
Page 1 of 36

Page 1 of 36

Work in progress

This is an early draft of a chapter of a book on the foundations of cryptographic

authentication being coauthored by Francisco Corella, Sukhi Chuhan and Veronica

Wojnas. Please send comments to the authors.

2. Cryptographic primitives

2.1 Preliminaries

2.1.1 Cryptographic assumptions and security reductions

The security of the cryptographic primitives described in this chapter is based on

cryptographic assumptions stating that it is difficult to perform certain computations,

e.g. factoring an RSA modulus, computing a discrete logarithm in a particular cyclic

group, or finding colliding outputs of a particular hash function. A security reduction is a

mathematical proof that, it there is an “efficient algorithm” that breaches the security of

a primitive with “non-negligible probability”, there is also an efficient algorithm that

performs the difficult computation with non-negligible probability.

The terms “efficient algorithm” and “negligible probability” are defined in the context of

a thought experiment where one imagines that, instead of a single cryptographic system
where each key, each modulus and each group order has its own particular bit length,

there is a sequence of systems indexed by a security parameter, where the bit lengths of

keys, moduli and group orders increase with the security parameter.

2.1.2 System parameterization

It is easy to imagine such a sequence for systems where primitives have keys of

arbitrary length, but more difficult for systems that include primitives such as AES that

are only defined for a small number of key lengths, or primitives such as hash functions

that take no keys at all.

Boneh and Shoup [1] overcome this difficulty by adding to the thought experiment an

efficient probabilistic algorithm that takes as input the security parameter and produces

a system parameter, which can be viewed as a randomized configuration of the system

for a particular value of the security parameter. In the thought experiment with system
parameterization, algorithms and events take the security parameter and the system

parameter as additional inputs. A deterministic or probabilistic algorithm can then be

defined as efficient if its running time is polynomial in the security parameter, and the

probability of an event as negligible if it is asymptotically smaller than the inverse of any

polynomial function of the security parameter. Significantly, in these definitions the

https://www.linkedin.com/in/fcorella/
https://www.linkedin.com/in/sukhi-chuhan/
https://www.linkedin.com/in/veronicawojnas/
https://www.linkedin.com/in/veronicawojnas/

Page 2 of 36

Page 2 of 36

randomness includes the coin tosses of the algorithm that produces the system

parameter on input the security parameter.

The above definitions are specific to cryptography. In complexity theory an efficient

algorithm is an algorithm that runs in polynomial time on the number of bits of its

inputs. The two definitions are compatible if the security parameter is provided to the

algorithm as the length of a bit string where all the bits are equal to 1, and the total bit

length of the other inputs is polynomial in the security parameter.

2.1.3 Cyclic groups and discrete logarithms

An often-used cryptographic assumption is the difficulty of computing discrete

logarithms in a particular cyclic group. In this section we first go over mathematical

background related to cyclic groups in Section 2.1.3.1, before discussing the security

strengths provided by discrete logarithm assumptions in Section 2.1.3.2.

2.1.3.1 Mathematical background on cyclic groups

A group is a set equipped with a binary operation that has the following properties: the

operation is associative; the operation has an identity element, such that application of

the operation to an element and the identity element results in the element; and every

element of the set has an inverse element, such that application of the operation to the

element and its inverse element results in the identity element. Precisely speaking, the

group is an ordered pair comprising the set and the binary operation. But we will gloss
over the distinction between a set such as, for example, the set ℤ of the relative integers,

and that set equipped with one or more operations, such as, for example, (ℤ, +) or
(ℤ,+, ⋅), when the operations in question are clear from the context.

A subgroup of a group is a subset of the elements of the group such that (i) application of

the operation of the group to two elements of the subset results in an element of the

subset; (ii) the identity element of the group is in the subset; and (iii) the inverse of

every element of the subset is in the subset.

An Abelian group is a group whose operation is commutative.

A ring is a set equipped with two binary operations, called addition and multiplication,

which is an Abelian group for addition, and where multiplication is associative, has an

identity element, and is distributive with respect to addition.

A field is a ring where multiplication is commutative and every element other than the

additive identity element has a multiplicative inverse. A field can also be equivalently

defined as a set equipped with two Abelian groups, called the additive group and the

multiplicative group, where the additive group spans the entire set, the multiplicative

group comprises the elements of the set other than the additive identity element, and

multiplication is distributive over addition.

Page 3 of 36

Page 3 of 36

The operation of a group that is not part of a field may be called addition or

multiplication and notated accordingly, using + for addition and ⋅ or juxtaposition for

multiplication, with the identity element written 0 or 1 and the inverse of x written ‒ 𝑥

or 𝑥‒1 respectively. The group is then called an “additive group” or a “multiplicative

group”, but such appellation just refers to how the operation is written. In

cryptography, additive notation is used for the group of points of an elliptic curve, and

multiplicative notation for most other groups.

The operation of a group is also called the group law. Two other operations are derived

from the group law and written in accordance with the notation used for the group law:

• Application of the group operation to an element x and the inverse of an element

y is a binary operation called subtraction and written x − y in an additive group,

or division and written
𝑥

𝑦
 or x/y in a multiplicative group.

• Repeated application of the group law to a group element and an accumulator

initialized as the identity element is an external operation that takes as operands

the group element and an integer specifying the number of repetitions. In an

additive group, the external operation is called scalar multiplication and written

with the relative integer operand to the left of the group element, as in 3P = P +

P + P. In a multiplicative group, the external operation is called exponentiation

and written with the relative integer as a superscript, as in 𝑔3 = 𝑔 ⋅ 𝑔 ⋅ 𝑔 or 𝑔3 =

𝑔𝑔𝑔 Negative integers are used to specify that the group law is to be applied to

the inverse of the group element rather than to the element itself.

We shall be using multiplicative notation in the rest of this section.

Definitions. Let G be a group and g an element of G. The set {𝑔𝑖}𝑖∈𝑍 of powers of g

forms a subgroup of G written ⟨𝑔⟩ said to be generated by g. The element g is called a

generator of the subgroup.

Definitions. A group that has a generator is said to be monogenous, and a finite

monogenous group is said to be cyclic.

Theorem 1. A subgroup of a monogenous group is monogenous.

Proof. Let G be a monogenous group, H a subgroup of G, and g a generator of G. Let m

be the smallest positive integer such that 𝑔𝑚 is in H. Since H is a subgroup of the group

G generated by g, every element h of H is of the form 𝑔𝑘 for some k ∈ 𝑍. Divide k by m to

obtain q and r such that k = mq + r,  0  ≤ 𝑟 < m. Since 𝑔𝑘 and 𝑔𝑚 are both in H, 𝑔𝑟 =

𝑔𝑘(𝑔𝑚)−𝑞 is also in H, and since m is the smallest positive integer such that 𝑔𝑚 is in H,

but r < m, it must be that r = 0. Hence 𝑔𝑘 = (𝑔𝑚)𝑞 and ℎ = 𝑔𝑘 ∈ ⟨𝑔𝑚⟩. Since this is

the case for every ℎ ∈ 𝐻, we have 𝐻 ⊆ ⟨𝑔𝑚⟩. And since 𝑔𝑚 ∈ 𝐻, ⟨𝑔𝑚⟩ ⊆ 𝐻. Thus ⟨𝑔𝑚⟩ =

H and ⟨𝑔𝑚⟩ is a generator of H. ∎

Corollary 2. A subgroup of a cyclic group is cyclic.

Page 4 of 36

Page 4 of 36

Proof. Follows from Theorem 1 and the definition of a cyclic group. ∎

Proposition 3. Every cyclic group is Abelian.

Proof. For every pair of elements (𝑔𝑖 , 𝑔𝑗) of a cyclic group generated by g, we have

𝑔𝑖𝑔𝑗 = 𝑔𝑖𝑗 = 𝑔𝑗𝑖 = 𝑔𝑗𝑔𝑖 . ∎

Definitions. The order of a finite group G, written |𝐺|, is the number of elements of the

group. A proper subgroup of a group G is a subgroup of G other than G itself. The trivial

subgroup of G is the subgroup of order 1, containing the identity element.

Definition. The order of an element of a (finite or infinite) group that generates a finite

subgroup, written |𝑔|, is the number of elements of the subgroup. Thus, |𝑔| = |⟨𝑔⟩|.

Theorem 4 (Lagrange). If G is a finite group and H is a subgroup of G, the order of H

divides the order of G.

Proof. The binary relation x~y ⇔ 𝑥𝑦−1 ∈ 𝐻 is an equivalence relation that partitions G

into equivalence classes all having the same number of elements as H. Hence the order

of G is the product of the order of H by the number of classes. ∎

Corollary 5. A group of prime order has no non-trivial proper subgroups.

Proof. Since a prime number p has no divisors other than 1 and p, a group of prime

order has no subgroups other than the trivial group, of order 1, and itself, of order p.

Theorem 6. A group of prime order is cyclic, and every element of the group other than

the identity element is a generator of the group.

Proof. Let g be an element of a group G other than the identity element. Since ⟨𝑔⟩ is a

subgroup of G, by Lagrange’s theorem (Theorem 4), |𝑔| divides |𝐺|. Since g is not the

identity element of G, |𝑔| ≠ 1. And since a prime number has no divisors other than 1

and itself, if |𝐺| is prime, |𝑔| = |𝐺|, hence ⟨𝑔⟩ = G, and G is cyclic. ∎

Theorem 7. Let G be a group, and g an element of G of finite order n ≠ 1. Then n is the

smallest positive integer m such that 𝑔𝑚 = 1; the integers k such that 𝑔𝑘 = 1 are the

multiples of n; and if integers i and j are such that 𝑔𝑖 = 𝑔𝑗 , they are congruent modulo n.

Proof. Let G be a group, and g an element of G of finite order. We shall refer to the

sequence (𝑔𝑖)
𝑖∈ℤ

 as the sequence of powers of g. Each entry in the sequence is a pair

(𝑖, 𝑔𝑖) of an index 𝑖 ∈ ℤ and a value 𝑔𝑖 . The sequence can be viewed as a surjective map

i ↦ gi from ℤ onto ⟨𝑔⟩ = {𝑔𝑖}𝑖∈ℤ , which is finite by hypothesis.

Page 5 of 36

Page 5 of 36

Since the sequence is infinite while the set if finite, there must be a positive integer m

such that gs+m = gs for some 𝑠 ∈ ℤ. From 𝑔𝑠+𝑚 = 𝑔𝑠 it follows that gm = 1 and hence

that 𝑔𝑠+𝑚 = 𝑔𝑠 holds for every s in Z. Let n be the smallest such m. Then the sequence

is periodic with period n, and, furthermore, there are no repeated values in any interval

of the sequence of length n. From this it follows that two entries have the same value if

and only if their indices are congruent modulo n. It also follows that all the elements of
⟨𝑔⟩ occur without repetition in any interval of length n, and hence that n is the order of

g.

The conclusions of the theorem then follow immediately. Since gn = 1 and there are no

repeated values in the interval (1, n], the order n of g is the smallest integer m such that

gm = 1. Since two entries have the same value if and only if their indices are congruent

modulo n, two integers i and j are such that gi = gj if and only if they are congruent

modulo n, and as g0 = 1, the integers k such that gk = 1 are the multiples of n. ∎

Corollary 8. Let G be a group, g an element of G of finite order |𝑔| ≠ 1, and q a prime

number. Then 𝑔𝑞 = 1 if and only if |𝑔| = q.

Proof. By Theorem 7, 𝑔𝑞 = 1 if and only if q is a multiple of |𝑔|. But since a prime

number has no divisors other 1 and itself, and |𝑔| ≠ 1 by hypothesis, q is a multiple of
|𝑔| if and only if q = |g|. ∎

Corollary 9. Let G be a group, g an element of G of finite order 𝑛 > 1, and h an element

of ⟨𝑔⟩. Then there exists a unique nonnegative integer 𝑖 < 𝑛 such that 𝑔𝑖 = ℎ.

Proof. Let G, g and h be as stated. Since ⟨𝑔⟩ is the set of powers of g, there exists 𝑘 ∈ ℤ

such that 𝑔𝑘 = ℎ. By Theorem 7, the set of such k is a congruence class modulo n, which

has exactly one representative i in the range 0 ≤ 𝑖 < 𝑛.

Definition. If G is a group, g an element of G of finite order 𝑛 > 1, and h an element of
⟨𝑔⟩, the discrete log of h to the base g if the unique nonnegative integer 𝑖 < 𝑛 such that

𝑔𝑖 = ℎ.

Theorem 10. Let G be a cyclic group of order n, g a generator of G, and H a subgroup of

G of order h. Then h is a divisor of n and H is generated by 𝑔𝑛/ℎ.

Remark. We already knew that h is a divisor of n, by Lagrange’s theorem (Theorem 4).
The proof of this theorem rediscovers that fact in the narrower context of cyclic groups.

Proof. If h = 1, then 𝑔𝑛/ℎ = 𝑔𝑛 = 1 and the conclusions are vacuously true. Assume

now that h ≠ 1. Since G is cyclic, by Corollary 2, H is cyclic. Let 𝑔′ be a generator of H.

Since H is a subgroup of G = ⟨𝑔⟩ of order greater than 1, 𝑔′ = 𝑔𝑚 for some positive
integer m.

Page 6 of 36

Page 6 of 36

 Let d = gcd(m, n) Since d divides m every power of 𝑔𝑚 is a power of 𝑔𝑑, hence
⟨𝑔𝑚⟩ ⊆ ⟨𝑔𝑑⟩. On the other hand, the extended Euclidean algorithm on inputs m and n

outputs relative integers r and s such that rm + sn  =  d. And, by Theorem 7, 𝑔𝑛 = 1.

Therefore 𝑔𝑑 = (𝑔𝑚)𝑟(𝑔𝑛)𝑠 = (𝑔𝑚)𝑟1𝑠 = (𝑔𝑚)𝑟. Thus, every power of 𝑔𝑑 is a power of

𝑔𝑚, and ⟨𝑔𝑑⟩ ⊆ ⟨𝑔𝑚⟩. Hence ⟨𝑔𝑑⟩ = ⟨𝑔𝑚⟩ = H.

 Now we have a group G of order n generated by g and a group H of order h

generated by 𝑔𝑑, with (𝑔𝑑)𝑛/𝑑 = 𝑔𝑛 = 1. By Theorem 7 applied to the group G, n is the

smallest positive integer k such that 𝑔𝑘 = 1. But then n/d must be the smallest positive

integer j such that (𝑔𝑑)𝑗 = 1, for otherwise, if there is a positive integer j < n/d such

that (𝑔𝑑)𝑗 = 1, then the positive integer k = dj < d(𝑛/𝑑) = n is a positive integer

smaller than n such that 𝑔𝑘 = 1. Therefore, by Theorem 7 now applied in reverse to
⟨𝑔𝑑⟩ = H, n/d must be the order h of H. Hence h = n/d, hd = n, h is a divisor of n, d =

n/h, and H is generated by 𝑔𝑛/ℎ. ∎

Theorem 11. Let G be a cyclic group of order n, g a generator of G, and h a divisor of n.

Then the subgroup H of G generated by 𝑔𝑛/ℎ has order h.

Proof. By Theorem 7 applied to group G, 𝑔𝑛 = 1. Hence 𝑔(𝑛/ℎ)ℎ = 1 and, by Theorem 7

applied to group H, h must be a multiple ij of the order i of H, and 𝑔(𝑛/ℎ)𝑖 = 1. But since

n = (𝑛/ℎ)ij, unless j = 1, this contradicts the fact that n must be the smallest k such that

𝑔𝑘 = 1. Hence j = 1 and h = ij = i is the order of H. ∎

Theorem 12 (Fundamental theorem of cyclic groups). If G is a cyclic group of order

n, for every divisor h of n there is a unique subgroup H of G of order h.

Remarks.

1. Recall that we define a cyclic group as finite monogenous group. Authors who

refer to (ℤ,+) as an infinite cyclic group refer to Theorem 12 as the fundamental

theorem of finite cyclic groups.

2. Some authors add to the statement of the fundamental theorem the fact that

every subgroup of G is cyclic (which follows from Corollary 2), the fact that the

order a subgroup of G is a divisor of the order of G (which follows from

Lagrange’s theorem (Theorem 4) or from Theorem 10), and/or statements

derived from Theorem 10 or Theorem 11.

3.

Proof. Let G be a cyclic group of order n and h a divisor of n. Since G is cyclic, it has a

generator g, and by Theorem 11, the subgroup H of G generated by 𝑔𝑛/ℎ has order h.

And by Theorem 10, any other subgroup 𝐻′ of G of order h is also generated by 𝑔𝑛/ℎ and

is therefore the same subgroup as H. ∎

Corollary 13. If G is a cyclic group of order n, the function that maps each subgroup of

G to its order is a bijection onto the set of divisors of n.

Proof. Follows immediately from the fundamental theorem (Theorem 12) and

Lagrange’s theorem (Theorem 4). ∎

Page 7 of 36

Page 7 of 36

Theorem 14 (Subgroup membership test). Let G be a cyclic group, H a subgroup of G

of prime order q, and g an element of G. Then g is in H if and only if 𝑔𝑞 = 1.

Proof. Let G, H, and g be as stated. First, assume that g is in H. If g is the identity

element of G, then 𝑔𝑞 = 1. Otherwise, by Theorem 6, g is a generator of H, and therefore
|𝑔| = q. Then, by Theorem 7, we have again that 𝑔𝑞 = 1. Conversely, assume that 𝑔𝑞 =

1. If g is the identity element of the group G, then it is also in the subgroup H as its

identity element. Otherwise |𝑔| ≠ 1 and, by Corollary 8, |𝑔| = q. Hence H and ⟨𝑔 have

same order and, by the Fundamental Theorem, they are the same subgroup of G.

Therefore g is in H.

Definition (Cofactor). Let G be a finite group of order n, and H a subgroup of G of order

q. By Lagrange’s theorem (Theorem 4) there exists a positive integer r such that n = rq.

If G is cyclic and q is prime, r is called the cofactor of H in G. Notice that the ratio r = n/q

is defined whether or not G is cyclic and whether or not q is prime. But the term

cofactor is used in contexts where the following theorem is applicable.

Theorem 15 (Cofactor clearing). Let G be a cyclic group of order n, H a subgroup of G

of prime order q, r the cofactor of H in G, and x any element of G such that 𝑥𝑟 ≠ 1. Then

 𝑥𝑟 is a generator of H.

Proof. Let G, H, r and x be as stated. Let g be a generator of G, with x = 𝑔𝑘. Then 𝑥𝑛 =

𝑥𝑟𝑞 = 𝑔𝑘𝑟𝑞 = 𝑔𝑟𝑞𝑘 = 𝑔𝑛𝑘 = (𝑔𝑛)𝑘 = 1 by Theorem 7. From 𝑥𝑟𝑞 = 1 if follows by

Corollary 8 that |𝑥𝑟| = q = |𝐻|. Hence by the fundamental theorem of cyclic groups

(Theorem 12), ⟨𝑥𝑟⟩ = H. ∎

2.1.3.2 Security strengths provided by discrete logarithm

assumptions

The security strength of the discrete logarithm assumption in a cyclic group depends, of

course, on the size of the group, but also on its subgroup structure and its mathematical

structure.

By subgroup structure we mean whether the group has any non-trivial proper

subgroups, and if so if it has a large proper subgroup. The security implications of

subgroup structure are discussed in Section 2.1.3.2.1.

By mathematical structure we mean the representation of the group elements as

mathematical entities, which we categorize using NIST’s classification of cryptographic

primitives. The security implications of mathematical structure are discussed in

Sections 2.1.3.2.3-6.

2.1.3.2.1 Group order and subgroup structure

Page 8 of 36

Page 8 of 36

By Corollary 13, the subgroup structure of a cyclic group G of order n is determined by

the divisor structure of n.

If n is composite and only has small prime divisors, then an adversary can use the

Pohlig-Hellman algorithm of Section 2.1.3.2.1.1 to reduce the problem of computing a

discrete log in G to the problem of computing a discrete log in each of the prime order

subgroups of G.

If n is composite but has a large prime divisor q, G has a unique subgroup of order q.

We shall see how several primitives are implemented in such a subgroup, taking

advantage of Theorem 15 (cofactor clearing) to generate elements of the subgroup and

Theorem 14 (subgroup membership test) to check if an element of G is an element of

the subgroup. However, G is also likely to have small subgroups, and care must be taken

to prevent small subgroup attacks, as discussed in Section 2.1.3.2.1.2.

If n is prime, by contrast, neither Pohlig-Hellman nor small subgroup attacks are
available to an adversary. As we shall see in Section 2.1.5, the group of points of a NIST

elliptic curve is an example of a cyclic group of prime order.

2.1.3.2.1.1 Pohlig-Hellman algorithm

Pohlig-Hellman is an algorithm for computing discrete logarithms in a cyclic group G of

composite order 𝑛 = 𝑞1
𝑒−1 ⋅⋅⋅ 𝑞𝑟

𝑒𝑟 , where 𝑞1 ⋅⋅⋅ 𝑞𝑟 are the primes dividing n. It was

originally formulated for the multiplicative group of a finite field [2], but variants for

general cyclic groups have since been specified [1, §16.1.2], [3, §3.6.4].

In [1, §16.1.2], Boneh and Shoup compute the discrete log α of an element u of G to base

g, where g is a generator of G. The computation has two steps. First, a recursive

algorithm is used to compute the discrete log α𝑖 of 𝑢𝑞𝑖
∗
 to the base 𝑔𝑞𝑖

∗
, where 𝑞𝑖

∗ = 𝑛/𝑞𝑖
𝑒𝑖

for 1 ≤ 𝑖 ≤ 𝑟. Then the Chinese Remainder Theorem [3, §2.1.2.0-1] is used to compute

α from the α𝑖 .

Boneh and Shoup estimate that the computation of each α𝑖 is only as hard as computing
a discrete log in the subgroup of G of prime order 𝑞𝑖 , and conclude that the difficulty of

computing α is determined by the size of the largest prime dividing n.

2.1.3.2.1.2 Small subgroup attacks

In a small subgroup attack, the attacker tricks the victim into believing that an element g

of a cyclic group G is an element of a subgroup of G of large prime order, while in fact it

is an element of a small subgroup. The victim may then compute 𝑦 = 𝑔𝑥 where x is a

secret such as a private key and use y in a manner that provides information about x to

the attacker. Well-known examples are attacks against Diffie-Hellman key exchange [4]

[5] [6].

Page 9 of 36

Page 9 of 36

In a Diffie-Hellman key exchange, two parties Alice and Bob with private keys 𝑥𝐴, 𝑥𝐵 and

public keys 𝑦𝐴 = 𝑔
𝑥𝐴 , 𝑦𝐵 = 𝑔

𝑥𝐵 compute a shared secret 𝑠 = 𝑦𝐴
𝑥𝐵 = 𝑔𝑥𝐴𝑥𝐵 = 𝑦𝐵

𝑥𝐴 after

exchanging their public keys. The parameters of the Diffie-Hellman primitive specify

the group G, a large prime q that divides the order of G, and the base g of the

exponentiations, which must be an element of the unique subgroup H of order q.

In a small subgroup attack where party A is the victim, the attacker, Mallory, causes

Alice to compute 𝑠′ = 𝑦𝑀
𝑥𝐴 , where 𝑦𝑀 lies in a small subgroup 𝐻′ instead of 𝑆 = 𝑦𝐵

𝑥𝐴 ,

where 𝑦𝐵 lies in H. In different attack variants, Mallory could to that, for example, by

playing the role of Bob, or as an man-in-the-middle between Alice and Bob (who may

legitimately exchange their public keys in the clear), or by controlling a certificate

authority that issues a certificate to Bob with the wrong public key.

If Mallory has access to 𝑠′, he can compute 𝑥𝐴 as the discrete log of 𝑠′ to base 𝑦𝑀.

Typically, however, that will not the case, because Alice and Bob don’t need to tell each

other the results of their shared secret computations, which should equal. But Mallory

will typically have access to data disclosed by A that has been computed using

cryptographic keys derived from 𝑆′, such as a symmetric signature computed with an

HMAC key, or a plaintext decrypted using an AES key. And since 𝑠′ lies in the small
subgroup 𝐻′, Mallory can enumerate the elements of 𝐻′, and see which one of them

would produce the data disclosed by A when used as 𝑠′. He can then compute 𝑥_𝐴 as

the discrete log of that element to base 𝑦_𝑀.

RFC 2785 [6] describes several attack variants in cases where the group G is the

multiplicative group of a finite field, and countermeasures against the attacks. The

public key validation countermeasure of [6, §3.1] is based on the subgroup membership

test of Theorem 14 above.

2.1.3.2.2 NIST classification of cryptographic primitives

NIST defines “security strength” as “a number associated with the amount of work (i.e.,

the number of operations) that is required to break a cryptographic algorithm or

system” [7] and assigns security strengths to four classes of cryptographic primitives in

a table of “comparable security strengths” [8, Table 2]. Two of these classes comprise

primitives that are based on discrete log assumptions in cyclic groups: FFC (Finite Field

Cryptography, column 3) and ECC (Elliptic Curve Cryptography, column 5). As we shall

see in Section 2.1.5, the group of points in some elliptic curves is not cyclic, but it is

cyclic in the elliptic curves that are used in cryptography today.

2.1.3.2.3 Strength of the discrete log assumption in FFC primitives

FFC primitives include Diffie-Hellman, DSA, and the FFC variant of MQV, specified in

Section 5.7.2.1 of [9]. Their security relies on the difficulty of computing discrete logs in

a prime order subgroup of the multiplicative group 𝑍𝑝
∗ of the field 𝑍𝑝 of integers modulo

Page 10 of 36

Page 10 of 36

a prime p, called a Schnorr group because such a group was used by Schnorr for his

identification protocol and his signature scheme, as we shall see in Chapter 3.

A Schnorr group is constructed by choosing the prime number p, and a prime number q

that divides p − 1. The multiplicative group 𝑍𝑝
∗ is cyclic [10, Theorem 62] and has order

p − 1. Therefore, by the fundamental theorem of cyclic groups (Theorem 12), it has a

unique subgroup H of order q, which is cyclic by Corollary 2 and has cofactor r =
(𝑝 − 1)/q in 𝑍𝑝

∗ . And by the cofactor clearing theorem (Theorem 15), if 1 < x < p and

g = 𝑥𝑟 mod   ≠ 1, then g is a generator of H. The subgroup H is a Schnorr group, and

FFC primitives can be based on the difficulty of computing the discrete log of an element

u of H to the base g.

At this time, the fastest algorithm available to an attacker for computing the discrete log

of u to base g in the subgroup H of 𝑍𝑝
∗ is the General Number Field Sieve (GNFS) [11]

[12], which performs the computation in time 𝐿𝑝[α, 𝑐], with α = 1/3 and c = (64/9)1/3,

where 𝐿𝑝 refers to the asymptotic “L-notation” [13], defined by

𝐿𝑝[α, 𝑐] = exp ((c+o(1))(log p)
α(log log p)1-α),

or equivalently by

𝐿𝑝[α, 𝑐] = exp ((c+o(1))b
α(log b)1-α),

where b = log   is the bitlength of the prime number p. The term o(1) in the L-

notation is one of the better-known asymptotic notations O( ),  o( ), Ω( ), ω( ), and Θ( )

[14].

L-notation is useful for comparing the asymptotic performance of algorithms that have

time complexities ranging from polynomial to exponential. The value α = 0

corresponds to polynomial complexity, as

𝐿𝑝[0, 𝑐] = exp ((c+o(i))log  ) = 𝑏
𝑐+𝑜(𝑖),

while α = 1 corresponds to exponential complexity, as

𝐿𝑝[1, 𝑐] = exp ((c+o(i))b).

Intermediate values 0 < α < 1 correspond to algorithms that are sub-exponential but

super-polynomial.

Since GNFS computes discrete logs in 𝑍𝑝
∗ in time 𝐿𝑝[1/3, (64/9)

1/3], it is classified as

having sub-exponential time complexity. By contrast, we shall see in Section 2.1.3.2.4

that the discrete log algorithms currently available for attacking ECC primitives on most

curves have exponential time complexity. Hence FCC primitives are asymptotically

weaker than ECC primitives.

Furthermore, it turns out that most of the computations that GNFS does depend only on

the prime p and can be performed in a precomputation phase, enabling an attack

dubbed “Logjam” where the attacker performs the precomputation once and uses the

result to attack any number of discrete logs.

Page 11 of 36

Page 11 of 36

When Logjam was discovered in 2015 [15] [16], several Internet protocols

recommended or required the use of a small number of specific primes p deemed to be

“safe”. Those primes were thus being built into the Internet and were being used

universally for many different purposes, providing a huge incentive for attackers with

large resources to invest on performing the precomputation phase on those primes.

Since the vulnerability was discovered shortly after the Snowden revelations, it was

feared that the NSA might have been aware of it and might have been using it to

perform widespread eavesdropping on the internet. Suspicions that leaked NSA claims

of cryptanalytic prowess referred to Logjam were disputed [17], but the need to take

precautions against Logjam attacks remains to this day.

Together, the speed of the GNFS and the Logjam vulnerability have motivated a gradual

shift from FFC primitives to ECC primitives in Internet protocols and cryptographic

authentication solutions. DSA is no longer included in the Digital Signature Standard

[18, §4].

2.1.3.2.4 Strength of the discrete log assumption in ECC primitives

ECC primitives include ECDSA, EdDSA, ECDH and the ECC variant of MQV described in

[9, §5.7.2.3]. Their security relies on the difficulty of computing discrete logs in a cyclic

subgroup of prime order of an ECC group, where by ECC group we mean the group of
points on an elliptic curve.

As we shall see in Section 2.1.5, an ECC group is Abelian, but it may or may not be cyclic.

Furthermore, discrete logs are easy to compute in some curves. In spite of these

drawbacks, ECC primitives are regarded as providing strong security, and they are the

primitives of choice for digital signature and key agreement in new deployments of

cryptographic authentication solutions.

The reason for their popularity is that there are currently no discrete-log algorithms

available to an attacker that are fast because they exploit the general structure of an

ECC group, i.e. the mere fact that the elements of the group are the points of an elliptic
curve. There are algorithms that are fast because they exploit the particular structures

of the ECC groups of several categories of insecure curves [1, §15.3]. But those

algorithms can be denied to the attacker by not using curves in those categories, leaving

only to the attacker relatively slow generic algorithms such as baby-step/giant-step [1,

§16.1.1], or Pollard rho [19], [1, §11.2.5] that work on all cyclic groups.

Elliptic curve technology is complicated, and requiring implementors to figure out if a

particular curve belongs to one of the known categories of insecure curves would

impose an undue burden on the implementors and entail a security risk. This is one of

the drawbacks presented by ECC groups, along with the fact that some of them are not

cyclic. The strategy for avoiding these drawbacks is to use curves vetted by experts that

have cyclic ECC groups and are not in any of the known categories of insecure curves. A

list of such safe curves is currently available at [20].

Page 12 of 36

Page 12 of 36

This strategy begs two questions: (i) what if there are categories of insecure curves that

are not yet known? and (ii) what if there are generic algorithms faster than baby-

step/giant-step and Pollard rho that are not yet known?

An answer to question (i) is that categories of insecure curves consist of curves that are

not “normal”; they have special features, and those special features make them insecure.

One way of avoiding curves that may someday be found to be insecure is to use

“normal” curves, resisting the urge to be clever and design curves with special features

for particular purposes.

Surprisingly, there is an easy answer to question (ii): there is no need to worry about it

because there is a high lower bound on the performance of generic algorithms.

2.1.3.2.5 Speed of generic discrete-log algorithms

As discussed in the previous section, there are no known algorithms for computing

discrete logs in all ECC groups other than generic algorithms that work on all cyclic

groups.

The fastest generic algorithm known today is the baby-step/giant-step algorithm. It

runs in square-root time, i.e. it performs roughly 𝑞1/2 group operations to compute a

discrete log in a cyclic group of prime order q. In L-notation, square-root time

corresponds to the parameters α = 1 and c = 1/2, since

𝐿𝑞[1,1/2] = exp ((1/2+o(1))log q) = 𝑞
1/2+𝑜(1).

It is thus classified as exponential in the L-notation scale (since α = 1) and is much

slower than GNFS which is sub-exponential with α = 1/3.

It may be possible to discover faster generic algorithms than baby-step/giant-step in

the future, but not much faster.

An algorithm that computes discrete logs in a cyclic group of prime order q is informally

said to be generic if it does not take advantage of the structure of the group; but it could

more formally be defined as generic if it could be specified in the generic group model

[1, §16.3], where group operations are performed by an oracle that hides the structure

of the group. Baby-step/giant-step is a generic algorithm according to this more formal

definition.

To compute a discrete log in a group of prime order q, baby-step/giant-step as

described in [1, §16.1.1] would require between 𝑞1/2 and 2𝑞1/2 group operations. No

generic algorithm can be much faster than that. It is shown in Theorem 16.3 of [1,

§16.3] that an adversary trying to guess a discrete log in a generic group of prime order

q after making at most T queries to the oracle would have a probability not greater than
((3𝑇 + 2)2 + 1)/q of succeeding. Succeeding with probability greater than ½ would

thus require a number of queries T greater than ((𝑞 − 2)1/2 − 2)/3 ≈ 𝑞1/2/3, which is

Page 13 of 36

Page 13 of 36

only six times less than the number of group operations performed by baby-step/giant-

step in the worst case.

2.1.3.2.6 NIST’s comparison of security strengths

The difference in security strength provided by the discrete log assumptions used by

FFC and ECC primitives is reflected in the minimum bitlength requirements of the

parameters in columns 3 and 5 of the NIST table of comparable security strengths [3,

Table 2].

FFC primitives rely on the difficulty of computing discrete logs in a Schnorr group

constructed as described above in Section 2.1.3.2.3, and the parameters L and N in

column 3 are to the bitlength of the prime p and the order of the group respectively.

ECC primitives rely on the difficulty of computing discrete logs in a cyclic subgroup of

prime order of an ECC group, and the parameter f is the order of the subgroup. As the

size of the security strength specified in column 1 doubles from 128 to 256, the required

bitlengths of N and f double from 256 to 512, but the required bitlength of L grows

much faster, by a factor of 5, from 3072 to 15360.

This is because the GNFS makes it possible to compute discrete logs in 𝑍𝑝
∗ in time

𝐿𝑝(1/3, (64/9)
1/3), which is approximately equal, neglecting the o(1) term,  to

exp ((64/9)1/3(3072)1/3(log(3072))
2/3
) ≈ 2143

when b = log   = 3072, and

exp ((64/9)1/3(15360)1/3(log(15360))
2/3
) ≈ 2276

when b = log   = 15360. Thus, increasing the bitlength of p by a factor of 5 only

increases the amount of effort that the adversary must make to compute discrete logs

from 2143 to 2276, as if the number of bits had approximately doubled from 143 to 276,

and only a brute farce attack was available to the adversary.

Two additional remarks about the [3, Table 2] may be useful:

1. Column 4 refers to primitives such as RSA whose security is based on the

difficulty of factoring a modulus n, and the parameter k is the sized of n. Integer

factorization was the original application of the GNFS; hence it is not surprising

that the values of k in column 4 are the same as the values of L in column 3.

2. The values of N, k and f in columns 3 and 4 are twice the security strength

because the primitives in those columns must provide collision resistance.

2.1.4 Galois fields

We have seen the definition of “field” in Section 2.1.3.1. A “Galois field” is a field that has

a finite number of elements. Finite fields are called a Galois fields in honour of the

French mathematician Evariste Galois, and because finite fields are a core concept of

Galois theory.

Page 14 of 36

Page 14 of 36

Galois theory is an extensive area of mathematics, but we only need a small part of it as

background for cryptographic authentication. In this section we state the facts we need

about Galois fields without formal proofs or references to those proofs. Readers who

want to know more are referred to the large number of textbooks about Galois theory.

The order, or size, of a Galois field is the number of elements of the field, just like the

order of a group is the number of elements of the group. If a Galois field has order q, its

multiplicative group has order 𝑞 − 1.

The order of a Galois field is a prime power 𝑞 = 𝑝𝑘 , where p is a prime and k is a

positive integer, or just a prime p in the special case where 𝑘 = 1. In either case, the

prime p is the characteristic of the field, defined as the smallest positive integer n such

that 1 + ⋅⋅⋅ + 1⏟
n

= 0. A binary field is a field with characteristic 2. In this book, fields will

be finite and non-binary unless otherwise stated.

All fields of same order q are isomorphic, and generically referred to as GF(𝑞) or 𝔽𝑝.

The field ℤ𝑝 of integers modulo a prime p is a particular representation of 𝔽𝑝.

A representation of 𝔽𝑝𝑘, 𝑘 > 1 can be constructed using a monic irreducible polynomial

P of degree k with coefficients in ℤ𝑝. The elements of the representation are then the

polynomials of degree less than k, addition is polynomial addition, and multiplication is

polynomial multiplication followed by taking the remainder of the Euclidian division of

the product by P.

A field of order 𝑝𝑘 has a subfield of order 𝑝𝑗 if and only if j divides k. When that is the

case, there is only one such subfield. That makes it possible to refer generically to the

subfield 𝔽𝑝𝑗 of 𝔽𝑝𝑘. If a field F is a subfield of a field 𝐹′, 𝐹′ is called an extension field of F.

The non-zero elements of a field of order q form a group of order 𝑞 − 1. We saw in

Section 2.1.3.2.3 that the group ℤ𝑝
∗ is cyclic, referring to [9, Theorem 62]. But the cited

theorem actually states that every finite subgroup of the multiplicative group of any

field is cyclic. Thus, the multiplicative group of any Galois field is cyclic.

2.1.5 Elliptic curves

2.1.5.1 The projective plane

Let F be a field, let 𝐹∗ = 𝐹 ∖ {0}, and let 𝐹3∗ = 𝐹3 ∖ {(0,0,0)} be the three-dimensional

affine space 𝐹3 deprived of its origin. If 𝑃 = (𝑋, 𝑌, 𝑍) and 𝑃′ = (𝑋′, 𝑌′, 𝑍′) are elements

of 𝐹3∗, the homothecy relation 𝑃~𝑃′ ⇔ (∃𝑘 ∈ 𝐹∗)((𝑋′, 𝑌′, 𝑍′) = (𝑘𝑋, 𝑘𝑌, 𝑘𝑍)) is an

equivalence relation that partitions 𝐹3∗ into classes called projective points. Each

projective point consists of the affine points other than (0,0,0) of a line of 𝐹3 that goes

through the origin. The quotient set 𝐹3∗/~ is the projective plane over F, written P2(F).

Page 15 of 36

Page 15 of 36

A point of the projective plane has projective coordinates (𝑋, 𝑌, 𝑍) defined up to

homothecy. If 𝑍 ≠ 0 it also has affine coordinates (𝑥, 𝑦) = (𝑋/𝑍, 𝑌/𝑍). A projective

point that has affine coordinates is called a regular projective point, while a point where

𝑍 = 0 is called a point at infinity. The points at infinity are lines of 𝐹3 (minus the origin)

that lie in the plane with equation 𝑍 = 0. Each regular projective point is a line of 𝐹3

(minus the origin) that intersects the plane with equation 𝑍 = 1, at an affine point

whose coordinates in that plane are the affine coordinates of the projective point. The

plane with equation 𝑍 = 1 is the image of the translation by the vector (0,0,1) of the

plane with equation 𝑍 = 0. We shall refer to the latter as the base affine plane, and to
the former as the translated affine plane.

2.1.5.2 Algebraic plane curves

A projective algebraic equation H(𝑋, 𝑌, 𝑍) = 0 where H is an irreducible homogeneous

polynomial over F is compatible with the homothecy relation. Hence its solutions define

a set of projective points, called a projective algebraic plane curve. (If H can be factored,

each factor defines a separate curve.)

Assigning (𝑥, 𝑦, 1) to (𝑋, 𝑌, 𝑍) dehomogenizes H, producing an affine algebraic equation

ℎ(𝑥, 𝑦) = 0 that defines an affine algebraic plane curve. The affine curve is the

intersection of the projective curve with the base affine plane.

Conversely, H can be derived from h by adding power of Z factors to each term as
needed to homogenize it. Thus, the projective curve and the affine curve can be viewed

as two aspects of a single algebraic plane curve.

The points of infinity of the projective curve correspond to asymptotes of the affine

curve. Their coordinates can be determined up to homothecy by (i) setting Z to 0 in the

equation 𝐻(𝑋, 𝑌, 𝑍) = 0; (ii) setting one of the remaining variables X, Y to 1; and (iii)

solving the equation for the last remaining variable.

In the special case where the polynomial H is of degree 1, the algebraic plane curve is a

projective line, consisting of the projective points that lie in a plane of 𝐹3 containing the

origin. In the further special case where the projective equation is Z = 0, the plane of 𝐹3

is the base plane, and the projective, called the line at infinity, contains all the points at

infinity.

2.1.5.3 Weierstrass equation

A projective Weierstrass equation E over a field F, sometimes written 𝐸/𝐹, is a

homogeneous algebraic equation of the form

𝑌2𝑍 = 𝑋3 + 𝑎𝑋𝑍2 + 𝑏𝑍3,

where 𝑎, 𝑏 ∈ F and the discriminant 4𝑎3 + 27𝑏2 is not equal to 0.

Page 16 of 36

Page 16 of 36

If 𝐹′ is an extension field of F, possibly equal to F, the equation 𝐸/𝐹 defines an algebraic

plane curve 𝐸(𝐹′), called an elliptic curve, in the projective plane 𝐏2(𝐹′). The point at

infinity of 𝐸(𝐹′), which we shall call 𝒪, has coordinates (0,1,0) defined up to homothecy

in 𝐏2(𝐹′), as determined by setting 𝑍 = 0 and 𝑌 = 1 in the equation, then trivially

solving for X to get 𝑋 = 0. The point at infinity thus lies in the base plane, where it

comprises the affine points of the y axis other than the origin.

The elliptic curve 𝐸(𝐹′) can equivalently be defined by the affine algebraic equations

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

obtained by dehomogenizing the projective equation as described in Section 2.1.5.2.

Besides referring to the Weierstrass equation, the notation E, or 𝐸/𝐹, is also used to

refer generically to all the elliptic curves 𝐸(𝐹′) for all extension fields 𝐹′ of F. A point of

𝐸(𝐹′) for a particular extension 𝐹′ is then said to be an L-rational point of E or 𝐸/𝐹.

The above projective and affine equations are sometimes called simplified, or short

Weierstrass equations, to distinguish them from longer forms of the equations from

which they can be derived using admissible changes of variables [21, §3.1.1].

2.1.5.4 Jacobian coordinates

Besides projective and affine coordinates, an elliptic curve may also be specified using

Jacobian coordinates, which are more efficient for certain computations. Jacobian

coordinates are defined so that a point with Jacobian coordinates (𝑋, 𝑌, 𝑍) has affine

coordinates 𝑥 = 𝑋/𝑍2 and 𝑦 = 𝑌/𝑍3. Replacing x and y with these values in the affine

Weierstrass equation and multiplying by 𝑍6 yields the equivalent equation in Jacobian

coordinates

𝑌2 = 𝑋3 + 𝑎𝑋𝑍4 + 𝑏𝑍6.

Setting 𝑍 = 0 in that equation gives 𝑌2 = 𝑋3. Hence the Jacobian coordinates of the

point at infinity are {𝑘2, 𝑘3, 0}𝑘∈𝐹 while the Jacobian coordinates of a regular point with

affine coordinates (𝑥, 𝑦) are {(𝑥𝑘2, 𝑦𝑘3, 𝑘)}𝑘∈𝐹.

2.1.5.5 Group law

A binary operation on pairs of points of an elliptic curve may be defined in such a way

that the resulting structure is an Abelian group whose identity element is the point at

infinity. The group may or may not be cyclic, but it is cyclic for the safe curves specified

in [20].

Since the concept of elliptic curve is defined in projective space, the rules defining the

group law are most naturally formulated in projective coordinates. However, it may be

advantageous in some cases to represent the points of an elliptic curve in Jacobian

coordinates, or in affine coordinates with the point at infinity treated as a special case in

computations. Some computations with Jacobian coordinates may be more efficient,

Page 17 of 36

Page 17 of 36

while computations with affine coordinates may be viewed as simpler because a regular

point has a single tuple of coordinates.

Formulas defining the group law using projective coordinates can be found in [22,

§2.6.1] and [23]. Formulas for Jacobian coordinates are provided in [22, §2.6.2], [24],

and for affine coordinates in [22, §2.2], [25].

A geometric interpretation of the affine formulas can be found in [22, §2.2] and a

geometric interpretation in projective space for groups or points of general cubic plane

curves, not just elliptic curves can be found in [26, §3.2].

2.1.5.6 Montgomery and Edwards curves

Montgomery and Edwards curves are algebraic plane curves defined by equations that

can be converted to the Weierstrass equation of Section 2.1.5.3 by changes of variables.

They are viewed as different “shapes” or “models” of elliptic curves that provide the

same functionality as the short Weierstrass model while offering computational benefits..

They were separately introduced by Montgomery [27] and Edwards [28] but the work

of Bernstein and his colleagues [29] [30] [31] eventually brought them together into the

Ed25519 signature scheme, an instance of the EdDSA scheme described below in
Section 2.2.3.3 that uses an Edwards curve birationally equivalent to the Montgomery

Curve25519 [29].

2.1.5.6.1 Montgomery curves

A Montgomery curve [32] is an algebraic plane curve defined by an affine equation

𝐸/𝔽𝑝 of the form

𝐵𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1),

or a projective equation of the form

𝐵𝑌2𝑍 = 𝑋(𝑋2 + 𝐴𝑋𝑍 + 𝑍2)

with 𝐵 ≠ 0 and 𝐴2 ≠ 4.

A computational benefit of Montgomery curves is that they provide a fast

implementation of the Montgomery Ladder [32, Algorithm 4], an algorithm that

computes a scalar multiplication using only affine x-coordinates (or projective (𝑋, 𝑍)

coordinates).

The Montgomery Ladder takes as inputs a scalar 𝑘 ∈ ℤ and coordinates (𝑋(𝑃), 𝑍(𝑃)) of

a point P and computes the coordinates ((𝑋(𝑄), 𝑍(𝑄)) of the point Q resulting from the

scalar multiplication of P by k, written 𝑄 = [𝑘]𝑃. It can be implemented in an elliptic

curve defined by a Weierstrass equation, but the Montgomery equation yields a more

efficient implementation, as shown in [32, §3.4].

Page 18 of 36

Page 18 of 36

The Montgomery Ladder can be used to implement a simplified variant of ECDH, where

the base point, the public keys, and the shared secret are all defined, up to the sign of

their y coordinates, by their x coordinates. This simplification was pointed out as early

as 1987 by Miller in the paper where he proposed the use of elliptic curves for

cryptography [33, last paragraph].

2.1.5.6.2 Curve25519

Bernstein paper “Curve25519: new Diffie-Hellman speed records” [29] made

Curve25519 a famous elliptic curves and 2255 − 19 a famous prime number.

Paradoxically, however, Curve25519 is not the name of a curve in that paper, and the

paper does not credit 2255 − 19 with any speed record breaking properties.

Originally, Bernstein used the name Curve25519 to refer to an implementation of the

Diffie-Hellman key agreement primitive simplified to use only x-coordinates as

explained above in Section 2.1.5.6.2. He later changed the terminology, using “X25519”

to refer to the simplified Diffie-Hellman implementation and “Curve25519” to refer to

the curve used in X25519 [34].

To achieve the speed records achieved by what is now called X25519, Bernstein

optimized many choices affecting speed. Thirteen optimized choices are listed at the

end of [29, Section 1], one of them being “Use a prime extremely close to2𝑏 for some b”.

But no doubt the use of the Montgomery Ladder to implement Diffie-Hellman use only x

coordinates deserves a log of the credit.

2.1.5.6.3 Edwards curves

An Edwards curve, as defined by Bernstein and Lange in [30], is an algebraic plane
curve defined by an affine equation 𝐸/𝔽𝑝 of the form

𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2,

with 𝑑 ∉ {0,1}, or a projective equation of the form
(𝑋2 + 𝑌2)𝑍2 = 𝑍4 + 𝑑𝑋2𝑌2.

Formulas for group operations presented in [30, §4] are faster than formulas for NIST

curves defined by Weierstrass equations with Jacobian coordinates, optimized by the

choice of coefficient 𝑎 = −3 as explained in [22, §2.6.5].

But the main benefit of Edwards curves is that they support unified addition formulas,

i.e. formulas that can be used for point addition and point doubling. This is important

because unified addition formulas [35] can provide protection against

private key recovery using side-channel attacks based on timing analysis [36] or power

consumption analysis [37].

2.1.5.6.4 Twisted Edwards curves

Page 19 of 36

Page 19 of 36

In [31], Bernstein and his colleagues introduced “twisted Edwards curves” as curves

defined by the equation

𝑎𝑥2 + 𝑦2 = 1 + d𝑥2𝑦2.
It should be noted, however, that such curves are not an alternative to ordinary

Edwards curves, but rather a generalization thereof, since as stated in [31, Definition

2.1], “an Edwards curve is a twisted Edwards curve with 𝑎 = 1”. What matters is that

every curve defined by the generalized equation is “birationally equivalent” to a

Montgomery curve as stated in [31, Theorem 32] and vice-versa, and thus that “the

generalization brings the speed of the Edwards addition law to every Montgomery

curve”.

2.2 Primitives used in cryptographic authentication

2.2.1 Hash functions and hash trees

Cryptographic hash functions provide essential functionality for cryptographic

authentication. They have traditionally been used for purposes such as compressing a

string before signing it, or transforming an interactive zero-knowledge proof into a non-

interactive one by means of the Fiat-Shamir heuristic. And as we shall in Chapter 3,

however, they have now started to be used for implementing selective disclosure

credentials.

2.2.1.1 Cryptographic properties of hash functions

A cryptographic hash function is a function 𝑦 = 𝑓(𝑥) that accepts very long bit strings x

as inputs (long enough to be of unlimited size for practical purposes), produces bit

strings y of fixed length as outputs, and has the following properties:

1. Preimage resistance: if 𝑦 = 𝑓(𝑥) an adversary who knows f (e.g. who can inspect

the program or the Turing machine that implements f) and is given y has a

negligible probability of finding x.

2. Second preimage resistance: if 𝑦 = 𝑓(𝑥), an adversary who knows f, y and x has a

negligible probability of finding an 𝑥′ such that 𝑦 = 𝑓(𝑥′).

3. Collision resistance: an adversary who knows f has a negligible probability of

finding x and 𝑥′ such that 𝑓(𝑥) = 𝑓(𝑥′).

As we saw in Section 2.1.5, the concept of negligible probability is difficult to use in

connection with hash functions, which do not have a key that would increase in length

with the security parameter. We also saw that Boneh and Shoup [1] solve this problem

by introducing a system parameter that can be viewed as a randomized configuration of
the cryptographic system for each particular value of the security parameter. In their

approach, a hash function does not have a key that grows in length with the security

parameter, but the system parameter defines a configuration of the hash function that

grows in complexity.

Page 20 of 36

Page 20 of 36

A formal definition of system parameterization can be found in [1, §2.3.2], and a

definition of collision resistance using system parameterization in [1, §8.1.1]. A proof of

security of an omission-tolerant digest using a simplified treatment of hash functions

with system parameterization can be found in [38].

2.2.1.2 Choosing a hash function

Many cryptographic hash functions are available today. A catalog can be found in [39].

But one must be careful when choosing a hash function. The cryptographic properties

of hash functions can be formally defined using system parameterization, and used in

formal proofs of security of cryptographic primitives that use hash functions. But there

is absolutely no formal proof that any hash function actually provides its purported

cryptographic properties. Design of hash functions is a black art. Techniques such as

the “sponge construction” [40] are heuristically motivated, but heuristic motivation is

not formal proof.

Two criteria can be used to choose a hash function: the amount of trust in the designers

of the algorithm, and the amount of scrutiny that the algorithm has received.

NIST has standardized three families of cryptographic hash functions SHA-1, SHA-2 and

SHA-3, where SHA means Secure Hash Algorithm [41]. SHA-1 consists of a single

function, which has now been deprecated. SHA-2 [42] includes SHA-224, SHA-256,

SHA-384, SHA-512, SHA-512/224, and SHA-512/256. It was published in 2002, but it

has not been deprecated and SHA-256 is still widely used today. SHA-3 [43] includes

SHA3-224, SHA3-256, SHA3-384, and SHA3-512.

Can NIST be trusted? There were reasons not to trust it after Snowden revealed the

presence of a backdoor in Dual-EC-DRBG, an algorithm for deterministic random bit

generation that the NSA has supplied to NIST and NIST had added to the original

version of SP 800-90A. A description of the backdoor and references to the incident can
be found in [44].

A deterministic random bit generator, like a hash function, is something that cannot be

formally verified. And SHA-2 was designed by the NSA. SHA-3, on the other hand, is

part of Keccak [45], which won the “SHA-3” Cryptographic Hash Algorithm Competition

in 2012. Therefore, by the trust criterion, SHA-3 should clearly be preferred over SHA-

2. On the other hand, SHA-2 has been used and scrutinized since 2002, and Keccak is

more recent, having published in 2008. But then, as the winner of the competition, it

has certainly received a fair share of scrutiny. So, either one is a reasonable choice.

2.2.1.3 Structured cryptographic digests: lists, chains, trees

Page 21 of 36

Page 21 of 36

A hash function can compute digests of very large data structures encoded as bit strings.

But very large data structures do not come into life as bit strings all at once. They grow

over time as structured data, and it is desirable to maintain a digest that is

incrementally updated with as the data grows. Structured digests such as hash lists,

hash chains and hash trees make that possible.

For example, a bitcoin blockchain is a chain of blocks [46]. When a new block is mined,

it has a link to the previous one and a hash that covers the transactions in the block and

the link to the previous block. The hash of the last block thus serves as a digest of entire

blockchain.

As another example, Ethereum keeps all its transactions in a kind of hash tree called a

Merkle Patricia Trie (sic) [47], which is very large but can be updated efficiently when a

new transaction is created.

Structured digests also make it possible to implement selective disclosure credentials

by hiding data. For example, a credential can contain a list of user attributes and a
parallel list of digests of those attributes. The issuer signs over the digests, which the

user presents to the verifier along with the attributes that it wants to disclose. We shall

see in Chapter 3 how this technique is used in SD-JWT credentials.

The earliest kind of structured digest was the Merkle tree, invented and patented by

Ralph Merkle in 1979 [48]. A Merkle tree is a binary tree where each internal node is

labelled by the hash of the concatenation of the hashes of its two children, while each

leaf node is labelled by the hash of a data block. The purpose of the tree is to allow a

prover to demonstrate to a verifier that the data blocks are linked to the tree, by the

presence of their hashes as labels of the leaf nodes.

The tree is balanced, so the number of data blocks is 𝑛 = 2𝑑, where d is the depth of the

tree, defined as the number of nodes in the path from the root to a leaf node, not

including the root. To prove that a data block is linked to a leaf node, the prover sends

to the verifier the label of the root and the labels of the siblings of the nodes in the path.

Besides computing the hash of the data block, the verifier only needs to compute the

hashes of the 𝑑 = log2𝑛 nodes in the path with its siblings. By contrast, if the nodes

were chained together as in the bitcoin blockchain the verifier would have to compute n

hashes.

A Merkle tree has no indication of its depth, so shortening a tree of depth greater than d

by removing the nodes at depth greater than d results in a different tree with the same

root label. The label of a node at depth d is the hash of the concatenation of the labels its

children in the original tree, which have been removed in the shorter tree. But the
concatenation of two labels is a valid data block, so the node at depth d is now a valid

leaf node. Shortening the tree is sometimes referred to as a “second preimage” attack,

but this is incorrect terminology, since the hash function that computes the label of the

node at depth d does not have two preimages, it has one preimage which is viewed

differently in the two trees.

Page 22 of 36

Page 22 of 36

In any case, the only practical consequence of a shortening attack could be to remove

evidence that the victim has recorded documents by linking them to the tree. This could

be a concern in Certificate Transparency, where Merkle trees are used as append-only

certificate logs. The Certificate Transparency standard solves the problem by

prepending a byte to the input to the hash function and using different bytes in leaf

nodes and internal nodes [49, §2.1.1].

In Chapter 11 we shall see how a very different kind of hash tree, called a typed hash

tree, can be used to construct fusion credentials that support authentication with

multiple authentication factors, with selective disclosure of attributes and selective

presentation of authentication factors.

2.2.2 Symmetric signatures and HMAC

A hash-based message authentication code (HMAC) [50] is a kind of message

authentication code (MAC) [51] commonly used as a symmetric signature. As we shall

see in Chapter 13, an HMAC is also being used, in combination with key agreement using

a static ECDH key, to produce an “ECDH-agreed MAC” usable as a repudiable asymmetric

signature.

The simplest method of combining a secret key K with a message M to produce a MAC

using a hash function H is to hash the concatenation of the key and the message, i.e. to

compute
Mac(𝐾,𝑀) = 𝐻(𝐾|𝑀),

where the vertical bar denotes concatenation. But this method is vulnerable to the

length-extension attack described in Section 2.2.2.2 if the hash function is based on the

Merkle–Damgård construction described in Section 2.2.2.1 and omits the optional

“finalization step” of the construction. As we shall see, the hash functions most used

today are based on the Merkle–Damgård construction and do omit the finalization step.

The method used by HMAC to combine K and M, described below in Section 2.2.2.3, is

not vulnerable to the attack.

2.2.2.1 The Merkle–Damgård construction

As described and illustrated in [52], a hash function based on the Merkle–Damgård

construction adds length padding to the message, breaks the padded message into

equal-sized blocks, and executes a loop that uses a compression function to merge each

block into a hash.

The initial value of the hash is an initialization vector (IV) specified by the definition of

the hash function. The final value is output as the value of the function or fed into an

optional finalization step. In the SHA-2 family of hash functions [42], the finalization

step is used by the functions that truncate their output, i.e. SHA-224, SHA-384, SHA-

Page 23 of 36

Page 23 of 36

512/224 and SHA-512/256; but it is omitted by the main functions, SHA-256 and SHA-

512.

2.2.2.2 The length extension attack

The length extension attack can allow an attacker to use a signature computed with a

symmetric key K by the victim of the attack to forge a signature on a different message

verifiable with the key K, potentially allowing the attacker to impersonate the victim

vis-à-vis a relying party if the relying uses possession of the key as an authentication
factor. The attack is potentially usable against authentication with a static ECDH

credential by using an ECDH-agreed MAC.

It is a complicated attack, but the essence of it can be easier to understood if we simplify

the Merkle–Damgård construction by assuming that the initial vector IV and the length

padding LP are blocks of same size as the message blocks. The loop of calls to the

compression function can then be modelled as a function Loop that takes as inputs a

block i to be used as initialization vector and a sequence of blocks m, and has the

following “loop continuation” property: for every block i and sequences of blocks m, m’,

𝐿𝑜𝑜𝑝(𝑖,𝑚|𝑚′) = 𝐿𝑜𝑜𝑝(𝐿𝑜𝑜𝑝(𝑖,𝑚),𝑚′)

where | denotes concatenation of block sequences. We can also define: a function LP

that takes as input sequence of blocks m and returns a single block
 𝐿𝑃(𝑚)

that encodes the length of m; a function Hash that takes as input a sequence m and

returns

Hash(𝑚) = Loop(𝐼V,𝑚|𝐿𝑃(𝑚)),

where IV is the initialization vector specified by the definition of the hash function; and

a function Mac that takes as inputs key k and a sequence of blocks m and returns

 𝑀𝑎𝑐(𝑘,𝑚) = 𝐻𝑎𝑠ℎ(𝑘|𝑚).

Suppose the party in legitimate possession of a key K has used it to compute a

symmetric signature
 𝑆 = 𝑀𝑎𝑐(𝐾,𝑀)

and we (the attackers) have obtained the signature S and the message M, but not K.

To forge a signature 𝑆′ we are going to take advantage of the loop continuation property

of the compression loop by using the legitimate signature S instead of IV as initialization

vector. Let 𝑀′ be a sequence of blocks that we intend to construct. Then

 𝑆′ = 𝐿𝑜𝑜𝑝(𝑆,𝑀′)

 = 𝐿𝑜𝑜𝑝(𝑀𝑎𝑐(𝐾,𝑀),𝑀′)

= 𝐿𝑜𝑜𝑝(𝐻𝑎𝑠ℎ(𝐾 | 𝑀),𝑀′)

= 𝐿𝑜𝑜𝑝(𝐿𝑜𝑜𝑝(𝐼𝑉, 𝐾 | 𝑀 | 𝐿𝑃(𝐾|𝑀)),𝑀′)

= 𝐿𝑜𝑜𝑝(𝐼𝑉, 𝐾 | 𝑀 | 𝐿𝑃(𝐾 | 𝑀) | 𝑀′)
Now we can use any sequence of blocks 𝑀′′ to construct 𝑀′ as

𝑀′ = 𝑀" | 𝐿𝑃(𝐾 | 𝑀 | 𝐿𝑃(𝐾 | 𝑀) | 𝑀").

Then

Page 24 of 36

Page 24 of 36

𝑆′ = 𝐿𝑜𝑜𝑝(𝐼𝑉, 𝐾 | 𝑀 | 𝐿𝑃(𝐾 | 𝑀) | 𝑀′′ | 𝐿𝑃(𝐾 | 𝑀 | 𝐿𝑃(𝐾 | 𝑀) | 𝑀′′))

= 𝐻𝑎𝑠ℎ(𝐾 | 𝑀 | 𝐿𝑃(𝐾 | 𝑀) | 𝑀′′)

= 𝑀𝑎𝑐(𝐾,𝑀 |𝐿𝑃(𝐾 | 𝑀) | 𝑀′′)

And if we let

𝑀′′′ = 𝑀 | 𝐿𝑃(𝐾 | 𝑀) | 𝑀′′

we have

𝑆′ = 𝑀𝑎𝑐(𝐾,𝑀′′′),

which is a verifiable signature.

2.2.2.3 How HMAC avoids the length extension attack

The MAC algorithm that we have shown to be vulnerable to the length extension attack

is the very simple

 𝑀𝐴𝐶(𝐾,𝑀) = 𝐻𝑎𝑠ℎ(𝐾|𝑀)

As specified in [50], HMAC computes instead

 𝐻𝑀𝐴𝐶(𝐾,𝑀) = 𝐻𝑎𝑠ℎ(𝐾 𝑋𝑂𝑅 𝑜𝑝𝑎𝑑 | 𝐻𝑎𝑠ℎ(𝐾 𝑋𝑂𝑅 𝑖𝑝𝑎𝑑) | 𝑀))

where the length of K is adjusted by adding zeros to be equal to the byte-length B of

message blocks, and ipad and opad are the bytes 0x36 and 0x5C repeated B times.

Clearly, this construction is not vulnerable to the length extension attack, as the output

of the compression loop of the inner hash function is hashed by the outer hash function.

Besides avoiding the length extension attack, the HMAC design also addresses weakness

of earlier constructions such as

 𝑀𝐴𝐶(𝐾,𝑀) = 𝐻𝑎𝑠ℎ(𝐾 | 𝑀 | 𝐾).

The purpose of the ipad and the opad is to use different keys in the inner and outer

hashes.

A rationale for the design can be found in [53].

2.2.2.4 Should HMAC be used with SHA-3?

HMAC is designed to be usable with any hash function. However, its purpose is to

address weaknesses of hash functions that could affect the security of MAC

constructions, such as the loop continuation property of the Merkle–Damgård

construction.

As we saw in Section 2.2.1.2, SHA-3 is part of Keccak, which uses the sponge

construction instead of the Merkle-Damgård construction. The sponge construction has

no known vulnerabilities at this time, so it may not be necessary to use HMAC with SHA-

3. It may instead by OK to compute a MAC as

 𝑀𝐴𝐶(𝐾,𝑀) = 𝐻𝑎𝑠ℎ(𝐾 | 𝑀),

which would be more efficient than the nested hashing of HMAC.

Page 25 of 36

Page 25 of 36

The design and security section of the Keccak.team web site states that “Unlike SHA-1

and SHA-2, Keccak does not have the length-extension weakness, hence does not need

the HMAC nested construction. Instead, MAC computation can be performed by simply

prepending the message with the key.” This is a fair statement. But the fact that the

sponge construction does not have known weaknesses at this time does not mean that

weakness will not be found in the future. The HMAC construction adds a strong layer to

of security to the security provided by the underlying has function. And defense-in-

depth is a good security principle. So, if performance is not an overriding concern, it

may be a good idea to use HMAC with SHA-3.

2.2.3 Asymmetric signature schemes

An asymmetric signature scheme consists of a key generation algorithm, a signing

algorithm, and a verification algorithm. The key generation algorithm produces a

private key and a public key. (In cryptography, the private key is called a secret key, but

in technology the term private key is more commonly used.) The signing algorithm

takes as inputs the private key and a message, and outputs a signature. The verification

algorithm takes as inputs the public key, a message and a purported signature and

produces a Boolean output, either “true” to accept the signature, or “false” to reject it.

A formal definition of an asymmetric signature scheme using the system
parameterization methodology discussed in Section 2.1.5 can be found in [1, §13.1].

An asymmetric signature scheme is deemed secure against chosen message attack if an

adversary that uses an efficient algorithm has a negligible probability of outputting a

forgery after repeatedly asking a challenger who knows the private key for signatures of

messages chosen by the adversary. Definitions of “efficient algorithm” and “negligible

probability” in the context of system parameterization can be found in Section 2.1.5.

There is no explicit limit on the number of queries that the adversary can make, only an

implicit limit due to the fact that the running time of the algorithm used by the

adversary is polynomial in the security parameter, and making queries takes time.

2.2.3.1 EUF-CMA vs SUF-CMA security

Two definitions of “forgery” can be used in conjunction with the above definition of

security [54]. In the most commonly used definition, a forgery is a signature on a

message that has not been submitted in a query to the challenger. A signature on a

message submitted in a query that is different from the signature in the response to the

query is not deemed a forgery. Security with this definition of forgery is called

existential unforgeability under chosen message attack (EUF-CMA). A malleable

signature scheme where an adversary can modify a signature without knowing the

private key may qualify as providing EUF-CMA security.

In the alternative definition, a forgery is a message-signature pair that has not been

returned by the challenger in response to a query. Security with this definition of

Page 26 of 36

Page 26 of 36

forgery is called strong existential unforgeability under chosen message attack (SUF-

CMA). A malleable signature scheme where an adversary can modify a signature

without knowing the private key does not qualify as providing EUF-CMA security.

Formal definitions of EUF-CMA and SUF-CMA in the context of system parameterization

can be found in [1, §13.1.1].

We shall see in Section 2.2.3.3.3 that ECDSA is not SUF-CMA secure.

2.2.3.2 Discrete-log signature schemes in cyclic groups

The use of the discrete log assumption as the basis for the construction of asymmetric

signatures originated with Schnorr’s signature scheme [55], which was followed by

NIST’s Digital Signature Algorithm (DSA), now deprecated [18, §4]. Boneh and Shoup

[1, §19.3] attribute the choice by NIST of the “more ad-hoc” DSA as the US federal

signature standard to the fact that Schnorr signatures were patent-protected. Schnorr

and DSA signatures both rely on the difficulty of computing discrete logs in a Schnorr

group, i.e. in a prime order subgroup of the multiplicate group of the field ℤ𝑝
∗ . The

security strength provided by the discrete log assumption in a Schnorr group is

discussed above in Section 2.1.3.2.3.

NIST later ported DSA from Schnorr groups to groups of points of elliptic curves and

referred to the resulting signature scheme as ECDSA. The original version of ECDSA in

FIPS 186-4 [42, §6] required the use of NIST-recommended curves, listed in Appendix

D, that included Koblitz curves over binary fields and Weierstrass curves over prime

fields with cofactor 1, i.e. with groups of points of prime order. Curves over binary

fields have now been deprecated generally in cryptography at large, but NIST’s curves

P-256, P-384 and P-521, a.k.a. secp256r1, secp384r1 and secp521r1, are commonly

used today. The security strength provided by the discrete log assumption in elliptic

curve groups is discussed above in Section 2.1.3.2.4.

More recently, Bernstein and colleagues have designed a higher performance signature

scheme called EdDSA [56] [57] that has been published by the IETF in the informational
RFC 8032 [58] and standardized by NIST in FIPS 186-5 [18, §7]. EdDSA has two

variants, Ed25519 and Ed448, which use two twisted Edwards curves, called

Edwards25519 [59, §3.2.3.1] and Edwards448 [59, §3.2.3.2], that are birationally

equivalent to the Montgomery curves Curve25519 (discussed above in Section

2.1.5.6.2) and Curve 448.

In the latest version of ECDSA [18, §6], the list of recommended curves, now published

in SP 800-186 [59], includes the Montgomery curves Curve25519 and Curve448, the

twisted Edwards curves Edwards25519 and Edwards448, and mappings of Curve25519

and Curve448 to the short Weierstrass model. ECDSA has also incorporated as an

option a feature found in EdDSA, viz. the deterministic generation of the per-message

secret.

Page 27 of 36

Page 27 of 36

2.2.3.2.1 Unified notation for facilitating comparison of different

discrete log signature schemes

To facilitate comparisons between schemes, the following notations and conventions

are used throughout Sections 2.2.3.2.2-4:

• G is a cyclic group and H is a subgroup of G of prime order q.

• Departing from tradition, but following [1, §19.3], we use multiplicative notation

for all groups, even for groups of points of elliptic curves. Elements of ℤ𝑞 are still

called scalars, and operation of a scalar on a group element is called scalar

exponentiation.

• h is a function that takes multiple arguments, converts them to bit strings,

concatenates the bit strings, and applies a cryptographic hash function to the

concatenation.

• In DSA and ECDSA, s is a function takes as argument an element of G and returns

a scalar.

• Upper-case variables denote group elements; in particular, G always denotes a

generator of H.

• The lower-case variable m always denotes the message to be signed, and other

lower-case variables denote scalars or other integers.

• All operations on lower case variables take place in ℤ𝑞, i.e. they are performed

modulo q.

2.2.3.2.2 The Schnorr signature scheme

Parameters

• G is ℤ𝑝
∗ , the multiplicative group of integers modulo a prime p.

• H is the unique subgroup of G of order q, where q is a large prime that divides

𝑝 − 1; 𝑖. 𝑒., H is what is now called a Schnorr group. But Schnorr’s paper [55]

mentions the possibility of using elliptic curve groups.

• G is an agreed-upon generator of H. The cofactor clearing of Theorem 15 can be

used to construct a generator, and the membership test of Theorem 14 can be

used to verify that a purported generator of H is indeed in H.

• h is an unspecified cryptographic hash function, which must be a one-way

function. Schnorr argues that it may not need to be collision resistant.

Key pair generation

1. Generate a random scalar d ∈ ℤ𝑞 to be used as the private key.

2. Compute the public key 𝑄 = 𝐺−𝑑.

Signature generation

1. Let m be the message to be signed.

2. Generate a random scalar 𝑟 ∈ ℤ𝑞.

Page 28 of 36

Page 28 of 36

3. Compute 𝑅 = 𝐺𝑟.

4. Compute 𝑒 = h(𝑅,𝑚).

5. Compute s = r + de.

6. The signature is (𝑒, 𝑠).

Signature verification

1. Validate the verification equation

Verification equation

e = h(𝐺𝑠𝑄𝑒, 𝑚)

Proof of correctness

(Reasoning backwards from the verification equation)

𝑒 ≟ 𝐡(𝐺𝑠𝑄𝑒, 𝑚)

Expanding e: 𝒉(𝑅,𝑚) ≟ 𝒉(𝐺𝑠𝑄𝑒, 𝑚)

 𝑅 ≟ 𝐺𝑠𝑄𝑒

Expanding R: 𝐺𝑟 ≟ 𝐺𝑠𝑄𝑒

Expanding s: 𝐺𝑟 ≟ 𝐺𝑟+𝑑𝑒𝑄𝑒

Expanding Q: 𝐺𝑟 ≟ 𝐺𝑟+𝑑𝑒𝐺−𝑑𝑒

Simplifying: 𝐺𝑟 = 𝐺𝑟

2.2.3.2.3 DSA and ECDSA

DSA and ECDSA have different parameters but, in the unified notation, the specifications

of their algorithms for key pair generation, signature generation and signature

verification are identical.

DSA parameters

• As in the Schnorr signature scheme, G is ℤ𝑝
∗ , the multiplicative group of integers

modulo a prime p, and H is the unique subgroup of G of order q, where q is a

large prime that divides 𝑝 − 1. H is thus a Schnorr group.

• As in the Schnorr scheme, G is an agreed-upon generator of H. The cofactor

clearing of Theorem 15 can be used to construct a generator, and the

membership test of Theorem 14 can be used to verify that a purported generator

of H is indeed in H.

• h is a NIST-approved hash function.

• The function s takes as input an element of ℤ𝑝
∗ , i.e. a congruence class of integers

modulo p, obtains the representative of the class in the interval [0, 𝑝) by reducing

any other representative modulo p, and reduces the result modulo q.

ECDSA parameters

Page 29 of 36

Page 29 of 36

• G is the group of points of one of the NIST-recommended curves listed in [59].

Curves over binary fields are listed but deprecated.

• H is a subgroup of G of prime order q. The cofactor of H in G is 1 in the original

prime-field curves P-192 (now deprecated), P-224, P-256, P-384 and P-521. The

cofactor is 8 in Edwards25519, Curve25519 and W-25519, and 4 in Edwards448,

Curve448 andW-448. Although Curve25519, W-25519, Curve448 and W-448 are

listed in [59], they are qualified as “alternative representations included for

implementation flexibility” that are “not to be used for ECDSA or EdDSA

directly”. The curves Edwards25519 and Edwards411, also used in EdDSA, do

not have any qualifications or restrictions.

• G is an agreed-upon base point of the curve, stipulated by the curve specification.

• h is a NIST-approved hash function.

• The function s takes as input an element of G, which is a point of an elliptic curve

over a prime field 𝔽𝑝, obtains the x coordinate of that point, which is an element

of 𝔽𝑝, i.e. of a congruence class of integers modulo p, obtains the representative

of that class in the interval [0, 𝑝) by reducing modulo p any other representative,

and reduces the result modulo q. We shall see below how the use of the x

coordinate to map a point to a scalar causes ECDSA to lack SUF-CMA security.

DSA and ECDSA key pair generation

1. Generate a random scalar d ∈ ℤ𝑞 to be used as the private key.

2. Compute the public key 𝑄 = 𝐺𝑑.

DSA and ECDSA signature generation

1. Let m be the message to be signed.

2. Generate a per-message secret k ∈ ℤ𝑞 , either at random as specified in [18,

§A.3.1] or [18, §A.3.2], or deterministically by deriving it from the private key

and the message as specified in [18, §A.3.3].

3. Compute 𝑅 = 𝐺𝑘.

4. Compute r = s(𝑅)

5. Compute s = 𝑘−1(ℎ(𝑚) + 𝑑𝑟)

6. The signature is (𝑟, 𝑠)

DSA and ECDSA signature verification

1. Compute u = h(𝑚)𝑠−1

2. Compute 𝑣 = 𝑟𝑠−1

3. Compute 𝑅′ = 𝐺𝑢𝑄𝑣

4. Compute 𝑟′ = s(𝑅′)

5. Validate the verification equation

Verification equation

𝑟 = 𝑟′

Page 30 of 36

Page 30 of 36

Proof of correctness

(Reasoning backwards from the verification equation)

 𝑟 ≟ 𝑟′

Expanding r and r’: 𝒔(𝑅) ≟ 𝒔(𝑅′)

 𝑅 ≟ 𝑅′

Expanding R and 𝑅′: 𝐺𝑘 ≟ 𝐺𝑢𝑄𝑣

Expanding Q: 𝐺𝑘 ≟ 𝐺𝑢𝐺𝑑𝑣

Expanding u and v: 𝐺𝑘 ≟ 𝐺𝒉(𝑚)𝑠
−1
𝐺𝑑𝑟𝑠

−1

Grouping: 𝐺𝑘 ≟ 𝐺(ℎ(𝑚)+𝑑𝑟)𝑠
−1

Expanding s: 𝐺𝑘 ≟ 𝐺
(𝒉(𝑚)+𝑑𝑟)(𝑘−1(𝒉(𝑚)+𝑑𝑟))

−1

Simplifying: 𝐺𝑘 = 𝐺𝑘

Remark: ECDSA lacks SUF-CMA

The distinction between EUF-CMA and SUF-CMA is explained above in Section 2.2.3.1.

ECDSA lacks SUF-CMA security because −𝑠 can be substituted for s in the signature

verification process without causing the process to fail. The substitution causes step 1

to produce −𝑢, step 2 to produce −𝑣, and step 3 to produce (𝑅′)−1. And 𝑠(𝑅′) =

𝑠((𝑅′)−1) because 𝑅′ and (𝑅′)−1 are symmetric across the x axis (remember we are

using multiplicative notation for the group of points), and thus have the same x

coordinate.

2.2.3.4 EdDSA

EdDSA has a variant called Ed25519 that uses the curve Edwards25519 and a variant

called Ed448 that uses the curve Edwards448. Here we describe the Ed25519 variant.

Information about the Ed448 variant can be found in the EdDSA specification at [18, §7]

and inRFC 8032 [58].

2.2.3.4.1 Cofactor clearing and clamping

Edwards25519 is not an elliptic curve of prime order. Its group has a subgroup of

prime order with cofactor 8. This motivates two controversial features of the EdDSA

specification:

1. In the verification equation as specified in [56], the cofactor is cleared from the

group elements (by multiplying them by 8 in additive notation). However, this is

not necessary because the equation with cofactor clearing is implied by the by
the equation without cofactor clearing. That cofactor clearing is unnecessary is

acknowledged in RFC 8302 [58, §8.3] and the NIST specification [18, §7.7], so we

do not include cofactor clearing in the signature verification algorithm specified

below

2. The private key, represented as a 32-octet little-endian integer, is multiplied by 8

by setting the first three bits of the first octet to zero, as part of a bitwise

Page 31 of 36

Page 31 of 36

operation called clamping that also includes setting the last bit of the last octet to

zero and the second to last bit of the last octet to one. The purpose of clamping is

not explained in the specification, and it is argued in [60, §4.2.3] that it may not

be necessary. We do include the clamping step in the signature generation

algorithm below.

2.2.3.4.2 Generation of the private key and the per-message secret

In Ed25519, the per-message secret is generated deterministically by calling SHA-512
on the concatenation of a 32-octed string called hdigest2 and the message itself. The

string hdigest2 is the right half of a 64-octet string that is the result of calling SHA-512

on a 32-octet root secret. The left half of the 64-octed string, called hdigest1, is

clamped, and the result of the clamping, treated as a little-endian integer, is used as the

exponent of a scalar exponentiation on the base point of the curve to obtain the public

key.

In [56], Bernstein et al. refer to the root secret as the “secret key”, and RFC 8032 [58]

and NIST [18, §7] equivalently refer to it as the “private key”. This is an unfortunate

choice of terminology. The root secret is not what is clamped, is not the discrete log of

the public key, and is not the analog of the private key of ECDSA and the Schnorr

signature scheme; hence it should not be called the secret or private key. When such
terminology is used, EdDSA seems radically different from ECDSA and the Schnorr

signature scheme, when in fact it is derived from Schnorr and very similar to ECDSA.

Following Brendel et al. [60], we use instead the term “private key” and the variable

name d to refer to the result of the clamping.

2.2.3.4.3 The Ed25519 signature scheme

Parameters

• G is the group of points of the curve Edwards25519 specified in [59, §3.2.3.1]

• H is the subgroup of G of prime order
2252 x14def9de a2f79cd6 5812631a 5cf5d3ed,

whose cofactor in G is 8.

• G is the base point with x coordinate
0x216936d3 cd6e53fe c0a4e231 fdd6dc5c 692cc760 9525a7b2 c9562d60 8f25d51a

and y coordinate
0x66666666 66666666 66666666 66666666 66666666 66666666 66666666 66666658.

• h is SHA-512.

Key pair generation

1. Generate a random 32-octet string to be used as the root secret w.

2. Compute the private key 𝑑 = 𝑐𝑙𝑎𝑚𝑝 (𝑙𝑒𝑓𝑡ℎ𝑎𝑙𝑓(ℎ(𝑤))).

3. Compute the public key 𝑄 = 𝐺𝑑.

Page 32 of 36

Page 32 of 36

Deterministic generation of the per-message secret

1. Compute the per-message secret 𝑟 = ℎ(𝑟𝑖𝑔ℎ𝑡ℎ𝑎𝑙𝑓(ℎ(𝑤)), 𝑚).

Signature generation

1. Compute 𝑅 = 𝐺𝑟.

2. Compute 𝑠 = 𝑟 + ℎ(𝑅, 𝑄,𝑚)𝑑.

3. The signature is (𝑅, 𝑠).

Signature verification

1. Validate the verification equation.

Verification equation

 𝐺𝑠 = 𝑅𝑄ℎ(𝑅,𝑄,𝑚)

Proof of correctness

(Reasoning backwards from the verification equation)

 𝐺𝑠 ≟ 𝑅𝑄𝒉(𝑅,𝑄,𝑚)

Expanding R and Q: 𝐺𝑠 ≟ 𝐺𝑟𝐺𝑑𝒉(𝑅,𝑄,𝑚)

Expanding s: 𝐺𝑟+ℎ(𝑅,𝑄,𝑚)𝑑 ≟ 𝐺𝑟𝐺𝑑𝒉(𝑅,𝑄,𝑚)

Rearranging: 𝐺𝑟+ℎ(𝑅,𝑄,𝑚)𝑑 = 𝐺𝑟+ℎ(𝑅,𝑄,𝑚)𝑑

References

[1] D. Boneh and V. Shoup, “A Graduate Course in Applied Cryptography,” 2024.

[Online]. Available: https://toc.cryptobook.us/

[2] S. C. Pohlig and M. E. Hellman, "An Improved Algorithm for Computing Discrete

Logarithms in GF(p) and Its Cryptographic Significance," IEEE Transactions on

Information Theory, vol. 24, no. 1, pp. 106-110, 1978.

[3] A. J. Menezes et al, Handbook of Applied Cryptography, CRC Press, 1997.

[4] C. H. Lim and P. J. Lee, "A key recovery attack on discrete log-based schemes using a

prime order subgroup," in Advances in Cryptology --- Crypto'97, 1997.

[5] Law, L et al., "An Efficient Protocol for Authenticated Key Agreement," Designs,

Codes and Cryptography, vol. 28, pp. 119-134, March 2003.

[6] R. Zucherato, "RFC 2785: Methods for Avoiding the "Small-Subgroup" Attacks on the

Diffie-Hellman Key Agreement Method for S/MIME," 2000.

https://toc.cryptobook.us/

Page 33 of 36

Page 33 of 36

[7] NIST Information Technology Laboratory, CSRC, “Glossary: Security Strength,”

[Online]. Available: https://csrc.nist.gov/glossary/term/security_strength

[8] E. Barker, “NIST SP 800-57 Part 1 Rev. 5: Recommendation for Key Management,”

[Online]. Available:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

[9] E. Barker et al, “NIST SP 800-56A Rev. 3: Recommendation for Pair-Wise Key-

Establishment Schemes Using Discrete Logarithm Cryptography,” [Online]. Available:

https://csrc.nist.gov/pubs/sp/800/56/a/r3/final

[10] J. Rotman, Galois theory, New York: Springer, 1998.

[11] H. R. Haarberg, “The Number Field Sieve for Discrete Logarithms,” Norwegian

University of Science and Technology, Department of Mathematical Sciences, 2016.

[Online]. Available: https://ntnuopen.ntnu.no/ntnu-

xmlui/bitstream/handle/11250/2394427/14190_FULLTEXT.pdf

[12] A. Joux et al, “The Number Field Sieve in the Medium Prime Case,” 2006. [Online].

Available: https://www.iacr.org/archive/crypto2006/41170323/41170323.pdf

[13] Wikipedia, “L-notation,” [Online]. Available: https://en.wikipedia.org/wiki/L-

notation

[14] McCann, “Asymptotic Notation: O(), o(), Ω(), ω(), and Θ(),” 2009. [Online].

Available: https://www2.cs.arizona.edu/classes/cs345/summer14/files/bigO.pdf

[15] D. Adrian et al, “Weak Diffie-Hellman and the Logjam Attack,” [Online]. Available:

https://weakdh.org/

[16] D. Adrian and others, “Imperfect Forward Secrecy: How Diffie-Hellman Fails in

Practice,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, 2015.

[17] E. Ronen and A. Shamir, “Critical Review of Imperfect Forward Secrecy,” [Online].

Available:

https://web.archive.org/web/20211211100114/https:/www.wisdom.weizmann.ac.il/

~eyalro/RonenShamirDhReview.pdf

[18] NIST Information Technology Laboratory, “FIPS 186-5: Digital Signature Standard
(DSS),” [Online]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-

5.pdf

[19] J. M. Pollard, “Monte Carlo methods for index computation (mod p),” in Math.

Comp. 32 (1978), 918-924

https://csrc.nist.gov/glossary/term/security_strength
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2394427/14190_FULLTEXT.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2394427/14190_FULLTEXT.pdf
https://www.iacr.org/archive/crypto2006/41170323/41170323.pdf
https://en.wikipedia.org/wiki/L-notation
https://en.wikipedia.org/wiki/L-notation
https://www2.cs.arizona.edu/classes/cs345/summer14/files/bigO.pdf
https://weakdh.org/
https://web.archive.org/web/20211211100114/https:/www.wisdom.weizmann.ac.il/~eyalro/RonenShamirDhReview.pdf
https://web.archive.org/web/20211211100114/https:/www.wisdom.weizmann.ac.il/~eyalro/RonenShamirDhReview.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

Page 34 of 36

Page 34 of 36

[20] “Safe Curves: choosing safe curves for elliptic-curve cryptography,” [Online].

Available: https://safecurves.cr.yp.to/.

[21] D. Hankerson et al, Guide to Elliptic Curve Cryptography, Springer-Verlag, 2004.

[22] L. C. Washington, Elliptic Curves, Number Theory and Cryptography, CRC Press,

2008.

[23] Wikibooks, "Cryptography/Prime Curve/Standard Projective Coordinates,"

[Online]. Available:

https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Standard_Projective_Coord

inates.

[24] Wikibooks, "Cryptography/Prime Curve/Jacobian Coordinates," [Online].

Available:

https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates.

[25] Wikibooks, "Cryptography/Prime Curve/Affine Coordinates," [Online]. Available:

https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Affine_Coordinates.

[26] I. R. Shafarevich, Basic Algebraic Geometry, Book 1: Varieties in Projective Space,

Third Edition, Springer, 2013.

[27] P. L. Montgomery, "Speeding the Pollard and Elliptic Curve Methods," Mathematics

of Computation, vol. 48, no. 177, pp. 243-264, 1987.

[28] H. M. Edwards, "A normal form for ellliptic curves," Bulletin of the American

Mathematical Society, vol. 44, pp. 393-422, 2007.

[29] D. J. Bernstein, "Curve25519: New Diffie-Hellman Speed Records," in Public Key

Cryptography - PKC 2006.

[30] D. J. Bernstein and T. Lange, "Faster Addition and Doubling on Elliptic Curves," in

Advances in Cryptology – ASIACRYPT 2007.

[31] D. J. Bernstein et al, "Twisted Edwards Curves," in Progress in Cryptology –

AFRICACRYPT 2008.

[32] C. Costello and B. Smith, "Montgomery curves and their arithmetic," J Cryptogr Eng,

vol. 8, pp. 227-240, September 2018.

[33] V. S. Miller, "Use of Elliptic Curves in Cryptography," in CRYPTO '85: Advances in

Cryptology, 1985.

[34] D. J. Bernstein, "25519 naming," 26 August 2014. [Online]. Available:

https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU/.

https://safecurves.cr.yp.to/
https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Standard_Projective_Coordinates
https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Standard_Projective_Coordinates
https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Affine_Coordinates

Page 35 of 36

Page 35 of 36

[35] D. Stebila and N. Thériault, "Unified Point Addition Formulæ and Side-Channel

Attacks," in Cryptographic Hardware and Embedded Systems - CHES 2006.

[36] P. C. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems," in Advances in Cryptology - CRYPTO '96.

[37] Kocher, P. et al, "Differential Power Analysis," in Advances in Cryptology —

CRYPTO’ 99.

[38] F. Corella and K. Lewison, "An Omission-Tolerant Cryptographic Checksum," 2019.

[Online]. Available: https://eprint.iacr.org/2019/192.

[39] Wikipedia, "Comparison of cryptographic hash functions," [Online]. Available:

https://en.wikipedia.org/wiki/Comparison_of_cryptographic_hash_functions.

[40] Guido Bertoni et al, "The sponge and duplex constructions," [Online]. Available:
https://keccak.team/sponge_duplex.html.

[41] NIST Information Technology Laboratory, "Hash Functions," [Online]. Available:

https://csrc.nist.gov/projects/hash-functions.

[42] NIST Information Technology Laboratory, "FIPS 180-4 Secure Hash Standard

(SHS)," 2015. [Online]. Available: https://csrc.nist.gov/pubs/fips/180-4/upd1/final.

[43] NIST Information Technology Laboratory, "SHA-3 Standard: Permutation-Based

Hash and Extendable-Output Functions," 2015. [Online]. Available:

https://csrc.nist.gov/pubs/fips/202/final.

[44] F. Corella, "Cryptographic Module Standards at a Crossroads after Snowden’s

Revelations - Repeating the Dual EC DRBG mistake," 12 November 2015. [Online].

[45] Guido Bertoni et al, "Keccak," [Online]. Available:

https://keccak.team/index.html.

[46] A. M. Antonopoulos, Mastering Bitcoin: Unlocking Digital Crypto-Currencies.,

O'Reilly Media, 2014.

[47] Ethereum, "Merkle Patricia Trie (sic)," [Online]. Available:

https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-
merkle-trie/.

[48] R. C. Merkle, "A Digital Signature Based on a Conventional Encryption Function," in

Advances in Cryptology – CRYPTO '87, 1988.

https://eprint.iacr.org/2019/192
https://csrc.nist.gov/projects/hash-functions
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/202/final
https://keccak.team/index.html

Page 36 of 36

Page 36 of 36

[49] B. Laurie et al, "RFC 9162: Certificate Transparency Version 2.0," 2021. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc9162.

[50] H. Krawczyk et al, "RFC 2104: HMAC: Keyed-Hashing for Message Authentication,"

[Online]. Available: https://datatracker.ietf.org/doc/html/rfc2104.

[51] NIST Information Technology Laboratory, "Glossary - Message Authentication Code

(MAC) algorithm," [Online]. Available:

https://csrc.nist.gov/glossary/term/message_authentication_code_algorithm.

[52] Wikipedia, "Merkle–Damgård construction," [Online]. Available:

htps://en.wikipedia.org/wiki/Merkle%E2%80%93Damg%C3%A5rd_construction.

[53] M. Bellare et al, "Message Authentication using Hash Functions— The HMAC

Construction," CryptoBytes, vol. 2, no. 1, 1996.

[54] M. Green, "EUF-CMA and SUF-CMA," [Online]. Available:

https://blog.cryptographyengineering.com/euf-cma-and-suf-cma/.

[55] C. P. Schnorr, "Efficient Signature Generation by Smart Cards," J. Cryptology, vol. 4,

p. 161–174, 1991.

[56] Bernstein, D. J. et al, "High-speed high-security signatures," Journal of

Cryptographic Engineering, vol. 2, no. 2, pp. 77-89, 2012.

[57] D. J. Bernstein, "EdDSA for more curves," 2016. [Online]. Available:

https://ed25519.cr.yp.to/eddsa-20150704.pdf.

[58] S. Josefsson and I. Liusvaara, "RFC 8032: Edwards-Curve Digital Signature

Algorithm (EdDSA)," January 2017. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc8032.

[59] Chen, L. et al, "NIST SP 800-186: Recommendations for Discrete Logarithm-based

Cryptography: Elliptic Curve Domain Parameters," February 2023. [Online]. Available:
https://csrc.nist.gov/pubs/sp/800/186/final.

[60] J. Brendel et al, "The Provable Security of Ed25519: Theory and Practice," in IEEE

Symposium on Security and Privacy, 2021.

https://datatracker.ietf.org/doc/html/rfc9162
https://datatracker.ietf.org/doc/html/rfc2104
https://csrc.nist.gov/glossary/term/message_authentication_code_algorithm
https://en.wikipedia.org/wiki/Merkle%E2%80%93Damg%C3%A5rd_construction
https://blog.cryptographyengineering.com/euf-cma-and-suf-cma/
https://ed25519.cr.yp.to/eddsa-20150704.pdf
https://datatracker.ietf.org/doc/html/rfc8032
https://csrc.nist.gov/pubs/sp/800/186/final

