technology/trustzone-and-tee
http://www.openvirtualization.org/open-source-arm-trustzone.html
http://www.globalplatform.org/
http://www.globalplatform.org/
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://www.securitytube.net/video/945
http://www.smartcardalliance.org/articles/2006/01/04/worlds-most-stringent-security-tests-confirm-infineons-security-competence-in-smart-card-ics
http://www.smartcardalliance.org/articles/2006/01/04/worlds-most-stringent-security-tests-confirm-infineons-security-competence-in-smart-card-ics
http://www.cl.cam.ac.uk/users/mgk25/tamper.pdf
http://www.webkit.org/
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Protocredential

Device
record
handle

Cryptosystem-
related

parameters
Key pair

Device
record
handle

Key pair
regeneration

KPRK
(key-pair

regeneration
key)

Key
derivation
function

Passcode

Salt

Credential

Figure 8: Regeneration of a credential from a protocredential and a passcode

[30] PC/SC Workgroup Specifications 2.01.14.
http://www.pcscworkgroup.com/specifications/specdownload.php.

[31] Elaine Barker, Lily Chen, Allen Roginsky, and Miles Smid. Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography. NIST Special Publication 800-56A
Revision 2. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf.

[32] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation Function (HKDF),
May 2010. http://tools.ietf.org/html/rfc5869.

[33] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0, September 2000.
http://tools.ietf.org/html/rfc2898.

[34] NIST. Digital Signature Standard (DSS), July 2013. FIPS PUB 186-4,
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

A Credential Regeneration from a Protocredential

Figure 8 illustrates the process of regenerating a credential consisting of a device record
handle and a key pair, from a protocredential and a passcode. The protocredential comprises
the device record handle, parameters related to the cryptosystem that the key pair pertains
to, and a random high-entropy secret salt.

The salt and the passcode are used to produce a key-pair regeneration key (KPRK) using

31

http://www.pcscworkgroup.com/specifications/specdownload.php
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://tools.ietf.org/html/rfc5869
http://tools.ietf.org/html/rfc2898
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Protocredential

Device
record
handle

Cryptosystem-
related

parameters

p

q

g

DSA key pair

p

q

g

x

y

Device
record
handle

Computation
of x and y

Key
derivation
function

Passcode

Salt

Credential

KPRK
(key-pair

regeneration
key)

Figure 9: Regeneration of a DSA credential from a protocredential and a passcode

a key derivation function such as HKDF [32].11 The KPRK is then used in conjunction with
the cryptosystem-related parameters to regenerate the key pair. The key pair and the device
record handle present in the protocredential comprise the regenerated credential.

Figure 9 illustrates more specifically the case where the cryptosystem is the Digital Sig-
nature Algorithm (DSA) specified in Section 4 of the Digital Signature Standard [34].

With the notations of the DSS, the cryptosystem-related parameters of the protocre-
dential are p, q, and g. These are also the domain parameters, which may be common
to different key pairs and may be publicly known. It is not necessarily the case, however,
that the cryptosystem-related parameters are domain parameters; in other cryptosystems
the cryptosystem-related parameters are specific to the key pair and are secret.

11PBKDF2 [33] with a large number of iterations could be used instead of HKDF, to provide additional
security against an adversary who has somehow obtained information about the key pair, such as the hash
of the public key or a signature on a challenge computed with the private key, in addition to obtaining the
salt contained in the protocredential. But using PBKDF2 would incur a cost in terms of token activation
latency and battery life.

32

The key pair comprises the parameters p, q, g, x and y. The KPRK is a string of N + 64
bits, where N is the bitlength of q, and x and y are computed as described in Appendix
B.1.1 of the DSS, with the KPRK being substituted for the random string returned bits. The
private key is x and the public key is y.

Regeneration of a credential comprising a key pair pertaining to the ECDSA cryptosystem
specified in Section 6 of the DSS [34] is very similar. The cryptosystem parameters are again
the domain parameters. The private and public keys are computed as described in Appendix
B.4.1 of the DSS, with the KPRK being substituted for the random string returned bits.

Several methods can be used to regenerate an RSA key pair. Either the decryption expo-
nent or the encryption exponent can be derived from the KPRK, the other exponent being
computed from the protocredential and the KPRK-derived exponent. The protocredential
may comprise the prime factors p and q of the modulus as well as parameters that facilitate
performance optimizations such as the use of the Chinese Remainder Theorem. The RSA
regeneration process may fail for various reasons, but the probability of failure is very small,
so regeneration success cannot be used to test guesses of passcodes in an offline attack.

B Initial Generation of a Protocredential and the Cor-

responding Credential

Figure 10 illustrates the process of initial generation of a protocredential and the correspond-
ing credential from a passcode, in the specific case where the credential pertains to the DSA
cryptosystem.

The cryptosystem-related parameters p, q and g are generated using a random number
generator (RNG) as described in Section 4.3.1 and Appendix A of the DSS [34]. However,
since, as we saw above, they are also the domain parameters, they may be common to
different key pairs and they may have been generated and published once and for all by a
trusted party such as the federal agency issuing the derived credentials. Hence generation of
the cryptosystem-related parameters is optional, as indicated by the dashed hexagon in the
figure.

The random high-entropy secret salt is generated by the random number generator. The
KPRK is derived from the salt and the passcode using the same key derivation function
that will later be used for credential regeneration. The key pair (p, q, g, x, y) is generated
by computing x and y from the cryptosystem-related parameters (p, q, g) and the KPRK
as described in Appendix B.1.1 of the DSS, with the KPRK being substituted for the ran-
dom string returned bits. The device record handle is obtained by the MDM client from
the MDM back-end during the registration process described above in Section 3.4.1. The
protocredential consists of the handle, the crypto-system related parameters and the salt,
while the credential consists of the handle and the key pair.

33

Protocredential

Device
record
handle

Cryptosystem-
related

parameters

p

q

g

DSA key pair

p

q

g

x

y

Device
record
handle

Computation
of x and y

Key
derivation

function

Random
high-entropy
secret salt

Credential

 DSA
domain param.

generation

Device
record
handle

RNG

RNG

Passcode
KPRK

(key-pair
regeneration

key)

Figure 10: Generation of a DSA protocredential and its corresponding credential

34

	List of Figures
	Introduction
	A Compensating Control
	Using the Control with a Software Token (i.e. with a Cryptographic Module Implemented Entirely in Software)
	Using the Control with a TEE Token (i.e. with a Cryptographic Module Embedded in a Trusted Execution Environment)
	Using the Control with a Traditional Hardware Token (i.e. a Hardware Cryptographic Module Not Embedded in a TEE)

	Example: An MDM-Based Derived Credentials Architecture
	System Architecture
	Access to the Mobile Cryptographic Module through APIs
	Module Activation and Deactivation
	Device Registration and Provisioning
	Remote Device Registration with the MDM Back-End
	Remote Provisioning of the Derived Credentials
	In-Person Registration and Provisioning

	Local Escrow
	Data Protection and Device Locking
	Open Standards

	Conclusion
	Disclosure
	References
	Credential Regeneration from a Protocredential
	Initial Generation of a Protocredential and the Corresponding Credential

