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Work in progress 
 

This is an early draft of a chapter of a book on the foundations of cryptographic 

authentication being coauthored by Francisco Corella, Sukhi Chuhan and Veronica 

Wojnas.  Please send comments to the authors. 

 

3. Traditional credentials 
 

3.1 Using a key pair for challenge-response authentication 

 

3.2 Public key and attribute certificates 

 

3.3 Hash-of-public-key certificates 

 

3.4 Selective disclosure public key certificates 

 

3.5 From zero knowledge protocols to anonymous credentials 

 

Earlier in this chapter we have seen how cryptographic credentials enhance security by 

authenticating the subject of the credential based on knowledge of a secret that is 
generated in a cryptographic module and never leaves the module.  Then we have seen 

how selective disclosure credentials enhance privacy by only disclosing the user 

attributes that the relying party needs to know to provide access to resources.   

 

Anonymous credentials further enhance privacy by providing unlinkability of credential 

presentations.  The unlinkability feature of anonymous credentials is typically credited 

to zero knowledge protocols.  But how exactly do zero knowledge protocols relate to the 

unlinkability of anonymous credentials?  In this section we shall review a long chain of 

zero knowledge concepts leading from the original complexity-theoretic concept 

introduced by the paper for which Goldwasser, Micali and Rackoff received the Turing 

Award, "The knowledge complexity of interactive proof-systems" [1], to anonymous 
credentials as they are being specified today by the IRTF using pairings and BBS 

signatures [2].   At the end of the chain, we shall reach a surprising answer to this 

question. 

 

3.5.1 Zero knowledge (ZK) proof of a fact (PoF) 
 

The first zero knowledge concept in the chain is zero knowledge proof of a fact (ZK PoF) 

by means of an interactive proof system. 

 

https://www.linkedin.com/in/fcorella/
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An interactive proof system is a pair (𝑃, 𝑉) of interactive Turing machines that are 

configured to execute a protocol where P, the prover, convinces V, the verifier, that a 

common input s provided to P and V (encoded as a bit string) is an element of a 

language (a set of bit strings) L.  The prover is not required to be computationally 

bounded, but the definition requires V to be efficient, i.e. to run in probabilistic 

polynomial time.  A proof system is said to be complete if P has an overwhelming 

probability (as a function of the length of s) of convincing V that 𝑠 ∈ 𝐿 when that is 

indeed the case, and sound if a cheating prover 𝑃′ that may not follow the protocol has a 

negligible probability (also as a function of the length of L) of convincing the verifier V 

that follows the protocol when the fact is not true. 

 

Informally, an interactive proof system (𝑃, 𝑉) 𝑓𝑜𝑟 a fact 𝑠 ∈ 𝐿 is zero knowledge if a 

cheating verifier 𝑉′ verifier cannot efficiently compute anything by interacting with the 

prover P, which follows the protocol, that 𝑉′ could not have efficiently computed by 

itself without interacting with P. 

 

Anything that the cheating verifier 𝑉′ computes by interacting with P must be derived 
from the view that 𝑉′ has of the protocol, View𝑃,𝑉′(𝑠), defined as comprising the 

messages received from P and the random values that 𝑉′ generates itself during the 

interaction, known as its coin tosses, including public coin tosses generating messages 

that 𝑉′ sends to P as specified by the protocol, and private coin tosses generating 

random values that 𝑉′ uses itself without revealing them to P.  

Hence, we can formally say that the protocol is zero knowledge if for every interactive 

Turing machine 𝑉′ there exists an efficient (i.e. probabilistic polynomial time) Turing 

machine M, called a simulator, such that View𝑃,𝑉′(𝑠) can be computed as the output 𝑀(𝑠) 

of M on input s; or at least such that View𝑃,𝑉′ (𝑠) and 𝑀(𝑠) are indistinguishable as families 

of random variables indexed by 𝑠 ∈ 𝐿. 

There are three degrees of indistinguishability between two families of random 

variables such as View𝑃,𝑉′(𝑠) and 𝑀(𝑠) , and three corresponding degrees of zero 

knowledge.  In the above definition, the protocol is said to be: 

• Perfect zero knowledge if View𝑃,𝑉′ (𝑠) and 𝑀(𝑠) are perfectly indistinguishable, i.e. 

identical. 

• Statistical zero knowledge if View𝑃,𝑉′(𝑠) and 𝑀(𝑠) are statistically indistinguishable, 

which means, by definition, that their statistical distance, defined as the sum of the 

absolute differences |Prob[View𝑃,𝑉′(𝑠) = α] − Prob[𝑀(𝑠) = α]| when 𝛼 ranges 

over the possible values of the random variables, is negligible as a function of s. 

• Or computational zero knowledge if View𝑃,𝑉′(𝑠) and 𝑀(𝑠) are computationally 

indistinguishable, which means, by definition, that they cannot be distinguished 

by any efficient algorithm.  An efficient algorithm D attempting to distinguish 

𝑀(𝑠) from View𝑃,𝑉′(𝑠) is unable to do so, by definition, if the absolute difference 

between the probability that it outputs 1 when given as input 𝑀(𝑠) and the 

probability that it outputs 1 when given as input View𝑃,𝑉′(𝑠) is negligible as a 

function of s. 
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The use of perfect vs. statistical zero knowledge is discussed in the next section, and we 

shall encounter again the notion of computational indistinguishability in Section 3.5.4. 

 

3.5.1.1 Example: zero knowledge proof of quadratic residuosity 

 

There have many changes to the concept of zero knowledge since it was introduced in 

1985.  The original paper [1] did not use the word simulator, computational 

indistinguishability was defined in terms of poly-sized families of circuits, and 

algorithms were allowed to run in expected polynomial, something that is avoided 
today [3, §4.3.1.6].  Nevertheless, the paper has an excellent example of a zero 

knowledge proof of a fact that is very useful for two reasons.   First, as a typical example 

of an interactive proof system with a simple proof of soundness.  Second, because the 

proof of zero knowledge has an error, and the alternative proof that we provide below 

illustrates a key difference between the first two concepts in the chain of ZK concepts 

leading to anonymous credentials. 

 

The example that we are referring to is the zero knowledge interactive proof system for 

quadratic residuosity described in [1, §5].  To facilitate comparison with the paper, in 

this section we use the letters A and B rather than P and V to refer to the prover and the 

verifier. 

The language QR is defined in [1] as the set of pairs (𝑥, 𝑦) where x is a natural number 
and y is a quadratic residue modulo x.  We shall assume that 𝑥 > 1.  There are two 

definitions of the term quadratic residue.  In a more general definition, a quadratic 

residue is a positive integer y less than x that is congruent to a perfect square modulo x.  

A more restrictive definition requires y to be coprime with x, i.e. to be an element of the 

set ℤ𝑥
∗  defined in the paper as the set of integers coprime with x, greater than 1, and less 

than x.  A number theoretic result included in the paper without proof as Fact 4, which 

states that every quadratic residue modulo x has the same number of square roots (that 

number is 2), is needed for proving zero knowledge and does not hold with the more 

general definition.  So, we shall use the more restrictive definition, as the paper does.   

 

The protocol, which we shall call PQR, takes (𝑥, 𝑦) ∈ QR as common input and allows A 
to prove to B that y is a quadratic residue without revealing any modular square root of 

y.  This is achieved by executing the following four-step subprotocol a number of times 

equal to the bit-length m of x: 

1. A generates a random quadratic residue u modulo x and sends it to B. 

2. B halts if u is not coprime with x.  Otherwise, it generates a random bit b and 

sends it to A. 

3. A generates a random square root w of u modulo x if 𝑏 = 0, or a random square 

root w of 𝑢𝑦 modulo x if 𝑏 = 1, and sends w to B. 

4. B halts if w is not coprime with x.  Otherwise, it verifies that either 𝑏 = 0 and 

𝑤2 = 𝑢 mod 𝑥, or 𝑏 = 1 and 𝑤2 = 𝑢𝑦 mod 𝑥, and sends an end-of-subprotocol 
message with the value “reject” if verification fails, “accept” if verification has 

succeeded m times, or “continue” if it has succeeded less than m times. 
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Soundless and completeness 

The proof system is clearly complete.  If A knows that y is a quadratic residue modulo x, 

it should know a square root of y, and since it generates u in step 1, it should know a 

square root of u.  Hence it should be able to send as w a square root of u or a square root 

of 𝑢𝑦 to B in step 3 as required by the value of b received in step 2, and B should be able 

to use that w in step 4 to verify the appropriate verification equation and accept the 
proof. 

 

To see that it is sound, consider a cheating prover 𝐴′ that tries to prove to B that (𝑥, 𝑦) ∈

QR when y is NOT a quadratic residue modulo x.   

 

The u that 𝐴′ sends to B in step 1 of the subprotocol may or may not be a quadratic 

residue.  If it isn’t, the verification in step 4 will fail in the case where 𝑏 = 0, which will 

occur with probability 
1

2
 since B selects b at random.  If u is a quadratic residue, then 𝑢𝑦 

is not, and verification will fail in the case where 𝑏 = 1, which will also occur with 

probability 
1

2
.  Thus, in all cases, verification of the subprotocol will fail with probability 

1

2
.  Therefore, verification of the entire sequence of subprotocols can only succeed with 

probability at most  
1

2𝑚. 

 

Let l be the bitlength of the common input (𝑥, 𝑦).  We are assuming that y is not a 

quadratic residue modulo x, but if it were, it would be less than x.  Therefore, B should 

reject right away if 𝑙 > 2𝑚, so we can assume that m ≥
𝑙

2
 without loss of generality.  

Hence the probability that 𝐴′ will convince B of the false statement that (𝑥, 𝑦) ∈ QR is at 

most 
1

2(𝑙/2), which is a negligible function of the length l of the common input (𝑥, 𝑦).  

Therefore, the protocol is sound. 
 

Error in the proof 

 

In the definition of zero knowledge, the view that is indistinguishable from the output of 

the simulator comprises the coin tosses of the cheating verifier.  In [1, §3.4], the paper 

states that the coin tosses of the verifier B that follows the protocol are an essential part 

of the view.  Later in that section it adds that it is not necessary to include the random 

bits of the cheating verifier 𝐵′ in the view (presumably meaning those other than the 

coin tosses of B specified by the protocol) “because we have included in the view the 

messages sent by 𝐵′, and for every 𝐵′ there is a 𝐵′′, which is like 𝐵′ except that it sends 

its random bits as part of its last message”.  But no simulator is defined for 𝐵′′: in the 
zero knowledge proof of quadratic residuosity of [1, §5], there is no mention of a 𝐵′′ or 

of a last message where random bits are sent, and the only coin tosses of the simulator 

are the random bits of B specified by the protocol. 

 

In fact, it is clearly impossible to prove zero knowledge for a protocol where an 

arbitrary cheating verifier 𝐵′ can make arbitrary coin tosses not defined by the protocol 



Page 5 of 21 

 

Page 5 of 21 

 

 

without incorporating the unspecified code of 𝐵′ into the simulator, as is done for 

example in [3, §4.3.2], or as we do in the following proof. 

 

Our proof of zero knowledge 

 

To prove that PQR is zero knowledge we first need to describe the View𝐴,𝐵′(𝑥, 𝑦) of a 

cheating verifier 𝐵′ when interacting with A on the common input (𝑥, 𝑦).  It is a 

sequence of m subviews corresponding to the m four-step subprotocols specified above.   

Each subview comprises, in this order: 

• The random quadratic residue u that A sends to 𝐵′. 

• The bit b that 𝐵′ sends to A; even though 𝐵′ is a cheating verifier, in a proof of 

zero knowledge we can assume without loss of generality that it does send the 

bit b, because otherwise the sequence will not continue and 𝐵′ will not gain any 

more knowledge than it would by not sending the bit.  On the other hand, we do 

not assume that 𝐵′ generates b at random with uniform distribution over {0,1}. 

• The random square root w of u or random square root w of 𝑢𝑦 that A sends to 𝐵′. 

• Zero or more private coins generated by 𝐵′, not specified by the protocol.  

Different private coins may be generated in different subviews. 

 

Now we are going to construct a simulator M that takes (𝑥, 𝑦) as input and outputs a 

random variable indistinguishable, in a degree to be determined, from View𝐴,𝐵′(𝑥, 𝑦).  M 

uses its own code to build a model 𝐵∗ of the cheating verifier 𝐵′ and a model 𝐴* of an 

interactive Turing machine that interacts with 𝐵∗ and, as we shall see below, follows the 

PQR protocol.  𝐴* and 𝐵∗ perform a sequence of steps that we shall call the protocol 

model of M, consisting of up to m subsequences, each subsequence comprising the 

following steps: 

1. 𝐴* generates a “tentative” random bit 𝑏𝑡 . 

2. 𝐴* generates a random positive integer w less than x that is coprime with x. 

3. 𝐴* computes 𝑢 = 𝑤2 mod 𝑥 if 𝑏𝑡 = 0 or 𝑢 = 𝑤2𝑦−1 mod 𝑥 if 𝑏𝑡 = 1. 

4. 𝐴* sends u to 𝐵∗. 

5. 𝐵∗ sends a bit b to 𝐴*.  

6. If 𝑏 ≠ 𝑏𝑡  M rewinds 𝐴* and 𝐵∗ to the beginning of the subsequence, after 

incrementing a count of consecutive rewinds and terminating with output ⊥ if 

the count has reached m. 

7. 𝐴* sends w to 𝐵∗ 

8. 𝐵∗ makes zero or more private coin tosses. 

9. 𝐵∗ sends an end-of-subprotocol message to 𝐴*. 

10.  M adds the message u of step 4, the bit b of step 5, the message w of step 7, and 

any private coin tosses made in step 8 to the view of 𝐵∗ that it is constructing. 

11.  If the value of the end-of-subprotocol message of step 9 is “reject” or “accept”, M 

terminates and outputs the view of 𝐵∗ that it has been constructing.  Otherwise, 

the sequence continues at step 1 of the next subsequence. 

In Step 3 of the above protocol model: 
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• If 𝑏𝑡 = 0, w is a random square root of u modulo x as in Step 3 of the PQR 

protocol when 𝑏 = 0, and u is a random uniformly distributed quadratic residue 

modulo x as in step 1 of PQR, because all quadratic residues have the same 

number of square roots by Fact 4, hence they are all equally likely to be the value 

of 𝑤2 mod 𝑥. 

• If 𝑏𝑡 = 1, w is a random square root of 𝑢𝑦 modulo x as in Step 3 of PQR when 𝑏 =

1, and u is again a random uniformly distributed quadratic residue for the same 

reason as above, plus the fact that multiplying by 𝑦−1 implements a permutation 

over ℤ𝑥
∗ . 

Hence in Step 4 of the protocol model, 𝐴∗ sends to 𝐵∗ a random quadratic residue u 

modulo x as in Step 1 of the PQR protocol, and in Step 7 of the protocol model 𝐴∗ sends 

to 𝐵∗ a random square root w of u modulo x if 𝑏 = 0, or a random square root w of 𝑢𝑦 

modulo x if 𝑏 = 1.  Therefore, 𝐴∗ implements the prover role of the PQR protocol.  

It remains to show that the view of 𝐵∗ is indistinguishable to some degree from the view 

of 𝐵′.  If the target degree is perfect indistinguishability, this is actually not true, for 

three reasons: 

1. 𝐵∗ may halt at any time.  In particular, it may halt and not set the bit b in step 5 of 

the protocol model. 

2. 𝐵∗ may send an unwarranted early reject in step 9 of the protocol model. 

3. M may output ⊥ in step 6 of the protocol model after m consecutive rewinds. 

Reasons 1 and 2 may be eliminated by changing the above definition of zero knowledge, 

adding the condition that “… View𝑃,𝑉′(𝑠) and 𝑀(𝑠) are indistinguishable” as long as 𝑉′ 

does not quit early.  This condition makes a lot of sense, and it makes so much sense that 

it can be omitted because it goes without saying. 
 

 As for the third reason, in [3, Definition 4.3.1] as modified by [3, Definition 4.3.3], Oded 

Goldreich suggests coping with the possibility that the simulator may output ⊥ by 

allowing the output of the simulator to be indistinguishable from the view of the 

cheating verifier only when the former is conditioned (in the sense of conditional 

probability) on not being ⊥.  He justifies this relaxed definition by stating in Footnote 7 

that he does not know of any non-trivial cases where the non-relaxed definition is 

satisfied.  However, although this may have been true when his textbook [3] was 

published in 2001, it is no longer true today, since the non-relaxed definition is used for 

HVZK, as we shall below in Section 3.5.2. 

 
We shall instead deal with the third reason by following a different suggestion also 

made by Goldreich, in the paragraph that follows [3, Definition 4.3.1].  Since 𝑏𝑡  is 

random in Step 1 of the protocol model, the probability that 𝑏 ≠ 𝑏𝑡  in Step 6 is  
1

2
 , and 

the probability that M outputs ⊥ is  
1

2𝑚, which is negligible in m, and also in the length l of 

the common input (𝑥, 𝑦), which is less than 2𝑚 because 𝑦 < 𝑥.  Hence the statistical 

distance between the view of 𝐵∗ constructed by M and the view of 𝐵′ is negligible. 
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Therefore, the PQR protocol is an interactive proof system that provides statistical zero 

knowledge. 

 

3.5.2 Honest-verifier zero-knowledge (HVZK) proof of knowledge 

(PoK) of a secret 
 

Proving a fact does not authenticate the prover.   To authenticate, the prover must prove 

knowledge, or synonymously possession, of a secret, as we saw for example in Section 

3.1, where the subject of a certificate authenticates by proving knowledge of the private 

key associated with the public key in the certificate. 

 

The next link in the chain of zero knowledge concepts encompasses protocols that can 

be used to prove knowledge of a secret but can only be said to be zero-knowledge if the 
verifier is honest and does not depart from the protocol.   

 

<<< must define HVZK, not just PoK ! 

An interactive proof system is said to provide proof of knowledge of a secret if whenever 

a prover, which may or may not follow the protocol, convinces the verifier that it knows 

a secret, an efficient deterministic algorithm, which we shall call a “secret extractor”, 

that can extract the  secret from the prover if given full access to the prover including 

the ability to rewind it. 

 

Honest-verifier zero knowledge (HVZK) is a surprising concept, which at first glance 

does not seem useful.  But if an honest verifier cannot learn anything else from the proof 
of knowledge other than the fact that the prover knows the secret, neither can 

eavesdroppers.  So HVZK in conjunction with security against direct attack [2, Definition 

18.2] implies security against eavesdropping [4, Definition 18.6], as shown in [4, 

Theorem 19.3].  (We shall discuss various kinds of attacks against authentication, 

including phishing attacks, man-in-the-middle attacks, and man-in-the-middle phishing 

attacks in Chapter 4.)  And, as we shall see, HVZK is a key link in the chain leading to 

anonymous credentials. 

 

Honest-verifier proof of knowledge (HVZK PoK) can be implemented by a Sigma 

protocol that provides special soundness.   

 

3.5.2.1 Sigma protocols 
<<< y instead of s ??? 

A Sigma protocol is an interactive proof system intended to prove a fact 𝑠 ∈ 𝐿 just as in 

Section 3.5.1, but the language L has an associated binary relation R such that 𝑠 ∈ 𝐿 if 
and only if there exists w such that (𝑤, 𝑠) ∈ 𝑅; the prover proves the fact by proving 

knowledge of a witness, and we are interested in the case where the witness is a unique 

secret that identifies the user.  The name Sigma comes from the shape of a diagram 

showing the messages exchanged by the prover and the verifier.  The prover sends a 

commitment u to the verifier, the verifier sends a challenge c to the prover, the prover 

sends a response z to the verifier, and the verifier checks an acceptance condition 



Page 8 of 21 

 

Page 8 of 21 

 

 

relating u, c, z and y.  The sequence of messages (𝑢, 𝑐, 𝑧) is called an accepting 

conversation for y if the acceptance condition is satisfied. 

 

A Sigma protocol provides special soundness if there is an efficient deterministic 

algorithm called a witness extractor that outputs a witness from any pair of accepting 

conversations that start with the same commitment.  When a sigma protocol that 

provides special soundness is used for HVZK PoK, the witness extractor plays the role of 

what we called above the “secret extractor”. 

 

3.5.2.1 Example: The Schnorr identification protocol 
 

The simplest example of an HVZK PoK protocol is the Schnorr identification protocol 

[5], where a user authenticates by proving knowledge of a discrete logarithm.  (In 

contexts such as image recognition a sharp distinction is made between authentication 

and identification, but here we will treat them as synonyms in most contexts.) 

 

The protocol uses a cyclic group G of prime order q with generator g.  Each user has a 

private key x ∈ [1, 𝑞) and a public key 𝑦 = 𝑔𝑥 that serves as the user’s identity.  In 

Schnorr’s paper, the user is issued a certificate signed by a Key Authentication Center 

that binds y to information about the user.  Schnorr describes the protocol using as G a 

subgroup of the multiplicative group of the field ℤ𝑝
∗ , but mentions the possible use of 

other groups, such as elliptic curve groups.  

 

Schnorr’s protocol is a three-move interactive proof, a.k.a. a Sigma protocol [6], between 

two interactive Turing machines, the prover P and the verifier V, which perform the 

following steps: 

1. P generates a random integer r ∈ [1, 𝑞), computes 𝑢 = 𝑔𝑟, and sends u to V.   

2. V chooses a random element c from [0, 𝑞) and sends c to P.   

3. P computes z = r + xc (mod 𝑞) and sends z to the V. 

4. V accepts the proof if 𝑔𝑧 = 𝑢𝑦𝑐; otherwise, V rejects the proof. 

In a Sigma protocol, the message u sent by the prover in step 1 is called the commitment, 

the message c sent by the verifier in step 2 is the challenge, the message z sent by the 
prover in step 3 is the response, and the condition checked by the verifier in step 4 is the 

acceptance condition.  The sequence of messages (𝑢, 𝑐, 𝑧) is called an accepting 

conversation if they satisfy the accepting condition. 

 

Completeness (a.k.a. correctness) 

If P and V follow the protocol, then 𝑔𝑧 = 𝑔𝑟+𝑥𝑐 = 𝑔𝑟(𝑔𝑥)𝑐 = 𝑢𝑦𝑐 and V accepts the 

proof.  

 

Special soundness 

As we said in Section 3.5.1, an interactive protocol for proving a fact is sound if, 

whenever a prover convinces a verifier that a fact is true, the fact is indeed true.  A 
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different definition of soundness is used for a protocol that proves knowledge of a 

secret.  A proof-of-knowledge protocol is said to be special sound if, whenever a prover 

that may or may not follow the protocol convinces the verifier that it knows a secret, an 

efficient algorithm, called an extractor, that is given full access to the prover including 

the ability to rewind it, can obtain the secret from the prover. 

 

When the proof-of-knowledge protocol is a Sigma protocol, there is a sufficient 

condition for the existence of an extractor that is sometimes considered the definition of 

special soundness.  A Sigma protocol for proving knowledge of a secret is special sound 

if the prover’s secret can be computed from two accepting conversations having the 

same commitment but different challenges.  An extractor can obtain two such 

conversations by rewinding the prover after the first conversation to its internal state 

after sending the commitment; the verifier will then send a second challenge which will 

be different from the first with high probability. 

 

Schnorr’s protocol is a special sound Sigma protocol.  Indeed, let the above (𝑢, 𝑐, 𝑧) be an 

accepting conversation, and let (𝑢, 𝑐′, 𝑧′) be a second accepting conversation with same 

commitment u.   Then we have the two accepting conditions 𝑔𝑧 = 𝑢𝑦𝑐 and 𝑔𝑧′
= 𝑢𝑦𝑐′

 

and, by dividing the first equation by the second,  

𝑔𝑧−𝑧′
= 𝑦𝑐−𝑐′

. (1) 

Since c and 𝑐′ are distinct elements of the interval [0, 𝑞), their difference 𝑐 − 𝑐′ is a non-

zero element of that interval, and since q is prime, it has an inverse d modulo q.  By 

raising both sides of (1) to d we get 

𝑔(𝑧−𝑧′)𝑑 = 𝑦(𝑐−𝑐′)𝑑. (2) 

Since q is prime, by Theorem 6, y is of order q like g and both exponents of (2) can be 

reduced modulo q.  Therefore, if we let 𝑤 = (𝑧 − 𝑧′)𝑑 mod 𝑞, we have 𝑔𝑤 = 𝑦 and w is 

the discrete log of y, which is the secret to be extracted. 

 
Honest-verifier zero-knowledge 

An interactive proof-of-knowledge protocol is said to be honest-verifier zero-knowledge 

if the probability distribution of a random variable denoting the interactions between 

the prover and the verifier who both follow the protocol is indistinguishable from the 

probability distribution of a random variable that is output by an efficient Turing 

machine that simulates the protocol.  This is the case for Schnorr’s protocol.  The 

random variable denoting the interactions between P and V is a triple of random 

variables (𝑢, 𝑐, 𝑧), which can be constructed backwards by the simulator by generating z 

and c at random, then computing u = 𝑔𝑧𝑦−𝑐.  An argument as to why the backwards 

construction by the simulator results in the same probability distribution as the 

forward construction by the run of the protocol is sketched in [4, Theorem 19.4]. 
 

Security reduction to the discrete log assumption 

The special soundness feature of Schnorr’s protocol provides a security reduction to the 

discrete log assumption in the group G where the protocol is to be used.  Suppose it 

were easy for a cheating prover 𝑃′ who does not know the secret x to convince the 
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verifier.   That means it would be easy for 𝑃′ to reach an accepting conversation.  An 

adversary trying to break the discrete log assumption for the group G could then run 𝑃′ 

to obtain an accepting conversation (𝑢, 𝑐, 𝑧), rewind 𝑃′, obtain a second conversation 
(𝑢, 𝑐′, 𝑧′), and if 𝑐 ≠ 𝑐′, compute the discrete log of u from the two accepting 

conversations.  It would be easy for the DL adversary to obtain the accepting 

conversations, but c and 𝑐′ might not be different.  The verifier chooses each challenge 

at random from the interval [0, 𝑞), which has 2𝑞 elements, but only some of those 

elements might be usable by the cheating prover to reach accepting conversations.  The 

security reduction does go through, but the proving it is not trivial.  A proof can be 

found in [4, Theorem 19.1]. 

 

3.5.3 Non-interactive zero-knowledge proof of knowledge of a 

secret 
 

The next link in the chain of zero-knowledge concepts, “non-interactive zero-knowledge 

proof of knowledge (NIZK PoK)”, like the “honest-verifier zero-knowledge” concept of 

the previous section, is also surprising:  how can you prove knowledge of a secret 

without interaction?  You cannot.  The protocol that we are going to describe in this 

section provides the verifier with a proof constructed by a prover who knows a secret 

but provides no evidence that the knower of the secret is the party at the other end of 

the communication channel through which the verifier receives the proof.  NIZK PoK is 

also not a zero-knowledge protocol as usually defined, since there is no interaction that 

can be simulated.   But the terminology can be justified by the fact that the one-move 

protocol of this section is derived from the three-move protocol of the previous section 
and is used in the construction of anonymous credentials. 

 

Schnorr’s identification protocol can be turned into a non-interactive protocol by letting 

the challenge be provided by the prover rather than the verifier.  The prover cannot 

choose the challenge arbitrarily, because as seen in the discussion of honest-verifier 

zero knowledge of the previous section, a cheating prover could then choose z and c, 

then compute u = 𝑔𝑧𝑦−𝑐 and send the accepting conversation (𝑢, 𝑐, 𝑧) to the verifier. 

 

The prover must be required to compute u first, and this can be enforced by making c 

dependent on u.  One way of making c dependent on u is to let it be the image of u by a 

function, and a good function to use for this purpose is a cryptographic hash function, 
which can then be modeled as a random oracle [7] in formal arguments. 

 

So here is a one-move protocol between a prover P and a verifier V derived from 

Schnorr’s three-move protocol.  As in Section 3.5.2, G is a cyclic group of prime order q 

with generator g.  P has a private key x ∈ ℤq and a public key 𝑦 = 𝑔𝑥 .  H is a 

cryptographic hash function that takes as argument an element of G and returns an 

element of ℤ𝑞.  P and V perform the following two steps: 

1. P performs the following computations: 

a. It generates a random integer r ∈ ℤq and computes 𝑢 = 𝑔𝑟.  
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b. It computes 𝑐 = 𝐻(𝑢). 

c. It computes 𝑧 = 𝑟 + 𝑥𝑐. 

Then it sends (𝑐, 𝑧) to V as the proof. 

2. V computes 𝑢 = 𝑔𝑧𝑦−𝑐 and accepts the proof if  𝑐 = 𝐻(𝑢), otherwise V rejects the 

proof. 

As explained above, this protocol, being non-interactive, cannot be used by P to 
authenticate to V.  If (𝑐, 𝑧) were used for authentication as a bearer token and P 

presented it to V, V could turn around and impersonate P by presenting it to a third 

party.  But the protocol can be modified to be used for authentication by adding 

interaction to it, as explained in the next section. 

 

3.5.3.1 From NIZK PoK to challenge-response authentication 
 

The one-move protocol of the previous section can be turned into a challenge-response 

protocol that supports authentication by adding an authentication challenge 𝑐′ ∈ ℤ𝑞 as a 

second argument of the call to the hash function 𝑐 = 𝐻(𝑢, 𝑐′).  The original interactive 

challenge c is then a cryptographic hash, but there is a new challenge 𝑐′.  The verifier 

sends the new challenge to the prover before the prover performs its first step, so we 

now have the following two-move protocol: 

1. V chooses a random element 𝑐′ ∈ 𝑍𝑞 and sends it to P.   

2. P performs the following computations: 

a. It generates a random 𝑟 ∈ ℤ𝑞  and computes 𝑢 = 𝑔𝑟.  

b. It computes 𝑐 = 𝐻(𝑢, 𝑐′). 

c. It computes 𝑧 = 𝑟 + 𝑥𝑐. 

Then it sends (𝑐, 𝑧) to V. 

3. V computes 𝑢 = 𝑔𝑧𝑦−𝑐 and accepts the proof if 𝑐 = H(𝑢, 𝑐′), otherwise V rejects 

the proof. 

NIZK PoK is versatile.   We show next how a slightly different modification turns it into a 

signature scheme. 

 

3.5.3.2 From NIZK PoK to a signature scheme 

In the previous section, after turning the Schnorr three-move protocol into a one-move 

protocol by letting 𝑐 = 𝐻(𝑢), we added a second argument  𝑐′ to H in 𝑐 = 𝐻(𝑢, 𝑐′), and 

used 𝑐′ as a verifier challenge in a challenge-response protocol.  If instead of 𝑐′ we add a 
message m as second argument in 𝑐 = 𝐻(𝑢, 𝑚), we get instead a signature scheme, 

where P becomes the signer S: 

1. S performs the following computations: 

a. It generates a random 𝑟 ∈ ℤ𝑞  and computes 𝑢 = 𝑔𝑟.  

b. It computes 𝑐 = 𝐻(𝑢, 𝑚). 

c. It computes 𝑧 = 𝑟 + 𝑥𝑐. 

Then it sends (𝑐, 𝑧) to V as the signature on m. 
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2. To validate the signature, V computes 𝑢 = 𝑔𝑧𝑦−𝑐 and verifies that 𝑐 = 𝐻(𝑢, 𝑚), 

thus validating the verification equation c = H(𝑔𝑧𝑦−𝑐, 𝑚). 

 

3.5.3.3 Two versions of Schnorr signatures 

In Chapter 2, Section 2.2.3.2.2, we described the Schnorr signature scheme.  Here we 

have just seen how a signature scheme can be derived from the Schnorr identification 

protocol.  Is the above signature scheme the same Schnorr signature scheme that we 

saw in Chapter 2?   

It’s hard to tell because we have used different variables in the two schemes.  In Chapter 
2 we used variable names that were part of a unified notation for comparing signature 

schemes.  Here are using the variable names used in the identification protocol, which 

are themselves borrowed in part from modern descriptions of the protocol.  But it is 

easy enough to unify the naming, e.g. by changing the variable names Q, d, R, e, s of 

Chapter 2 to g, x, u, c, z.   

If we do that, the two schemes look very similar, but not identical.  In Chapter 2, the 

equation that binds the public and private keys is 𝑦 = 𝑔−𝑥, whereas here it is 𝑦 = 𝑔𝑥.  

And in Chapter 2, the verification equation is 𝑐 = 𝐻(𝑔𝑧𝑦𝑐, 𝑚), whereas here it is 𝑐 =

𝐻(𝑔𝑧𝑦−𝑐, 𝑚).  The minus sign, so-to-speak, has found its way from the key-pair equation 

to the verification equation. 

The difference is due to the fact that Schnorr’s was the first signature scheme based on 

the discrete log assumption.   Today there are many primitives that rely on the discrete 
log assumption, and it has become customary, as seems natural, to let the private key be 

the discrete log of the public key in such schemes.  That custom had not been 

established when Schnorr proposed his scheme in 1989 and Schnorr liked it better for 

his own reasons to put the minus sign in the key-pair equation. 

Does this difference matter? 

If we replace y with 𝑔−𝑥 in the verification equation of the Chapter 2 scheme, and with 

𝑔𝑥 in the verification equation of the Chapter 3 scheme, we get same equation 𝑐 =

𝐻(𝑔𝑧−𝑥𝑐, 𝑚) in both cases.  So the difference seems cryptographically insignificant.  But 

a party programmed to verify signatures produced by one kind of scheme cannot verify 

a signature produced by the other.  In other words, the two schemes are interoperable. 

This illustrates the importance of specifications such as the one standardized by the 
IETF or the W3C to ensure interoperability. 

 

3.5.3.4 The Fiat-Shamir transform 
 

In Section 3.5.3 we turned Schnorr’s three-move identification protocol into a non-

interactive, one-move protocol by replacing the challenge sent by the verifier with a 

cryptographic hash of the commitment.  This is a special case of a technique known as 

the Fiat-Shamir transform that is widely used for various purposes in various contexts.  

In Sections 3.5.3.1 and 3.5.3.2 we saw how it can be used to turn the same three-move 
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protocol into a two-move challenge-response authentication protocol or a signature 

scheme.   In Section 3.5.5.1 we shall see how it can be used to implement unlinkable 

presentations of anonymous credentials and in Section 3.5.5.2 how it enables signatures 

by the anonymous subject of a credential.  In the original use case [8], Fiat and Shamir 

used it to turn a sequence of three-move protocols into a single signature by the prover.  

 

 In this section we are going to formulate three semi-formal definitions of the Fiat-

Shamir at increasing levels of generality. 

 

3.5.3.4.1 Fiat-Shamir transformation of a Sigma identification 

protocol to a signature scheme 
 

The following definition generalizes the transformation from the Schnorr identification 
protocol of Section 3.5.2 into the Schnorr signature scheme of Section 3.5.3.2.  It can be 

formulated as follows: 

1. In the identification protocol: 

a. The prover sends a commitment, saves the committed value in its internal 

state, receives a challenge, and sends a response computed from the 

challenge, the committed value and the prover’s private key. 

b. The verifier computes the commitment using a procedure that takes as 

inputs the challenge, the response and the prover’s public key, and checks 

that the commitment as computed by the procedure agrees with the 

commitment as received from the prover. 

2. In the signature scheme: 
a. The prover performs the same computations as in the identification 

protocol, using as challenge a hash of the commitment and the message to 

be signed. 

b. The signature comprises the challenge and the response and can be 

verified by computing the commitment using the same procedure as in 1b 

and checking that the challenge is the hash of the commitment and the 

message. 

A formal specification of this transform can be found in [9, Construction 12.9], along 

with a proof in [9, Theorem 12.10] that the output of the transform is a secure signature 

scheme if the input is a secure identification protocol.  From [9, Theorem 12.11] and the 

fact the that Schnorr’s identification protocol is secure as proved in [9, Theorem 12.10] 
it follows that Schnorr’s signature scheme is secure. 

 

3.5.3.4.2 Fiat-Shamir transformation of a general three-move 

protocol into a general one-move protocol 
 

The definition in this section covers transformations from a three-move protocol that is 

not necessarily an identification scheme into a one-move protocol that is not necessarily 
a signature scheme.  The prover has secret data that may consist, for example, of the 
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attributes and issuer’s signature of an anonymous credential instead of the prover’s 

private key. The prover has public data that might be the public key of the issuer of an 

anonymous credential instead of the public key of the prover.   

This definition may be formulated as follows: 

1. In the three-move protocol: 

a. The prover sends a commitment u, saves the committed value in its 
internal state, receives a challenge, and sends a response computed from 

the challenge, the committed value, and the prover’s secret data. 

b. The verifier checks the validity of one or more verification equations over 

the commitment, the challenge, the response and/or the prover’s public 

data and accepts the interactive proof if and only if the equations are 

satisfied. 

2. In the one-move protocol: 

a. The prover performs the same computations as in 1a, using as challenge 

the result c = H(𝑢,  parameters) of calling a cryptographic hash function H 

on the commitment u and parameters such as a message to be signed or 

an authentication challenge to be used for challenge-response 

authentication. 

b. The prover outputs a proof that may comprise the challenge and/or any 

data items included in the commitment, the response or the prover’s 

public data, and can be verified using the same verification equations as in 

1b and the additional equation 𝑐 = 𝐻(𝑢,  parameters). 

The one-move protocol resulting from the transformation can be used in one of the 

following two modes or a combination of both: 

A. As a challenge-response authentication protocol, by taking as an input, before 

the one move, an authentication challenge 𝑐′ generated by the verifier and 

passing it as an argument in the call 𝑐 = 𝐻(𝑢, 𝑐′) of the Fiat-Shamir hash 

function H, as explained in more detail in Section 3.5.3.1; or 
B. As a signature scheme, by passing a message m as an argument in the call 𝑐 =

𝐻(𝑢, 𝑚) of the Fiat-Shamir hash function H as explained in Section 3.5.3.2. 

We shall see how Mode A can be used for presentation of an anonymous credential in 

Section 3.5.5.1 and how Mode B can be used to implement message signing by the 

anonymous user of a credential in Section 3.5.5.2. 

 

3.5.3.4.3 Fiat-Shamir transformation of a sequence of three-move 

protocols into a single one-move protocol 
 

In the use case where Fiat and Shamir introduced their technique [9] an identification 

scheme was transformed into a signature.  But the identification scheme repeated a 

three-move protocol t times.  In each repetition the verifier sent to the prover as a 

challenge a random vector of k bits, and the product 𝑘𝑡 was a security parameter.   
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To cover this use case we need to define the Fiat-Shamir transform as constructing a 

non-interactive protocol from an interactive protocol that may consist of one or more 

three-move subprotocols.  Such a definition can be formulated as follows: 

1. The interactive protocol consists of one or more three-move subprotocols each 

performing an interactive subproof, where in each subprotocol: 

a. The prover sends a commitment, saves the committed value in its internal 
state, receives a challenge, and sends a response computed from the 

challenge, the committed value, and the prover’s secret data. 

b. The verifier checks the validity of one or more verification equations over 

the commitment, the challenge, the response and/or the prover’s public 

data and accepts the subproof if and only if the equations are satisfied. 

The verifier accepts the overall proof if and only if it accepts all the subproofs. 

2. In the non-interactive one-move protocol: 

a. The prover performs the computations that it performs in the steps 1a of 

all the subprotocols. 

b. The prover computes a challenge string as a cryptographic hash of the 

commitments of all the subprotocols, and parameters such as a message 

to be signed, or a challenge to be used for challenge-response 

authentication, or the attributes of an anonymous credential that the 

subject wishes to disclose.   

c. The prover outputs a proof comprising data items included in the prover’s 

public data, the challenge string, and the sequence of commitments and 

responses of the subprotocols. 

d. The proof can be verified using the verification equations of the 

subproofs, using substrings of the challenge as challenges of the 

subproofs. 

e. The non-interactive proof is deemed to be valid if and only all the 

subproofs are valid. 
 

3.5.4 Honest-verifier zero-knowledge proof of knowledge of a 

signature 
 

We have looked so far at three zero-knowledge concepts: zero-knowledge proof of a 

fact, honest-verifier zero-knowledge proof of knowledge of a secret, and non-interactive 

zero-knowledge proof of knowledge of a secret.  The fourth concept in the chain leading 

to anonymous credentials is zero-knowledge proof of knowledge of a signature.  We are 

now getting close to the end of the chain, because as we shall see in the next section, an 

anonymous credential is essentially a secret signature by the issuer on the attributes of 

the subject, along with the attributes themselves.  

 

A Sigma protocol can be used to prove knowledge of a secret signature in a way similar 

to how it can be used to prove knowledge of a private key, with one important 

difference.  The prover sends a commitment, the verifier sends a challenge, the prover 
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sends a response, and the verifier validates verification equations over the commitment, 

the challenge, the response and a public key.  But the public key does not pertain to the 

prover, which does not have an associated private key.  It is associated with the private 

key used to create the signature, hence it pertains to the signer.  This is the important 

difference.  The public key of the signer does not link proofs of knowledge of a 

signature, whereas the public key of the prover in the identification protocol of Section 

3.5.2 links proofs of knowledge of the private key. 

 

We shall go over a detailed example of honest-verifier zero-knowledge proof of 

knowledge of a signature in Section 3.5.6, where we describe anonymous credentials 

based on BBS signatures. 

 

3.5.5 Non-interactive zero-knowledge proof of knowledge of a 

signature 
 

We are now at the end of the chain.  Non-interactive zero-knowledge proof of 

knowledge of a signature is the last zero-knowledge concept needed to understand 

anonymous credentials. 

 

3.5.5.1 Secret signatures as anonymous credentials  
 

A distinguishing feature of anonymous credentials is that they provide unlinkability of 

credential presentations.  Public key certificates, by contrast, have three elements that 

are seen by the verifier and may enable tracking: the public key of the subject, the 

signature by the issuer on the attributes of the subject and the credential metadata, and 

the attributes and metadata themselves.  An anonymous credential eliminates these 

three sources of linkability. 
 

The public key is eliminated because the subject does not have a public key.  The subject 

does not authenticate by proving knowledge of a private key but by proving knowledge 

of the credential signature.  This requires keeping the signature secret, which in turn 

eliminates tracking by the signature. 

 

Linkability by attributes that uniquely identify the subject, and the verifier needs to see 

is unavoidable.  But anonymous credentials implement selective disclosure of attributes 

and metadata items by keeping them secret in a manner similar to how the signature is 

kept secret, and thus eliminates linkability by the attributes and metadata items that are 

not disclosed.   

 
There is a difference between the hash-based selective disclosure of attributes in public 

key certificates that we saw in Section 3.4, and the secrecy-based selective disclosure in 

anonymous credentials.  Hash-based selective disclosure in public key certificates hides 

attributes behind cryptographic hashes that are covered by the certificate signature and 

can be used for tracking.  Secrecy-based selective disclosure of attributes and metadata 

in anonymous credentials, on the other hand, eliminates linkability by the attributes and 
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metadata items that are not disclosed by making them part of the secret portion of the 

credential. It would be possible to use hash-based instead of secrecy-based selective 

disclosure in anonymous credentials but that would be ill-advised since it would enable 

tracking unnecessarily. 

 

We shall see an example of secrecy-based selective disclosure in Section 3.5.6. 

 

In Section 3.5.4 we saw how a Sigma protocol can be used to prove knowledge of a 

secret signature in a manner similar to how Schnorr’s identification protocol of Section 

3.5.2 proves knowledge of a private key.  But Schnorr’s protocol is an honest-verifier 

zero-knowledge protocol, not an unqualified zero-knowledge protocol like the original 

zero-knowledge protocol of Goldwasser, Micali and Rackoff that we discussed in Section 

3.5.1.  There is no guarantee that a proof of knowledge of a signature by means of an 

honest-verifier zero-knowledge protocol will not create tracking opportunities. 

 

This problem can be solved by using the Fiat-Shamir transform to turn the Sigma 

protocol into a one-move protocol as explained in Section 3.5.3.4.2 and using the one-
move protocol in Mode A, i.e. as a challenge-response protocol, by passing an 

authentication challenge 𝑐′ generated by the verifier as an argument in the call 𝑐 =

𝐻(𝑢, 𝑐′).  The challenge-response protocol can then serve as the presentation protocol 

of the anonymous credential. 

 

Recapitulation.  An anonymous credential can be implemented as a secret signature by 

the issuer of the credential on attributes of the subject and credential metadata, some of 

which may be disclosed by the subject while the others are kept secret along with the 

signature.  The credential can be presented by a challenge-response protocol where the 

verifier sends an authentication challenge to the subject and the subject responds with a 

proof of knowledge of the secret signature and the attributes and metadata that are not 
disclosed, produced by a one-move protocol that is the result of an application to an 

honest-verifier zero-knowledge proof of knowledge protocol of a Fiat-Shamir transform 

where the cryptographic hash function takes as an argument the authentication 

challenge. 

 

3.5.5.2 Signature by the anonymous subject of a credential 
 

In the previous section we saw how the Fiat-Shamir transform can turn an interactive 

proof of knowledge of the secret signature of an anonymous credential into a one-move 

protocol, and how the one-move protocol can be used in Mode A as a challenge-

response protocol to present the credential.  But the one-move protocol can also be 

used in the Mode B of Section 3.5.3.4.2 as a signature scheme, by passing a message m as 

an argument in the call 𝑐 = 𝐻(𝑢, 𝑚) to the Fiat-Shamir hash function H.  The result is a 

signature on m by the knower of the secret signature of the anonymous credential, i.e. a 

signature on m by the anonymous subject of the credential. 

 

3.5.6 Example: BBS signatures as anonymous credentials 
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Boneh, Boyen and Shacham (BBS) signatures [10] are explicitly indended to serve as 

secret signatures for the implementation of anonymous credentials as explained above 

in Section 3.5.5.1 and they are currently being standardized by the IRTF for that 

purpose [2].a  

 

They are based on pairings.  A pairing consists of three cyclic groups 𝐺1, 𝐺2 and 𝐺𝑇 and a 

bilinear map 𝑒: 𝐺1 × 𝐺2 → 𝐺𝑇 that it not degenerate, i.e. that 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑚𝑎𝑝 generators 

𝑔1 and 𝑔2 of 𝐺1 and 𝐺2 to the identity element of 𝐺𝑇.  BBS uses 𝐺1, 𝐺2 and 𝐺𝑇 of have 

prime order p, so bilinearity can be defined by e(Ax, By) = e(A, B)xy for all 𝐴 ∈ 𝐺1, 𝐵 ∈

𝐺2 and 𝑥, 𝑦 ∈ ℤ𝑝, from which it follows that 𝑒(𝐴𝐴′, 𝐵) = 𝑒(𝐴, 𝐵)𝑒(𝐴′, 𝐵) and 𝑒(𝐴, 𝐵𝐵′) =

𝑒(𝐴, 𝐵)𝑒(𝐴, 𝐵′). 

 

There are three types of pairings.  In type 1, 𝐺1 = 𝐺2.  In type 2, 𝐺1 ≠ 𝐺2 but there is an 

efficient homomorphism from 𝐺2 to 𝐺1.  In type 3, 𝐺1 ≠ 𝐺2 and there is no efficient 

homomorphism.  BBS is defined on a generic type-3 pairing, and can thus be used with 

any type of pairing.  The IRTF specification uses  
 

 

 - blind issuance 

- discuss Tessaro’s qualms 

 - why m’ argument to H? 

 - no NIZK authentication 

 

3.5.7 The role of zero knowledge in anonymous credentials 
 

To conclude this chapter, it may be useful to discuss the role that zero knowledge plays 

in anonymous credentials. 

 

Anonymous credentials are an appealing technology: the subject of an anonymous 

credential can disclose only the attributes required for a particular presentation; if 

those attributes are not identifying, the subject remains anonymous based on what is 

presented; furthermore, presentations are unlinkable, so the subject remains 

anonymous based on what is presented and how it is presented.   

 
Zero-knowledge proofs are also an appealing technology: they support unlinkability 

because they allow the prover to prove something without revealing anything else.  And 

anonymous credentials use zero-knowledge technology.  That suggests the following 

causal link: that anonymous credentials allow the subject to remain anonymous because 

they are presented using zero-knowledge protocols.  But this is not so.  Paradoxically, 

even though anonymous credentials use zero-knowledge technology, they are 

presented using two-move challenge-response protocols. 
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This paradox is explained by Figure 1, which summarizes Sections 3.5.1-3.5.5.  Since an 

anonymous credential is a secret signature, presentation of anonymous credentials 

belongs in the last row of the figure.  But in that row: 

• There is no entry in the DHV column because there are no interactive proof of 

knowledge protocols guaranteed to be zero-knowledge for dishonest verifiers. 

• The next column is the HV column, and HVZK by itself, without Fiat-Shamir 

transformation, does not guarantee unlinkability. 

• The next column is the 𝑐 = 𝐻(𝑢) column, which does not provide authentication 

for reasons explained in Section 3.5.3. 

• The last column refers to signature by the credential subject rather than 

credential presentation. 

That leaves only the 𝑐 = 𝐻(𝑢, 𝑐′) column for presentation of anonymous credentials, 

and 𝑐 = 𝐻(𝑢, 𝑐′) refers to the challenge-response protocol of the Mode A of Section 

3.5.3.4.2. 
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