
Effective Data Protection for Mobile Devices

Francisco Corella, PhD
fcorella@pomcor.com

Karen Lewison, MD
kplewison@pomcor.com

August 30, 2012

1 Introduction

Two methods are used to protect data stored in a computer device in case the device is
lost or stolen. One is to store the data in tamper resistant storage, the other is to encrypt
the data.

Tamper resistance is rarely used in ordinary computing devices such as smart phones,
tablets, laptops or desktops, presumably because it increases the cost of a device. An
exception is the use of an NFC secure element within a smart phone to store credit card
data used in some payment applications. However the tamper resistance strength of such
secure elements is unspecified, and, to our knowledge, none has been certified by NIST as
tamper resistant (FIPS 140-2 physical level 3 or 4) [1].

Encryption is used much more frequently. Corporate laptops are often protected with
full-disk encryption combined with pre-boot authentication. Since iOS 4, data stored in
the iPhone and other iOS devices is encrypted under a hierarchy of keys derived in part
from a PIN or a password that the user enters to unlock the phone.

The simplest way of encrypting data at rest is to use a symmetric key derived from a
passcode, such as a PIN, a password, or a passphrase. But an attacker who gains physical
access to the device and can extract the encrypted data from the device can mount an
offline attack, trying passcodes until one is found that produces a key which successfully
decrypts the data. Withstanding an offline passcode-guessing attack requires a high-entropy
passcode.

Requiring the user to enter a high-entropy passcode to boot a laptop may be reasonable,
but requiring a user to enter one each time he or she unlocks a smart phone is not practical.
It is difficult to type a long passcode on the tiny keyboard of a smart phone, and the
difficulty is compounded by the need to switch keyboards to enter different classes of
characters, such as letters, digits and punctuation. In iOS, Apple addressed this difficulty
by using a hardware key in addition to the passcode to derive the key hierarchy and protect
the passcode. The hardware key is hardcoded in a hardware encryption chip and cannot be
extracted by a casual attacker. However, various ways have been found of running custom
code on an iOS device, and custom code can make use of the hardware key even though
it cannot extract it. By making use of the hardware key it is possible to mount an offline
attack against the passcode using the processor in the phone. The processor is relatively

1

slow, but most people lock the iPhone with a 4-digit PIN, and an exhaustive brute-force
attack against a 4-digit PIN takes 40 minutes on the device [2].

We propose a better way of protecting data stored in a mobile device without relying
on tamper resistance. The data is encrypted under a symmetric data-encryption key, but
the key is not derived from a passcode; it is a random key of sufficient length, e.g. 256 bits,
stored in an online server. To retrieve the key, the user enters a PIN, which enables the
device to use a key pair, which the device uses to authenticate to the server. Critically,
because of how the key pair is enabled, the PIN cannot be subjected to an offline attack
by an attacker who gains physical possession of the device. It is thus possible to protect
the data effectively using a mere 4-digit PIN. Alternatively, the user may use a biometric
such as an iris image instead of a PIN to enable the key pair, or a combination of a PIN
and a biometric.

We also propose enhancements of this data protection method: the data-encryption key
can be divided into pieces stored in different servers using Shamir’s secret sharing scheme;
and the key retrieved from the server can be hashed with the PIN, the biometric, or both,
before it is used to encrypt or decrypt the data.

2 Effective Data Protection with a Simple PIN

Figure 1 illustrates the method we are proposing for protecting data stored in a mobile
device with a simple PIN. The data is encrypted under a data-encryption key k. The
encrypted data could be the entire persistent memory of the device; or a portion of the data
stored in the device that is deemed to be particularly sensitive (such as corporate emails, or
corporate documents, or credit card data used by a wallet application, or passwords saved
by a browser); or just one or more encryption keys that are themselves used to encrypt
portions of the data stored in the device. The key k is stored in a server that provides a
data-encryption-key storage service to the device. Retrieval of the key occurs as a result
of a process that is triggered by the user entering a PIN to unlock the device. The device
is successfully unlocked if the process is successful and the key k is retrieved. No other
means of testing the PIN (such as storing a hash of the PIN) must be available, because
such other means could enable an offline attack against the PIN by an attacker who gains
physical possession of the device.

The key is retrieved through a secure connection that provides confidentiality protection
and server authentication. This could be a TLS connection, or a connection that encrypts
data using a preshared symmetric key. The connection could be made within the carrier
network to which the mobile device belongs, or across the Internet. Henceforth, the term
secure connection will refer to a connection between the device and the server that provides
confidentiality protection and server authentication.

To retrieve the data-encryption key, the device authenticates to the server using an RSA
key pair [3, §8.2], whose use is enabled by the PIN entered by the user. However the PIN
is not used to encrypt the private key, nor the entire pair, which would make it vulnerable
to an offline brute-force guessing attack by an attacker who gains physical access to the
device. Rather, it is used to regenerate the key pair. Thus all PINs produce well-formed
key pairs, and the only way to test a PIN is to use the key pair that it produces to retrieve

2

Figure 1. Effective Data Protection with a Simple PIN

Mobile Device

p q s S

H

Encrypted
Data k

PIN

Network

Server

Database

H h k C

..
.

..
.

3

the data-encryption key from the online server. The server is thus able to limit the number
of guesses made against the PIN during a brute-force guessing attack to a very low number,
e.g. 10, whereas the number of guesses is unlimited in an offline attack.

The data-encryption key and the RSA key pair are generated when the user sets a PIN
for unlocking the device as described below in Section 2.1. A different RSA key pair may
be generated later if the user changes the PIN as described below in Section 2.2.

Generating an RSA key pair involves choosing the prime factors p and q of the RSA mod-
ulus n = pq, and encryption and decryption exponents e and d such that ed ≡ 1 (modφ),
where φ = (p − 1)(q − 1). The private key is d and the public key is (n, e). (Therefore e
is also called the public exponent and d the private, or secret, exponent.) Usually a small
encryption exponent such as e = 3 or e = 65537 is chosen first, and the decryption exponent
is computed as the unique integer d, 1 < d < φ, such that ed ≡ 1 (modφ), which exists as
long as e and φ are relatively prime. Instead, we derive the decryption exponent d from
the PIN and compute the encryption exponent (using the extended Euclidean algorithm
[3, Algorithm 2.107]) as the unique integer e, 1 < e < φ, such that ed ≡ 1 (modφ), which
exists as long as d and φ are relatively prime. The decryption exponent d must not be
small, because there exists a polynomial time algorithm for computing d from the public
key (n, e) if the length of d is up to approximately one-quarter of the length of the modulus
[4].

The decryption exponent d is derived from the PIN, from a random seed s of sufficient
length (e.g. 256 bits), from φ, and from the set S of small prime factors of φ, a prime factor
being deemed to be small if it is less than a threshold such as 100. The process of deriving
d uses a process variable d, as follows:

1. A randomized extended hash of the PIN with random seed s, of same byte length as
the modulus, is computed and assigned to d. (A randomized extended hash of any
byte length can be computed using the P hash mechanism of the TLS protocol [5,
§5], which uses a hash function such as SHA-256 [6], the HMAC mechanism [7], a
secret, which in this case is the PIN, and a random seed, in this case s, to produce a
cryptographic hash of the secret and the seed of the desired length.)

2. d modφ is assigned to d.

3. If d if divisible by one or more elements of S, d is repeatedly divided by such elements,
the result of each division being assigned to d, until no such elements remain.

The decryption exponent d is the value of d at the end of the process. If the resulting d is
not relatively prime with φ, or if the bit length of d is not at least 3

4
of the bit length of

the modulus, we start over, choosing different prime factors p, q for the modulus.
The key pair is regenerated before each use, when the user enters the PIN to retrieve

the data-encryption key k and thereby unlock the device. To make it possible to regenerate
the key pair, the prime factors p and q and the random seed s are retained in the device
when the key pair is generated for the first time, as shown in Figure 1.1 The set S of small

1Notice that p and q can be computed from the key pair [3, §8.2.2(i)], so storing p and q is no less secure
than storing the key pair, or the private key and a certificate containing the public key.

4

prime factors of φ is also retained, to facilitate the process. The decryption exponent is
then calculated from the PIN, s, φ = (p− 1)(q− 1), and S by the same process used when
the key pair is generated for the first time; the encryption exponent is calculated by the
extended Euclidean algorithm [3, Algorithm 2.107] as the unique integer e, 1 < e < φ, such
that ed ≡ 1 (modφ); and the modulus as n = pq. The private key d and the public key
(n, e) are then used by the device to authenticate to the server as described below.

As shown in Figure 1, the server has a database where it stores records for the mobile
devices that have entrusted their data-encryption keys to the server. The record for the
device shown in the figure comprises a handle H that uniquely identifies the record2, a hash
h of the public key (n, e) computed with a cryptographic hash function such as SHA-256,
the data encryption key k, and a counter C of consecutive failed authentication attempts.
The handle H is generated by the server when the record is created and provided to the
device, which stores it.

To authenticate, the device sends H, n, e and a nonce to the server. The server locates
the record identified by H, verifies that the hash h in the record is the hash of the public
key (n, e), and sends a nonce to the device. Then the device and the server separately
compute m as a cryptographic hash of the concatenation of the two nonces. The device
demonstrates knowledge of the private key d by computing m′ = md modn and sending it
to the server. The server checks if m ≡ m′e (modn). If so, the authentication has succeeded
and the server sends k to the device. The device discards d, n and e. The server discards
n and e.

When the device receives k it stores it in volatile memory and uses it as needed to
decrypt data while the device remains unlocked.

An attacker who has physical possession of the device can read p, q, s and H from
the persistent memory of the device, and may try to guess the PIN. However, because
the PIN is only used to regenerate the key pair, the attacker can only test each guessed
PIN by trying to use the key pair that it produces to authenticate to the server. In other
words, the PIN can be subjected to an online guessing attack, but not to an offline guessing
attack. The online guessing attack can be thwarted by the server by limiting the number of
authentication failures. This can be done in several ways. One way is to keep the counter
C of consecutive authentication failures in the device record shown in Figure 1. When the
counter reaches a limit such as 10, the server deletes the record for the device, or at least
the data-encryption key k stored in the record. Since k is not stored elsewhere when the
device is locked, this is equivalent to wiping out the encrypted data. The counter C is
reset by a successful authentication. A second counter of total, not necessarily consecutive
authentication failures can also be used as explained in US patent 8,046,827.

2.1 Setting a PIN for the First Time

The process of setting a PIN for the first time is as follows.
The device generates prime factors p and q for an RSA modulus n, computes n = pq,

computes φ = (p− 1)(q− 1), and obtains the set S of small prime factors of φ. The device

2Such a handle would be called a primary key in database literature, but we avoid the term to prevent
confusion between database keys and cryptographic keys.

5

generates a random seed s and computes the decryption exponent d from the chosen PIN,
s, φ and S by the process described above. If the bit length of d is not at least 3

4
of the

length of the n, the device starts over, choosing different prime factors p, q for the modulus.
The device computes the encryption exponent e by the extended Euclidean algorithm [3,
Algorithm 2.107] as the unique integer e, 1 < e < φ, such that ed ≡ 1 (modφ); if the
computation fails because d and φ are not relatively prime, it starts over with different
prime factors p and q. The device generates a data-encryption key k and uses it to encrypt
the data. The device establishes a secure connection to the server. It sends the data
encryption key k and the public key (n, e) over the connection, and demonstrates knowledge
of the associated private key as explained above. (The device may also provide evidence
that it is entitled to receive data-encryption-key storage service from the server.) The
server computes the hash h of the public key and creates a device record containing h, k,
a handle H, and a counter C initialized to 0. The server sends H to the device over the
connection, and the device stores it.

Notice that encrypting the data after k has been generated can take a long time if the
entire persistent memory of the device or large portions thereof have to be encrypted. This
problem can be avoided by encrypting the data under one or more keys that are kept in
the clear until the user chooses to set a PIN, then encrypting only those keys under k when
the user sets a PIN for the first time.

2.2 Changing the PIN

The process for changing the PIN is as follows. The device generates a new key pair from
the new PIN, as when setting the PIN for the first time. The device establishes a secure
connection to the server, sends H, sends the old public key, demonstrates knowledge of the
old private key as explained above, sends the new public key, and demonstrates knowledge
of the new public key. The server uses H to locate the device record, computes the hash of
the old public key received from the device, and verifies that the computed hash coincides
with the hash stored in the device record. If so, it computes the hash of the new public key
received from the device and substitutes it for the hash of the old the public key stored in
the record.

3 Effective Data Protection with a Biometric

It is possible to use a biometric instead of a PIN to authenticate the user to the device
and regenerate the key pair, thereby unlocking the device. It would be dangerous to store
a biometric template in the device, where it would be exposed to an attacker who gains
posession of the device. It would also be dangerous to store biometric templates in the
server database, where a large number of them could be captured as a result of a security
breach. But several methods of biometric authentication of a user to a device have been
proposed that do not require the storage of a biometric template anywhere [8, 9, 10]. No
biometric template is used in such methods. As illustrated in Figure 2, a cryptographic key,
sometimes called a biometric key, is consistently produced whenever a genuine biometric
sample is presented for authentication, using an auxiliary string. The auxiliary string is

6

Figure 2. Generation of a Biometric key

Enrollment AuthenticationAuxiliary string

Biometric
sample

Original
biometric

sample

Random
string

Biometric
key

7

Figure 3. Effective Data Protection using a biometric

Mobile Device

p q s S

H

Encrypted
Data k

Biometric sample

Network

Server

Database

H h k C

..
.

..
.

a

8

computed from an original biometric sample presented for enrollment and a random string.
The original biometric sample cannot be recovered from the auxiliary string. In particular,
Hao, Anderson and Daugman [10] have obtained good results using iris images.

To enable the key pair using a biometric sample instead of a PIN, the auxiliary string
a is stored in the device as shown in Figure 3. When the user enters the biometric sample
for authentication, the sample and the auxiliary string a are used to compute the biometric
key. The key pair is regenerated as described above, except that the biometric key is used
instead of the PIN.

4 Combining a Biometric and a PIN

To combine a biometric and a PIN, the PIN can be used to encrypt the auxiliary string
stored in the device. A simple way of doing this is to compute a randomized extended
hash of the PIN with a seed s′, of same bit length as the auxiliary string, then x-or the
randomized extended hash with the auxiliary string.

Another way of combining a biometric and a PIN is to use the PIN to make modifications
to the function that computes the auxiliary string and to the function that computes the
biometric key. Hao, Anderson and Daugman [10] suggest permuting the rows and columns
of a Hadamard matrix used in both computations.

5 Enhancements

When a PIN is used, k may be hashed together with the PIN before it is used to encrypt or
decrypt the data. This prevents an attacker who obtains k, e.g. by breaking into the server
database, and also gains physical access to the device, from using k directly to decrypt the
data. (However, the attacker may mount an offline guessing attack against the PIN, testing
each candidate PIN by hashing it with k and attempting to decrypt the data.)

Similarly, if a biometric is used, the biometric key can be hashed with k. If both a
biometric and a PIN are used, one or the other or both can be hashed with k.

Shamir’s secret sharing technique [11] can be used to divide k into N pieces that are
kept by N different servers, in such a way that the device can reconstruct k from any K of
those N pieces, but any set of K − 1 pieces reveals no information about k. This increases
security, because even if K − 1 servers collude they cannot reconstruct k. It may also
increase reliability, because the device can reconstruct k even if N −K servers are down.
And it may increase performance, because the device can request all N pieces and use the
first K that arrive.

References

[1] NIST. FIPS 140-1 and FIPS 140-2 Vendor List.
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401vend.htm.

9

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401vend.htm

[2] Vladimir Katalov. ElcomSoft Breaks iPhone Encryption, Offers Forensic Access to
File System Dumps, May 23, 2011. http://blog.crackpassword.com/2011/05/
elcomsoft-breaks-iphone-encryption-offers-forensic-access-to-file-system-dumps/.

[3] Alfred J. Menezes and Paul C. Van Oorschot and Scott A. Vanstone and R. L. Rivest.
Handbook of Applied Cryptography, 1997. http://cacr.uwaterloo.ca/hac/.

[4] Michael J. Wiener. Cryptanalysis of short rsa secret exponents. IEEE Transactions
on Information Theory, 36:553–558, 1990.

[5] T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2,
August 2008. http://tools.ietf.org/html/rfc5246.

[6] NIST. FIPS PUB 180-4 Secure Hash Standard, March 2012.
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

[7] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication, February 1997. http://tools.ietf.org/html/rfc2104.

[8] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on
Computing, 3(1):97–139, 2008.

[9] Xavier Boyen. Reusable Cryptographic Fuzzy Extractors. In ACM CCS 2004, ACM,
pages 82–91. ACM Press, 2004.

[10] F. Hao, R. Anderson, and J. Daugman. Combining Cryptography with Biometrics
Effectively. IEEE Trans. Comput., 55(9):1081–1088, 2006.

[11] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.

10

http://blog.crackpassword.com/2011/05/elcomsoft-breaks-iphone-encryption-offers-forensic-access-to-file-system-dumps/
http://blog.crackpassword.com/2011/05/elcomsoft-breaks-iphone-encryption-offers-forensic-access-to-file-system-dumps/
http://cacr.uwaterloo.ca/hac/
http://tools.ietf.org/html/rfc5246
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/rfc2104

	Introduction
	Effective Data Protection with a Simple PIN
	Setting a PIN for the First Time
	Changing the PIN

	Effective Data Protection with a Biometric
	Combining a Biometric and a PIN
	Enhancements

