
Page 1 of 36

Page 1 of 36

Work in progress

This is an early draft of a chapter of a book on the foundations of cryptographic

authentication being coauthored by Francisco Corella, Sukhi Chuhan and Veronica

Wojnas. Please send comments to the authors.

12. Credential wallets

Chapter summary

In Section 6.4 of Chapter 6, the Mobile Technology chapter, we discussed mobile wallets

as a highly specialized kind of mobile native app, exemplified by Apple Wallet and

Google Wallet. As we saw in that chapter, those wallets are now beginning to carry

credentials. But in this chapter, we are concerned with wallets intended specifically for

carrying credentials.

The emergence of credential wallets can be credited to Satoshi Nakamoto’s C++

program bitcoin, which implemented a payment wallet along with a blockchain. For

that reason, the chapter begins with a section on cryptocurrency wallets, even though

most credentials used for cryptographic authentication are not payment credentials.

That section is followed by a short section explaining how decentralized identifiers also

originate from bitcoin and some are implemented on the bitcoin blockchain.

Governments are taking the lead in implementing credential wallets and Section 12.3

describes several implementations or projected implementations of government

wallets, including the Bhutan NDI wallet, the British Columbia wallet, the California
DMV wallet, and the EUDI Wallet.

Then in Section 12.4 we show how a web browser can serve as a secure wallet to store

cryptographic credentials, including traditional public key certificates, selective

disclosure public key certificates that bind the public key to a redactable digest of the

attributes, and anonymous credentials that provide unlinkability in addition to selective

disclosure; and how storing such credentials in a browser supports same-device, cross-

device and IoT presentation. As a special case, in Section 12.4.3.6 we show how storing

the mobile driver’s license (mDL) credential in a WebView provides efficient same-

device and cross-device presentation, and proximity presentation with mitigation of an

unauthorized disclosure vulnerability.

12.1 Cryptocurrency wallets

12.1.1 The Satoshi wallet

https://www.linkedin.com/in/fcorella/
https://www.linkedin.com/in/sukhi-chuhan/
https://www.linkedin.com/in/veronicawojnas/
https://www.linkedin.com/in/veronicawojnas/

Page 2 of 36

Page 2 of 36

Credential wallets can be traced back to bitcoin, the program that was released as open

source by Satoshi Nakamoto in 2009, after publishing his white paper “Bitcoin: A Peer-

to-Peer Electronic Cash System” [1], as the only authoritative specification of the bitcoin

protocol. The program still runs today. It is maintained by a community of volunteer

developers and available on GitHub [2].

Although Nakamoto’s program is known today as “the original bitcoin client”, it is not a

client in the sense of client-server architecture, as it does not communicate with any

server. It is written in C++ and thus runs under any operating system in any kind of

device, whether a mobile device, a desktop or laptop, or a server. Bitcoin

cryptocurrency lives on a peer-to-peer network of nodes, all of which originally ran the

same bitcoin program and today run software with equivalent functionality. The bitcoin

program is self-contained, storing the entire blockchain in the file system of the device

where it runs, so nodes communicated on the peer-to-peer network only to send each

other transactions, as we saw in Chapter 9. The original version of the program also

stored in the file system a wallet file, containing the wallet owner's transaction history,

address book and private keys [3], the private keys being used to sign transactions as
described in Chapter 9. This wallet file, that could be called the Satoshi wallet, is thus

the first credential wallet.

12.1.2 Full vs. thin clients

The size of the Bitcoin blockchain was 2 GB as of May 2012. It reached 600 GB by

September 2024. Storing the entire blockchain in the file system of the device where

the program is running would have been impossible for the original implementation,

and is still problematic today, not only because of the sheer size of the data structure,

but also because of the network bandwidth required by having to be aware of every

transaction that is created.

This problem is addressed by offloading the storage of the blockchain from the device of

the user who owns bitcoin and issues transactions to a server. The server is then a node

of the peer-to-peer network, while the user’s device is a client of the node. The user’s
device is called a thin client, while the node is called a full client.

Besides storing the blockchain, the full client may also store the private keys and

provide a graphical user interface for issuing transactions that the user accesses

through a web browser. As we saw in Chapter 9, bitcoin private keys are used to sign

transactions that send currency to a different user, so stealing private keys is equivalent

to stealing bank nodes. Entrusting the storage of the private keys to a server can be a

good thing or a bad thing. If the server is implemented and run by honest personnel

competent in cybersecurity, the private keys may be better protected in the server than

in the user’s machine. But hundreds of thousands of bitcoins worth fiat currency

equivalent to hundreds of millions of US dollars were stolen from customers of Mt. Gox
before it ceased operations in 2014 [4].

Page 3 of 36

Page 3 of 36

12.1.3 A Web3 wallet

It is also possible to offload the user interface for issuing transactions to a full client

while keeping the private keys in the user’s device. This can be achieved using a native

app or a browser extension provided by the full client that runs in the user’s device and

takes care of generating and storing the private keys. This approach is used by the

etaMask wallet [5], a Web3 wallet for Ethereum decentralized applications (Dapps) [6].

12.2 From cryptocurrency wallets to identity wallets

The bitcoin blockchain provided the initial inspiration for decentralized identifiers, as
Namecoin, a blockchain derived from and merge-mined with Bitcoin, demonstrated the

feasibility of registering human-meaningful, memorizable decentralized identifiers,

disproving Zooko’s trilemma [7]. Decentralized identifiers are no longer memorizable, but

decentralized identifiers are still registered in the Bitcoin or Ethereum blockchains. For

example, we shall see in Section 14.2.1 how decentralized identifiers with DID method “btcr”

(an acronym for BiTCoin Reference) are registered on the bitcoin blockchain, and the

authentication and assertion methods in their DID documents are public keys associated with

private keys used to sign bitcoin transactions and stored in bitcoin wallets. It would thus

make sense to repurpose a bitcoin cryptocurrency wallet as an identity wallet carrying

verifiable credentials, or as a multipurpose wallet carrying both bitcoin key pairs and

verifiable credentials.

12.3 Government wallets

Most authoritative physical credentials have traditionally been issued by governments.

Therefore, it should not come as a surprise that governments are taking the lead in the

deployment of digital identity credentials as part of their digital transformation efforts.

A UL whitepaper [8] observes that governments face the choice between two kinds of

digital credentials: verifiable credentials, and the mobile driver’s license (mDL) of the

ISO/IEC 18013-5 standard. Each kind of credential comes with its kind of wallet, but

the UL white paper discusses possible ways of avoiding the choice of credential by

carrying both in the same wallet. We shall discuss in detail the mDL in Chapter 13,

verifiable credentials in Chapter 14, and methods of combining them in Chapter 15. In

this section we review the wallets that are being implemented or deployed by several

governments and the kinds of credentials that they are storing in those wallets.

12.3.1 The Bhutan National Digital Identity (NDI) wallet

The Bhutan wallet is provided to participants in Bhutan’s national identity system and

used store and manage verifiable credentials. As of this writing, Bhutan’s identity
system, launched in 2023, is the only fully functional and operational deployment of

verifiable credential technology in the world. It relies on two registries: the NDI Trust

Page 4 of 36

Page 4 of 36

Registry, and the NDI Verifiable Data Registry. The Trust Registry contains a list of

public DIDs of trusted organizations that participate in the NDI ecosystem. The

Verifiable Data Registry is built on Hyperledger Indy blockchain and contains the public

keys of credential issuers, DID documents, and other metadata.

According to [35], the purpose of the NDI system is to facilitate “access to public

services” and “trusted peer-to-peer interactions between individuals, government, and

organizations”. To participate in the system, citizens go through an onboarding process

where they validate personal data and provide a facial scan that is compared to their

biometric data in the database of the Department of Civil Registration and Census

(DCRC). They then get a Foundational ID credential with a Citizen ID (CID) number

attribute that is signed by the DCRD and stored in the NDI wallet. Foreigners get a

Foundational ID from the Department of Immigration (DoI) instead.

Other verifiable credentials may be stored in the wallet include a permanent address

credential, an academic credential, and credentials for employment details, mobile

number, driver’s license, etc., as well as credentials for self-asserted data.

A unique feature of the Bhutan wallet is that it can establish a persistent connection

with an organization such as a bank and maintain it using session-based authentication.

Persistent connections are credited with improving user login experience and

facilitating compliance of the organization with know-your-customer (KYC) regulations.

12.3.2 The British Columbia wallet

The British Columbia wallet is a mobile app that carries verifiable credentials.

According to the BC Wallet web site [11], it is based on technology used since 2019 in

OrgBook BC, a searchable list of organizations in British Columbia. The OrgBook BC

web site [12] shows impressive statistics about current usage: 1552699 active legal

entities, 4527091 verifiable credentials held, and 7193 credentials added this week, as

of December 14, 2024.

The BC Wallet itself, however, only supports a small number of use cases at the moment.

It is currently being used by lawyers to gain access to court materials, and to log in

remotely to subscription databases.

It is also being used by sole proprietors to carry credentials usable to apply for business

licenses and permits with municipalities in the province.

The BC Wallet is available in app stores, but the web site points out that “most people

will not have a need for BC Wallet right now”, as “it does not support credentials that

work in Apple Wallet or Google Wallet”.

The code that implements the app is available as open source on GitHub, at [11]. An

architecture diagram can be retrieved from [12].

Page 5 of 36

Page 5 of 36

12.3.3 The California DMV wallet

While the Ontario and British Columbia wallets are intended for carrying verifiable

credentials, the wallet of the California Department of Motor Vehicles (CA DMV) carries

the CA driver’s license or state ID credential implemented according to the ISO/IEC

mobile Driver’s License (mDL) standards 18013-5 and 18013-7 described in the next

chapter. The same credential is also available in Google Wallet, and in Apple Wallet on

iPhone and Apple Watch.

The CA DMV has a web site [13] that advertises a Pilot and has instructions for enrolling

in the pilot. At this time, the wallet can be used for:

• In-person identification at security checkpoints in the San Francisco and Los

Angeles airports.

• In-person age verification at participating businesses.

• Online login at the CA DMV web site, by scanning a QR code presented by the

relying party.

Projects are underway for other use cases, including identification of banking customers

to meet Know Your Customer (KYC) requirements.

12.3.4 The EUDI Wallet Architecture and Reference Framework

(ARF)

In June 2021 the European Commission adopted a recommendation calling on member

states to work towards the development of a technical Architecture and Reference

Framework (ARF) for a European Digital Identity (EUDI) wallet, in the context of the
electronic IDentification, Authentication and trust Services (eIDAS) regulation [14]. The

eIDAS Expert Group developed and published the ARF, which is available online at [15].

The EUDI wallet is intended to carry three different kinds of data: Person Identification

Data (PID), Electronic Attestation of Attributes (EAA) and Qualified Electronic

Attestation of Attributes (QEAA) [16]. The ARF defines PID as “A set of data enabling

the identity of a natural or legal person to be established, and EAAs as “An attestation in

electronic form that allows the authentication of attributes”.

Section 5.1.1.1 of the ARF lists “PID attributes for natural persons”, including mandatory

eIDAS attributes (Current Family Name and First Names, Date of Birth, and “Unique

Identifier”), optional eIDAS attributes (Family Name at Birth, First Names at Birth, Place
of Birth, Current Address, Gender), and other optional attributes, including a multi-

valued Nationality/Citizenship attribute.

 The ARF requires the wallet to support four flows:

Page 6 of 36

Page 6 of 36

1. Proximity supervised flow, where the relying party is controlled by human

attendant.

2. Proximity unsupervised flow.

3. Remote cross-device flow.

4. Remote cross-device flow.

and considers four scenarios for each of the proximity flows:

a. The User and the Relying Party are both online.

b. Only the User is online.

c. Only the Relying Party is online.

d. Both the User and the Relying Party are offline.

The wallet may carry Verifiable Credentials and/or ISO/IEC 18013-5 mDL credentials,

and must support both in Type 1 (high level of assurance) configurations.

Credential presentation in remote flows uses OpenID4VP for general credentials, or

SIOPv2 for self-issued credentials. Credential presentation in proximity flows is as

specified in ISO/IEC 18013-5.

12.4 Using a web browser as a credential wallet

Browsers have stored SSL certificates, now called TLS certificates, since the very
beginning of the Web. But a technique for storing general purpose credentials did not

emerge until a presentation at the 2017 International Cryptographic Module Conference

[17] [18], after the technique was made possible by the introduction of the Service

Worker API, which made it possible to use a service worker for credential presentation

as explained below in Section 12.4.1.

This technique is particularly timely and relevant today because it makes it possible to

login to a web site from a laptop using an mDL credential carried in a mobile device,

something that is not supported by ISO/IEC 18013-5 or ISO/IEC 18013-7. The protocol

that makes this possible is described below in Section 12.4.3.4.

The 2017 presentation discussed two security problems with the technique. Those

problems have now been solved as explained below in Section 12.4.2.

Using a web browser as a credential wallet has compelling deployability advantages:

every computer user has a browser ready to be used as a wallet, and relying parties do

not have to figure out how to reach that wallet. It also provides important UX benefits,

which are discussed in Chapter 17.

12.4.1 Repurposing a service worker for credential presentation

Page 7 of 36

Page 7 of 36

As we saw in Section 5.2 of Chapter 5, a service worker is a script that is registered with

the browser by JavaScript code originating from a particular domain and can be

configured to intercept requests that target that domain.

The original purpose of the Service Worker API was to enable Progressive Web Apps,

which we described in Section 6.3 of Chapter 6, to be used while the browser is offline.

The web origin of the JavaScript frontend of a PWA is the domain of its backend, and

thus a service worker registered by the frontend of a PWA can intercept requests that

target its backend. If the browser is offline, the frontend can continue to function using

data that has been cached by the frontend. To do so, it sends requests for data to the

backend that are intercepted by the service worker. When it intercepts a request, the

service worker check to see if the backend can be reached. If so, it forwards the request

to the backend and provides the data that it receives from the backend in response. If

not, it provides instead the data that it has cached.

A service worker can only intercept requests that target its own origin. But the Service

Worker API does not impose any restriction on the origin of those requests. This makes
it possible for a service worker registered by the frontend of a credential issuer to

intercept requests for credential presentation that relying parties send to the issuer,

and respond to those requests by presenting a credential that it has previously obtained

from the backend and stored in localStorage as specified by the Web Storage API, or in

an indexed database as specified by the IndexedDB API, both described in Chapter 5.

All three web APIs mentioned above, the Service Worker API, the Web Storage API, and

the IndexedDB API, are standard web technologies available in all browsers. Thus, any

web browser on any device, whether mobile, desktop or laptop, can be used as a

credential wallet.

12.4.2 Recent resolution of two security problems

When introduced in 2017, the technique for storing and presenting credentials faced

two security problems, discussed in the ICMC presentation:

1. An attacker who physically captured the device where the browser was running

could use or exfiltrate the credential.

This problem has been solved because a browser is an app, or can be embedded in a

WebView of an app, and apps can be locked when not in use. Locking an app prevents it

from being used by an attacker who captures the device and encrypts the app’s data. In

a Samsung phone, an app can be locked by placing it in a Secure Folder [20]. App

locking methods for all Android phones are surveyed in [21]. A similar app locking

method has also become available in iOS 18 [22], and third party apps are available for

locking apps in MacOS [23] and Windows [24]. Conveniently, there are multiple

browsers in a mobile phone, and it is possible to create multiple instances of a given

browser. Thus, the user can use different browsers or browser instances for storing
different credentials, and lock only those that carry sensitive credentials.

Page 8 of 36

Page 8 of 36

2. Since the web origin of the service worker is the domain of the credential issuer,

the credential is stored in browser storage controlled by the issuer. Hence, the

issuer has access to the private key of the credential, in cases where the

credential comprises a public key certificate and its associated private key. This

is discussed in [17] and [18] as if it were a vulnerability, but it is not: the

credential issuer does not need to access to the private key to impersonate the

subject, since it can just issue a credential to itself. But it makes it impossible to

claim that use of the private key is non-repudiable, which is typically a feature of

an asymmetric signature.

This problem has been resolved by the realization that, while non-repudiation may be

desirable for a credential that is used as a seal on a digital signature applied to a

document, it is not desirable for a signature of an authentication challenge. On the

contrary, repudiability is now considered a desirable privacy feature for an

authentication method. For example, ISO/IEC 18013-5 has introduced the concept of an

ECDH-agreed MAC [25, §9.1.3.3] for the purpose of providing repudiable authentication

using an asymmetric key pair. Thus, the fact that the issuer has access to the private key
of credentials stored in a browser is now viewed as a privacy feature.

12.4.3 Protocols and use cases

The ICMC presentation only provided protocols for credential issuance and credential

presentation to a relying party accessed from the same browser where the credential is

stored. In this section we describe those protocols in more detail and provide protocols

for several other use cases, including, in Section 12.4.3.4, the above-mentioned use case

of cross-device presentation of an mDL.

12.4.3.1 Credential issuance to a browser

Figures 1a-1e show the steps for issuing a credential to a browser, storing it in browser

storage, and registering a service worker, essentially as presented at ICMC 2017. The

browser storage shown in the figures may be the localStorage facility of the Web

Storage API, or an indexed database as provided by the IndexedDB API.

Page 9 of 36

Page 9 of 36

In Figure 1a the user visits the login page of the web site of the credential issuer and

submits a login request. We assume that the user has a preexisting account with the

issuer and has provided evidence of being entitled to each of the attributes that will be
included in the credential, which the issuer has stored in the account. We assume that

the user logs in successfully using a preestablished method for returning-user

authentication. As a result of the successful login, the web site of the issuer sets a login

session cookie in the user’s browser.

In Figure 1b the user navigates to the issuance page of the credential issuer’s site and

the credential issuer downloads a web page with embedded JavaScript code.

Login page of
credential issuer

Issuance
page

 avaScript

Page 10 of 36

Page 10 of 36

In Figure 1c, the user requests issuance of a particular credential with particular

attributes, and the JavaScript code embedded in the issuance page, which is part of the

frontend of the credential issuer, executes a credential issuance protocol with the
backend. The user is authenticated by the login session cookie and the issuer obtains

the user’s attributes from the account that is referenced by the session cookie.

In Figure 1d the JavaScript frontend code in the Issuance page stores the credential

resulting from the issuance protocol in the browser storage. If the user had requested a

public key certificate, the credential stored in browser storage comprises the public key

certificate received from the backend and the private key component of the key pair

generated by the JavaScript frontend.

Issuance
page

 avaScript

Issuance
page

 avaScript

Credential

Page 11 of 36

Page 11 of 36

In Figure 1e, the JavaScript frontend code in the Issuance page registers a service

worker with the browser and configures it intercept credential presentation requests

addressed to the credential issuer.

12.4.3.2 Same-browser (a.k.a. same-device) credential

presentation

Figures 2a-2f show the steps of the protocol for presenting a credential stored in a

browser to a relying party accessed from the same browser. This is essentially the

protocol that was described at ICMC 2017.

In Figure 2a the user visits the login page of the relying party and submits a login

request (or performs some other action that requires authentication), which causes an

HTTPS request to be sent by the browser to the relying party.

Issuance
page

 avaScript

Credential

Service
worker

Relying party
login page

Credential

Service
worker

Page 12 of 36

Page 12 of 36

In Figure 2b, the relying party determines the credential that it needs to authenticate

the user and responds to the HTTPS request from the user’s browser with an HTTPS

response that performs a JavaScript redirection, by downloading a code-only
redirection page with JavaScript code that sends an HTTPS request to the issuer, which

is intercepted by the service worker. The intercepted request specifies the required

credential, and the required attributes if the credential allows selective disclosure, and

contains a callback URL and an authentication challenge. (It may also contain values

such as a timestamp or validity period.)

In some use cases the relying party has a relying party designation certificate (RPDC),

signed by a relying party designation authority (RPDA) known to the service worker,

that binds the domain name of the relying party to a user-friendly certified designation

(UFCD) of the party. In those use cases the RP includes its UFCD along with the callback

URL.

The figure assumes that there is a service worker in the browser configured to intercept

requests that target the credential issuer. If there isn’t one because the user has not

installed a credential in this browser, or the service worker and the credential have

been deleted, the credential request will reach the issuer. The issuer will be prepared to

handle this situation and will do so by asking the user to authenticate with the same

authentication method that the user used when requesting the credential. When the

user does so, the issuer will issue a new credential and install a new service worker on

the fly, and the new service worker will present the new credential to the RP. The RP

will not be aware that the original credential was not available.

Code only
redirectionpage

 avaScript

Credential

Service
worker

Page 13 of 36

Page 13 of 36

In Figure 2c, after intercepting the request, the service worker creates on the fly a web

page with embedded JavaScript code that is rendered by the browser as if it came from

the issuer and will be used to ask the user for consent to present the credential and the

required attributes. Data in the JavaScript code includes the callback URL, the

authentication challenge, and a list of requested attributes. If the RP has sent an RPDC

along with the callback URL, the service worker uses the public key of the RPDA to

verify the binding between the domain name in the callback URL and the UFCD and

provides the UFCD to the JavaScript code that will ask consent.

In Figure 2d, the JavaScript code in the consent page retrieves the credential from

browser storage.

Consent
page

 avaScript

Service
worker

Credential

Consent
page

 avaScript

Credential

Service
worker

Page 14 of 36

Page 14 of 36

In Figure 2e, the JavaScript code in the consent page asks the user for consent to

provide the credential with the required attributes to the relying party. If the service

worker has provided a UFCD, it is used to identify the RP to the user in the consent

request. If not, the RP is implicitly or explicitly identified as the web site whose login

page has been replaced with the consent page. (The intermediate redirection page is a

code-only page that is not rendered by the browser.)

In Figure 2f, the JavaScript code in the consent page presents the credential to the

relying party by sending an HTTPS POST request to the callback URL, and the relying

party verifies the presentation.

If the credential consists of a public key certificate and its associated private key as

described in Section 3.2 of Chapter 3, the body of the POST request contains the
certificate and a signature computed with the private key on the authentication

challenge, the callback URL, and other data such as a timestamp or validity period if

included in the credential request; including the callback URL in the signed data

provides protection against man-in-the-middle attacks as explained in Chapter 4. The

relying party verifies the issuer’s signature in the certificate using the issuer’s public

key and the signature in the POST request using the public key in the certificate.

If the credential comprises a selective disclosure public key certificate where the

issuer’s signature is applied to a redactable digest of the subject’s attributes as

Consent
page

 avaScript

Credential

Service
worker

Consent
page

 avaScript

Credential

Service
worker

Page 15 of 36

Page 15 of 36

described in Section 3.3 of Chapter 3, the body of the POST request contains the

certificate, the disclosed attributes, and a presentation signature computed with the

associated private key on the authentication challenge, the disclosed attributes, the

callback URL, and any other data included in the request. In addition to verifying the

signature in the certificate and the signature in the POST request as in the case of an

ordinary public key certificate, the RP verifies that the set of disclosed attributes is an

antecedent of the redactable digest. In the particular case where the selective

disclosure certificate is an SD-JWT, the presentation signature is included in a Key

Binding JWT tied to the SD-JWT [32, §3.3].

If the credential is an anynymous credential such as a BBS signature, the body of the

POST request includes the NIZK proof and the disclosed attributes. In this case there is

no private key to sign the authentication challenge, the disclosed attributes, the callback

URL and any other data included in the request. Instead, those data items are included

in the Fiat-Shamir payload as explained in Section 3.5.6.3 of Chapter 3.

12.4.3.3 Cross-device credential presentation

In this section we describe a protocol for presentation of a credential stored in a mobile

browser to a relying party accessed from a browser running on a laptop or desktop,

where the relying party displays a QR code that encodes a URL of a credential
presentation request.

Figures 3a-3g show the steps of the protocol.

In Figure 3a, the user visits the login page of the relying party and chooses an option to

log in with a mobile wallet.

Credential

Service
worker

RP
Login page

Page 16 of 36

Page 16 of 36

In Figure 3b, the relying party determines the credential that it needs and displays a QR

code on the screen of the laptop that encodes a URL that targets the issuer of that

credential. The query string of the URL specifies the credential that is being requested

and, if the credential supports selective disclosure, the attributes that the RP is

requesting. The query string also includes a callback URL and an authentication

challenge.

In Figure 3c the user scans the QR code with the mobile device containing the browser

used as a credential wallet. The user may have configured that browser as the default

browser of the mobile device. In that case the request for credential presentation

encoded in the QR code is sent automatically from that browser. Alternatively, the user

may have arranged for the device to have no default browser. If so, the user is
prompted to choose a browser and chooses the one that contains the credential that the

RP needs, so that the request is sent from that browser. In either case, the credential

presentation request is sent from the browser containing the credential and intercept

by the service worker in that browser.

Credential

Service
worker

 R display page

Credential

Service
worker

 R display page

Page 17 of 36

Page 17 of 36

In Figure 3d, the service worker in the mobile browser generates a consent page with

JavaScript code as in Figure 2c, while the QR code is still displayed on the laptop

browser and JavaScript code in the page that displays the QR code polls the relying

party, waiting for the RP to have received the requested credential.

In Figure 3e the JavaScript code in the consent page retrieves the credential from

browser storage and obtains consent to present it.

 Consent
page

 avaScript

Credential

Service
worker

 R display page
Poll

 Consent
page

 avaScript

Credential

Service
worker

 R display page
Poll

 Consent
page

 avaScript

Credential

Service
worker

Credential presentation

Page 18 of 36

Page 18 of 36

In Figure 3f the JavaScript code in the consent page presents the credential to the

relying party as in Figure 2f by sending an HTTPS POST request to the callback URL and

the relying party verifies the presentation as described in connection with Figure 2f.

In Figure 3g the relying party replaces the page that was displaying the QR code with a

page acknowledging successful login.

12.4.3.4 Credential presentation to an IoT device controller

In this section we describe a protocol for using a credential stored in a mobile browser

to actuate an IoT device by scanning a static QR code displayed on or near the device

and presenting the credential to the controller of the device. An important use case is

opening a door providing entrance to a facility.

Figures 4a-4e show the steps of the protocol.

In Figure 4a, the mobile device scans a QR code located on of near the IoT device that
encodes a URL that targets the issuer of a credential acceptable by the controller of the

IoT device. The URL requests presentation of the credential and includes a callback URL

that targets the controller of the device and specifies the device to be actuated.

Credential

Service
worker

RP page
acknowledging

successful
login

Credential

Service
worker

 R code on or
near device

Page 19 of 36

Page 19 of 36

As in Figure 3c, the operating system of the mobile device causes a mobile browser to

send a request to the URL, but the request is intercepted by a service worker registered

by the credential issuer.

In Figure 4b the service worker generates a code-only age containing JavaScript code.

In Figure 4c, the JavaScript code in the code-only page retrieves the requested

credential from browser storage.

In Figure 4d, the JavaScript code in the code-only page sends a request to the callback

URL. The request targets the IoT device controller, specifies the device to be actuated,

Credential

Service
worker

 R code on or
near device

Code only
page

 avaScript

Credential

Service
worker

 R code on or
near device

Code only
page

 avaScript

Credential

Service
worker

 R code on or
near device

Code only
page

 avaScript
Credential presentation

Page 20 of 36

Page 20 of 36

and performs a credential presentation protocol with the controller. If the protocol is a

challenge-response protocol, the challenge will not have been sent earlier, since the QR

code is static. Hence the presentation is interactive, with the controller sending the

challenge first, then the JavaScript code sending the response.

In Figure 4e, the IoT controller actuates the IoT device, e.g. opening the door to the

facility.

12.4.3.5 Using a WebView as a wallet for proximity presentation

In the same-device, cross-device and IoT presentation protocols of Sections 12.4.3.2-4,

the credential is presented by JavaScript code running in the browser. One thing that

JavaScript code running in the browser cannot do, as of this writing, is to present a
credential over proximity protocols such as BLE, NFC or Wi-Fi Aware. That requires

native code running in a native app.

Proximity presentation, however, can be provided by embedding the browser in a

native app as a WebView component and pairing it with a native code component that

has the required capability. A WebView is a browser configured for use as a component

of a native app. A WebView based on Chromium is available for Android apps [29] and

one based on WebKit and known as WKWebView is available for iOS apps [30].

The native code and the JavaScript code can communicate and exchange data, so they

can both have access to the same credential, whether the credential is stored in the
native component, or the WebView component, or cloned and stored in both

components as described below in Section 12.4.3.6.1; and the native code can present it

using a proximity protocol specific to the credential while the WebView component

uses one of the protocols described above in Sections 12.4.3.2-4 for presentation over

the web. We shall refer to a native app having a WebView component for presentations

over the web and one or more native components for proximity presentations as a

WebView wallet.

Once WebView wallets become available, there will be no need for government wallets

to present government credentials. We envision that the user will create a WebView

Credential

Service
worker

 R code on or
near device

Code only
page

 avaScript

Page 21 of 36

Page 21 of 36

wallet by downloading a native app with a WebView component from an app store, then

downloading native components as needed with code for proximity presentation of

credentials such as an mDL and one or more eIDs, besides credentials providing

physical access to government or enterprise facilities. The credentials will not come

from the app store, they will be issued by governments over the web to the WebView

component. They will then be presented over the web by the WebView component and

copied to the native components from proximity presentation.

To make all this more concrete, we look in more detail at the mDL use case in the next

section.

12.4.3.6 The mDL use case

The mobile driver’s license standard is specified in two documents, ISO/IEC 18013-5

[25], published in September 2021, and ISO/IEC 18013-7 [19], published in October

2024. Both documents are described in Chapter 13.

Part 5 specifies the data model, the mobile driver’s license credential, and a protocol for

credential presentation by the mobile app using the proximity protocols BLE, NFC or

Wi-Fi Aware. There is also an option to download data elements from the mDL issuer

over the web, but it is involved in some of the vulnerabilities that we describe in Section
13.1.9.1 of Chapter 13.

Section 3 of Part 5, “Terms and definitions”, defines the term “mdoc” in an explicitly

ambiguous manner as referring to a “document or application that resides on a mobile

device”, then defines “mdoc reader” as a “device that can retrieve mdoc (3.2) data for

verification purposes”. Here we shall avoid the term “mdoc” and use the term mDL app,

to refer to the native application and the term mDL reader, or just reader, to refer to the

relying party in a proximity presentation. The term “document” is not defined in the

glossary but is used sometimes to refer to the cryptographic mDL credential, sometimes

to the data elements in the credential, and sometimes to a subset of those data elements,

with data elements from multiple “documents” being disclosed to the reader in the same
presentation.

Part 7 specifies two methods for remote credential presentation to a relying party over

the web. One of the methods, which we shall call the ISO method, is specified in the ISO

document itself, while the other one is a forthcoming profile of the OpenID4VP

specification that is currently under development. OpenID4VP is discussed in Chapter

5.

Both methods for remote presentation are applicable only to the case where the relying

party is accessed from a browser running on the same device where the mDL credential

is stored and the mDL app is running. There is no option for “cross-device”
presentation, where the user accesses the relying party from a desktop or laptop, and

the RP displays a QR code that is scanned by the mobile device where the mDL app is

Page 22 of 36

Page 22 of 36

running. Note 1 of Section B.1.1 of Part 7 states that “Cross-device flows are prone to

engagement relay attacks which is the reason cross-device flow is not included in this

document.”

The proximity presentation protocol specified in Part 5 is unusual. The mDL app and

the reader establish an encrypted session and use it to exchange a series of request-

response messages. The reader asks for specific data elements in each request by their

element identifiers and the app sends their element values in the corresponding

response. But instead of establishing an authenticated session and using it to transmit

data elements with data origin authentication, the app and the reader use ephemeral

ECDH key pairs to establish an unauthenticated section and the app signs each

response. Furthermore, a response may contain data elements from multiple

documents, and the app separately signs the elements of each of those documents.

The performance impact of multiple signatures and signature verifications may not

matter much for proximity presentation if the reader only handles one presentation at a

time. But this same authentication method is used by the ISO method of credential
presentation over the web, where repeated signature verifications may have a

performance impact on the RP server.

In sections 12.4.3.6.1-4 we describe protocols for efficient same-device and cross-device

presentation and ISO-compliant proximity presentation of the mDL using a WebView

wallet.

12.4.3.6.1 WebView wallet setup

Figures 5a-5e show a process for setting up a WebView wallet that will provide same-

device, cross-device and proximity presentation of the mDL.

In Figure 5a, a native app is downloaded from the app store and installed on the user’s

mobile device. The native app has a WebView component and a proximity component

for the mDL, neither of which has any credential. The WebView component has no data.

The proximity component has native code for presenting the mDL. The proximity

Page 23 of 36

Page 23 of 36

component need not be provided by the mDL issuer; it can be written by any party

using a publicly available specification.

After the native app is installed with its two components, the credential issuer issues

the mDL credential to the WebView component, as described in Section 12.4.3.1. Figure

5b shows the result of the issuance process. The mDL credential is stored in the

WebView component, and the JavaScript code in the issuance page has registered the

service worker.

After registering the service worker, the JavaScript code in the issuance page copies the

mDL credential to the proximity component, as shown in Figure 5c.

mDL credential

 Service

worker
Issuance

page

 avaScript

As in Figs. 1a 1e
of 1 . .3.1

mDL credential

mDL credential

Presentation pro iles

Driving privileges

Age at least 1 true

Service
worker

Issuance
page

 avaScript

Page 24 of 36

Page 24 of 36

Figure 5d shows the state of the WebView wallet at the end of the setup process. There

are two copies of the mDL credential, one in each component. The copy in the WebView

component is in browser storage, such as the localStorage facility of the Web Storage

API. But browser storage is allocated by the WebView component from the native app

storage, so there is no essential difference in how the two copies are stored.

An alternative to having a copy in each component would be to keep a copy in one of

them and let the code in the component that does not have a copy access the copy in the

other component. Accessing the copy in the other component would mean retrieving
the public portion of the credential and a proof of possession of the private portion

computed by the code of the other component.

Figure 5e shows a setup for storing multiple credentials in a WebView wallet and

providing same-device, cross-device and proximity presentation for each of them. An

eID credential is used as an example. As of this writing, the Wikipedia page entitled

 mDL credential

Service
worker

 mDL credential

Presentation pro iles

Driving privileges

Age at least 1
Two

copies

eID

eID pro iles

Name and address

Citizenship

mDL

mDL pro iles

Driving privileges

Age at least 1

Service worker
for eID

eID mDL

 Service worker
For mDL

Page 25 of 36

Page 25 of 36

“Electronic identification” [31] tallies 36 countries that use eID’s or equivalent

credentials. So, a WebView wallet with an mDL credential and one or more eID

credentials would provide very useful functionality.

12.4.3.6.2 Efficient same-device presentation

As explained above in Section 12.4.3.6, data retrieval as specified in part 5 of the mDL

specification is broken up into a series of request-response exchanges where the mDL

reader asks for specific data elements and the mDL provides the values of those
elements. In [19, §6.4.3.3], Part 7 specifies the same data retrieval method for

credential presentation over the web, which seems inefficient. Appendix B of Part 7

describes a profile of Draft 18 or the OpenID4VP specification as an alternative method.

The idea of retrieving separately several subsets of data elements may have been

motivated by the fact that the mDL supports selective disclosure. Obtaining consent for

disclosure of specific data elements is out of scope of the mDL specifications, but

separate requests for different subsets of elements would allow the subject to select

elements by approving some requests but rejecting others. A more practical method of

obtaining consent, however, would be to show the subject a list of all the elements that

are being requested and ask for a yes-or-no response to an approval request.

Efficient same-device presentation of the mDL over the web with yes-or-no consent can

be achieved using the protocol described above in Section 12.4.3.2, which is applicable

to credentials comprising an ordinary public key certificate, credentials comprising a

selective disclosure certificate, and anonymous credentials. The protocol is applicable

to the mDL because an mDL credential comprises a Mobile Security Object (MSO),

described in Section 2.2.1.3.4, and the MSO is a selective disclosure certificate according

to Section 3.3 of Chapter 3.

Details of the protocol specific to the mDL case are as follows, with reference to the

figures of Section12.4.3.2.

In Figure 2b, the required attributes in the intercepted request are specified by element

IDs that the RP chooses from the mDL data model but may or may not identify elements

included in the mDL credential that has been issued to the user.

In Figure 2d, the credential that the JavaScript code retrieves from browser storage is

the entire credential, comprising the private key, the MSO, and the complete set of

salted elements whose hashes comprise the array of hashes in the MSO.

In Figure 2e, the JavaScript code in the consent page checks if the element IDs requested

by the RP identify elements that can be found in the credential and rejects the request if

some of them cannot be found. Then it uses the array of requested element IDs to
construct a list of language and culture-specific descriptions of the elements that have

been requested and asks the user for permission to disclose them to the relying party.

Page 26 of 36

Page 26 of 36

In Figure 2f, the JavaScript code in the consent page includes the following data in the

HTTPS POST request sent to the callback URL:

• The MSO.

• The salted elements found in the credential whose element IDs have been

requested.

• A signature computed with the private key on the authentication challenge, the

requested salted elements, the callback URL, and any other data included in the

request.

The relying party validates the issuer’s signature in the MSO using the issuer’s public

key and the signature in the POST request using the public key in the certificate, and

verifies that the set of salted elements is an antecedent of the redactable digest

according to Section 2.2.1.3 of Chapter 2.

12.4.3.6.3 Cross-device presentation

Cross-device presentation of the mDL is a special case of the protocol of Section

12.4.3.3. Figures 6a-6g below add details to Figures 3a-3g that are specific to the MSO

and to the use of a WebView instead of a standalone browser.

In Figure 6a, the user uses a laptop browser to access the login page of the relying party
and selects an option to log in using the mobile driver license.

Username and
password

Mobile driver
license

Log in

 mDL credential

Service
worker

mDL

Page 27 of 36

Page 27 of 36

In Figure 6b, the relying party displays a QR code on the laptop screen encoding a URL

that targets the mDL issuer. The query string of the URL specifies the element IDs of the

elements of the mDL data model that the RP wants to see, which may or may not be

present in the mDL credential that has been issued to the user. The query string also

includes an authentication challenge and a callback URL

The user’s mobile device includes a native app with a proximity component and a

WebView, each having a copy of the mDL credential.

In Figure 6c, the WebView component scans the QR code and sends an HTTPS request

to the URL encoded in the QR code. The request targets the mDL issuer but is

intercepted by the service worker in the WebView.

A WebView can scan a QR code, as described, for example, in [33].

 mDL credential

Service
worker

mDL

 R display page

 mDL credential

Service
worker

mDL

 R display page

Page 28 of 36

Page 28 of 36

In Figure 6d, the service worker in the WebView generates a consent page, with data in

the JavaScript code of the page that includes the callback URL, the authentication

challenge, and the list of element IDs requested by the RP that the service worker has

found in the intercepted request.

In Figure 6e the JavaScript code in the consent page does the following:

1. It retrieves from browser storage the entire mDL credential, comprising the

private key, the MSO, and the complete set salted elements whose hashes

comprise the array of hashes in the MSO. These elements presumably include all

the mandatory elements in Table 5 of the Part 5 specification, but probably only

a subset of the optional elements.

2. It checks if the element IDs requested by the RP identify elements that can be

found in the credential and rejects the request if some of them cannot be found.

 mDL credential

Service
worker

mDL

 R display page
Poll

Consent
page

 avaScript

 mDL credential

Service
worker

mDL

 R display page
Poll

Consent
page

 avaScript

Page 29 of 36

Page 29 of 36

3. It uses the array of requested element IDs to construct a list of language and

culture-specific descriptions of the elements that have been requested and asks

the user for permission to disclose them to the relying party.

In Figure 6f, the JavaScript code in the consent page presents the credential to the

relying party by sending an HTTPS POST request to the callback URL, containing:

• The MSO.

• The salted elements found in the credential whose element IDs have been

requested.

• A signature computed with the private key on the callback URL, the

authentication challenge, and the requested salted elements.

The relying party validates the issuer’s signature in the MSO using the issuer’s public

key and the signature in the POST request using the public key in the certificate, and

verifies that the set of salted elements is an antecedent of the redactable digest

according to Section 2.2.1.3 of Chapter 2.

 mDL credential

Service
worker

mDL

 Consent
page

 avaScript

Credential presentation

Page 30 of 36

Page 30 of 36

In Figure 6g, the relying party replaces the page that is still displaying the QR code in

the laptop browser with a page acknowledging that the login has been successful.

12.4.3.6.4 Proximity presentation with mitigation of unauthorized

access

As discussed in more detail in Section 13.1.9.2, the mDL is vulnerable to unauthorized

access. An important use case of the mDL is to prove that a bar customer is of drinking

age. To that purpose, the customer will display a QR code that will be scanned by the

bar tender. The QR code will be an encoding of the device engagement structure of the

mDL, which will include a server retrieval token. It will be easy for an attacker to

surreptitiously take a picture of the QR code, and have it scanned by an ad-hoc attack

app that will decode it and extract the token. The attacker will then be able to

authenticate to the mDL issuer with the token and retrieve mDL data elements at will,

not just a proof of age.

This vulnerability cannot be eliminated by authenticating the mDL reader, because

[13, §7.2.1] states that “An mDL shall not require mdoc reader authentication as a

precondition for the release of any of the mandatory data elements”. It could be

eliminated by removing the server retrieval token from the device engagement

structure, as the current specification also has a method for transmitting the token to

the reader in the encrypted session. But the ability to obtain the token without setting

up an encrypted session is a valuable feature of the specification because it allows for a

very simple implementation of the reader.

The proximity protocol described below in Figures 7a-7g mitigates this vulnerability

instead by requiring the mDL holder to select a presentation profile when activating the
app, and restricting the data elements that the mDL reader is able to obtain, not only

from the mDL app but also from the mDL issuer, to those that are included in the

presentation profile. When activating the app in a bar, for example, the mDL holder will

 mDL credential

Service
worker

mDL

RP page
acknowledging

successful
login

Page 31 of 36

Page 31 of 36

activate a proof of age profile containing a single data element, viz. the age-over-21

attestation. The mDL app will then restrict the information that it provides itself to the

mDL by returning an error response if the mDL reader requests any other data element.

To restrict the information that the reader obtains from the mDL issuer, the app will

include the presentation profile in the server retrieval token that the reader uses the

authenticate to the issuer.

In Figure 7a the user activates the mDL app by clicking on a button to display a QR code

after choosing a presentation profile. Each profile consists of a set of data elements

from the mDL data model. There are two standard profiles, labeled “Driving privileges”

and “Proof of age”, and the user is given the option to create a custom profile. The user

chooses the “Proof of age” profile, which comprises a single age attestation called “age-

over- 1”. Age attestations are virtual data elements, discussed in Section 13.1.4 of

Chapter 13.

mDL

Service
worker

mDL credential

Presentation pro iles

Driving privileges

Proof of age

Choose a presentation
pro ile

Driving privileges

Proof of age

Display R code

 ou may also

Create new pro ile

mDL

Service
worker

mDL credential

Presentation pro iles

Driving privileges

Proof of age

Page 32 of 36

Page 32 of 36

In Figure 7b the mDL proximity component of the native app has recorded the choice of

presentation profile made by the user and will reject a request for any data element

other than the age-over-21 age attestation. The display of the mobile device shows a QR

code that is scanned by the mDL reader. The QR code encodes the device engagement

structure of the mDL proximity component, which includes a random ephemeral ECDH

public key.

In Figure 7c the mDL proximity component and the mDL reader establish an encrypted

session by performing an ECDH key exchange, using the ECDH public key in the QR
code, and the public key component of an ephemeral ECDH key pair generated by the

mDL reader for this purpose.

In Figure 7d the mDL reader requests the age-over-21 age attestation. The mDL

proximity component verifies that this data element is included in the Proof of age

profile and responds to the request by sending the element.

mDL

Service
worker

mDL credential

Presentation pro iles

Driving privileges

Proof of age

Choose a presentation
pro ile

Driving privileges

Age at least 1

Display R code

 ou may also

Create new pro ile

mDL

Service
worker

mDL credential

Presentation pro iles

Driving privileges

Proof of age

Choose a presentation
pro ile

Driving privileges

Age at least 1

Display R code

 ou may also

Create new pro ile

Request for age over 1 attestation

age over 1 TRUE

Page 33 of 36

Page 33 of 36

Figures 7e-7g below show how the proof of age presentation profile can also restrict the

information that the mDL reader can obtain from the mDL issuer when using server

retrieval over the web.

In Figure 7e, the mDL proximity component has included the selected presentation

profile restriction in the server retrieval token, and the mDL reader obtains the token

either from the device engagement structure or, after the encrypted session has been

set up, in response to an explicit request.

In Figure 7f the mDL reader sends a request for the age-over-21 to the mDL issuer over

the web, with authentication by the server retrieval token with the proof of age

restriction.

mDL

Service
worker

mDL credential

Presentation pro iles

Driving privileges

Proof of age

Choose a presentation
pro ile

Display R code

 ou may also

Create new pro ile

Server retrieval token

Proof of age

mDL

Service
worker

mDL credential

Presentation pro iles

Driving privileges

Proof of age

Choose a presentation
pro ile

Driving privileges

Age at least 1

Display R code

 ou may also

Create new pro ile

Request for
age over 1
attestation

Proof of age

Server retrieval token

Page 34 of 36

Page 34 of 36

In Figure 7g, the mDL issuer sends the age-over-21 attestation to the mDL reader after

verifying that the attestation is included in the presentation profile restriction of the

server retrieval token.

References

[1] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008. [Online].

Available: https://bitcoincore.org/bitcoin.pdf.

[2] bitcoincore.org, "Bitcoin Core" [Online]. Available:

https://github.com/bitcoin/bitcoin.

[3] S. Rostislav , "Bitcoin Clients," 2012. [Online]. Available:

http://publications.theseus.fi/bitstream/handle/10024/47166/Skudnov_Rostislav.pdf
?sequence=1.

[4] Wikipedia, "Mt. Gox" [Online]. Available: https://en.wikipedia.org/wiki/Mt._Gox.

[5] MetaMask, "Architecture," [Online]. Available:

https://docs.metamask.io/wallet/concepts/architecture/.

[6] MetaMask, "User Guide: Dapps," [Online]. Available:

https://support.metamask.io/third-party-platforms-and-dapps/user-guide-dapps/.

[7] Zooko Wilcox-O’Hearn. Names. Secure, Distributed, Human-Readable. Choose Two.

https://www.cs.princeton.edu/courses/archive/spr17/cos518/papers/zooko-

triangle.pdf

[8] UL white paper, "Verifiable Credentials and ISO/IEC 18013-5 Based Credentials,"

[Online]. Available: https://collateral-library-

production.s3.amazonaws.com/uploads/asset_file/attachment/36416/CS676613_-

_Digital_Credentials_promotion_campaign-White_Paper_R3.pdf.

mDL

Service
worker

mDL credential

Presentation pro iles

Driving privileges

Proof of age

Choose a presentation
pro ile

Driving privileges

Age at least 1

Display R code

 ou may also

Create new pro ile

age over 1 TRUE

https://bitcoincore.org/bitcoin.pdf
https://github.com/bitcoin/bitcoin
http://publications.theseus.fi/bitstream/handle/10024/47166/Skudnov_Rostislav.pdf?sequence=1
http://publications.theseus.fi/bitstream/handle/10024/47166/Skudnov_Rostislav.pdf?sequence=1
https://en.wikipedia.org/wiki/Mt._Gox
https://docs.metamask.io/wallet/concepts/architecture/
https://support.metamask.io/third-party-platforms-and-dapps/user-guide-dapps/
https://www.cs.princeton.edu/courses/archive/spr17/cos518/papers/zooko-triangle.pdf
https://www.cs.princeton.edu/courses/archive/spr17/cos518/papers/zooko-triangle.pdf
https://collateral-library-production.s3.amazonaws.com/uploads/asset_file/attachment/36416/CS676613_-_Digital_Credentials_promotion_campaign-White_Paper_R3.pdf
https://collateral-library-production.s3.amazonaws.com/uploads/asset_file/attachment/36416/CS676613_-_Digital_Credentials_promotion_campaign-White_Paper_R3.pdf
https://collateral-library-production.s3.amazonaws.com/uploads/asset_file/attachment/36416/CS676613_-_Digital_Credentials_promotion_campaign-White_Paper_R3.pdf

Page 35 of 36

Page 35 of 36

[9] Government of British Columbia, "BC Wallet," [Online]. Available:

https://www2.gov.bc.ca/gov/content/governments/government-id/bc-wallet.

[10] Government of British Columnia, "OrgBook BC," [Online]. Available:

https://www.orgbook.gov.bc.ca/search.

[11] Government of British Columbia, "BC Wallet to hold Verifiable Credentials,"

[Online]. Available: https://github.com/bcgov/bc-wallet-mobile.

[12] Government of British Columnbia, "BCWallet_Architecture.png," [Online].

Available: https://github.com/bcgov/bc-wallet-

mobile/blob/main/docs/BCWallet_Architecture.png.

[13] California Department of Motor Vehicles, "CA DMV Wallet and mDL Pilot," [Online].

Available: https://www.dmv.ca.gov/portal/ca-dmv-wallet/.

[14] Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE

COUNCIL amending Regulation (EU) No 910/2014 as regards establishing a framework

for a European Digital Identity, COM/2021/281 final[

[15] European Commission, "The European Digital Identity Wallet Architecture and

Reference Framework," 10 February 2023. [Online]. Available: https://digital-

strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-

reference-framework.

[16] Talao, "EUDI Wallet and eIDAS 2: Understanding the role of EAA, QEAA and PID

credentials for individuals and organizations," [Online]. Available:

https://talao.io/blog/eudi-wallet-understanding-credentials-in-eidas-2-eaa-qeaa-and-

pid/.

[17] F. Corella, "Storing Cryptographic Keys in Persistent Browser Storage," 2 June

2017. Blog post. Available: https://pomcor.com/2017/06/02/keys-in-browser/.

[18] F. Corella and K. Lewison, "Storing Cryptographic Keys in Persistent Browser

Storage," in ICMC 2017. Available: https://pomcor.com/documents/KeysInBrowser.pdf.

[19] ISO/IEC TS 18013-7:2024Personal identification — ISO-compliant driving licence

— Part 7: Mobile driving licence (mDL) add-on functions.

https://www.iso.org/standard/82772.html.

[20] Samsung, "Secure Folder puts private data encryption in your hands," 21 August

2024. [Online]. Available: https://insights.samsung.com/2024/08/21/secure-folder-

puts-private-data-encryption-in-your-hands-5/.

[21] B. Snyder and K. Vyas, "How to lock apps on your Android phone to prevent

unauthorized access," [Online]. Available: https://www.xda-developers.com/how-to-

lock-apps-on-your-android-phone/#how-to-lock-apps-using-the-built-in-app-lock-on-

other-versions-of-android.

[22] Apple, "Lock or hide an app on iPhone," [Online]. Available:

https://support.apple.com/en-ie/guide/iphone/iph00f208d05/18.0/ios/18.0.

https://www2.gov.bc.ca/gov/content/governments/government-id/bc-wallet
https://github.com/bcgov/bc-wallet-mobile
https://github.com/bcgov/bc-wallet-mobile/blob/main/docs/BCWallet_Architecture.png
https://github.com/bcgov/bc-wallet-mobile/blob/main/docs/BCWallet_Architecture.png
https://www.dmv.ca.gov/portal/ca-dmv-wallet/
https://talao.io/blog/eudi-wallet-understanding-credentials-in-eidas-2-eaa-qeaa-and-pid/
https://talao.io/blog/eudi-wallet-understanding-credentials-in-eidas-2-eaa-qeaa-and-pid/
https://pomcor.com/2017/06/02/keys-in-browser/
https://pomcor.com/documents/KeysInBrowser.pdf
https://www.iso.org/standard/82772.html
https://insights.samsung.com/2024/08/21/secure-folder-puts-private-data-encryption-in-your-hands-5/
https://insights.samsung.com/2024/08/21/secure-folder-puts-private-data-encryption-in-your-hands-5/
https://www.xda-developers.com/how-to-lock-apps-on-your-android-phone/#how-to-lock-apps-using-the-built-in-app-lock-on-other-versions-of-android
https://www.xda-developers.com/how-to-lock-apps-on-your-android-phone/#how-to-lock-apps-using-the-built-in-app-lock-on-other-versions-of-android
https://www.xda-developers.com/how-to-lock-apps-on-your-android-phone/#how-to-lock-apps-using-the-built-in-app-lock-on-other-versions-of-android
https://support.apple.com/en-ie/guide/iphone/iph00f208d05/18.0/ios/18.0

Page 36 of 36

Page 36 of 36

[23] D. Alexandru, "AppLocker," [Online]. Available:

https://apps.apple.com/us/app/applocker-passcode-lock-apps/id1132845904.

[24] Cisdem, "Cisdem AppCrypt," [Online]. Available:

https://www.cisdem.com/appcrypt.html.

[25] ISO/IEC 18013-5:2021Personal identification — ISO-compliant driving licence —

Part 5: Mobile driving licence (mDL) application.
https://www.iso.org/standard/69084.html.

[26] T. Looker et al, "IRTF CFRG draft: The BBS Signature Scheme," 12 September 2024.

[Online]. Available: https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-

signatures.html.

[27] S. Tessaro and C. Zhu, "Revisiting BBS Signatures," 2023. [Online]. Available:

https://eprint.iacr.org/2023/275.

[28] Verifiable Credentials Data Model v1.1. W3C Recommendation 03 March 2022.

https://www.w3.org/TR/vc-data-model/.

[29] Google, "WebView overview," 18 December 2024. [Online]. Available:

https://developer.chrome.com/docs/webview.

[30] Apple, "WKWebView," [Online]. Available:
https://developer.apple.com/documentation/webkit/wkwebview.

[31] Wikipedia, "Electronic identification," [Online]. Available:

https://en.wikipedia.org/wiki/Electronic_identification.

[32] D. Fett, K. asuda and B. Campbell, “Selective Disclosure for WTs (SD- WT),” 15

November 2024. [Online]. Available: https://www.ietf.org/archive/id/draft-ietf-oauth-

selective-disclosure-jwt-14.html.

[33] Dynamsoft, "How to Use Barcode Scanner in Android WebView," [Online].

Available: https://www.dynamsoft.com/codepool/use-barcode-scanner-in-android-

webview.html.

[34] N. Sakimura et al., "OpenID Connect Core 1.0 incorporating errata set 2," [Online].

Available: https://openid.net/specs/openid-connect-core-1_0.html.

[35] ToIP Ecosystem Foundry Working Group, "Bhutan NDI (National Digital Identity) &

ToIP Digital Trust Ecosystems," 21 May 2024. [Online]. Available:

https://trustoverip.org/permalink/Case-Study-Bhutan-NDI-National-Digital-Identity-

ToIP-Digital-Trust-Ecosystems-V1.0-2024-05-21.ext.

https://apps.apple.com/us/app/applocker-passcode-lock-apps/id1132845904
https://www.iso.org/standard/69084.html
https://eprint.iacr.org/2023/275
https://www.w3.org/TR/vc-data-model/
https://developer.chrome.com/docs/webview
https://developer.apple.com/documentation/webkit/wkwebview
https://en.wikipedia.org/wiki/Electronic_identification
https://www.ietf.org/archive/id/draft-ietf-oauth-selective-disclosure-jwt-14.html
https://www.ietf.org/archive/id/draft-ietf-oauth-selective-disclosure-jwt-14.html
https://www.dynamsoft.com/codepool/use-barcode-scanner-in-android-webview.html
https://www.dynamsoft.com/codepool/use-barcode-scanner-in-android-webview.html
https://openid.net/specs/openid-connect-core-1_0.html
https://trustoverip.org/permalink/Case-Study-Bhutan-NDI-National-Digital-Identity-ToIP-Digital-Trust-Ecosystems-V1.0-2024-05-21.ext
https://trustoverip.org/permalink/Case-Study-Bhutan-NDI-National-Digital-Identity-ToIP-Digital-Trust-Ecosystems-V1.0-2024-05-21.ext

