
Page 1 of 19

Page 1 of 19

Work in progress

This is an early draft of a chapter of a book on the foundations of cryptographic

authentication being coauthored by Francisco Corella, Sukhi Chuhan and Veronica Wojnas.

Please send comments to the authors.

5. Web technology

Chapter summary

In this chapter we describe the aspects of Web technology most relevant to cryptographic

authentication. In Sections 5.1.1 and 5.1.2 we describe the basics of the technology: the

HTTP protocol, the structure of URLs, the structure of Web pages, the DOM, and the web

origin concept. In Section 5.1.3 we describe the two kinds of redirection, HTTP redirection

and JavaScript redirection, explaining the evolution of HTTP redirection and the historical

confusion resulting from that evolution. In Section 5.1.4 we describe the Web

Cryptography API, pointing out its benefits and drawbacks, the web workers API and the

Service Worker API, which is the basis for the browser-as-a-wallet concept, and the Web

Storage and IndexedDB APIs, referring the reader to Chapter 10 for information about the

Web Authentication API. Then in Section 5.2 we explain the concept of using delegated

authorization for federated identity management, which provides the founcation for the

OAuth2 protocol, described in Section 5.3, and for OpenID Connect, described in Section

5.4. Finally, in Section 5.5 we describe the JSON Web Tokens used in OpendID connect and

related protocols.

5.1 The World Wide Web

5.1.1 HTTP and URLs

The web allows users equipped with web browsers, formally known as user agents, to

access web pages and retrieve resources such as documents and media from web servers

over the internet using the application layer Hypertext Transfer Protocol (HTTP) [1] over a

connection, which may be TCP, but these days it is more likely to be TLS over TCP.

A web browser communicates with a web server, or a web server with another web server,

by sending an HTTP request addressed to a Uniform Resource Locator (URL) [2] over a

connection and receiving an HTTP response over the same connection.

https://www.linkedin.com/in/fcorella/
https://www.linkedin.com/in/sukhi-chuhan/
https://www.linkedin.com/in/veronicawojnas/

Page 2 of 19

Page 2 of 19

A URL consists of a scheme, which may be http for a TCP connection or https for a TLS

connection, followed by the hostname of the server, which is usually the DNS domain

associated with the IP address used by the physical server, optionally followed by an

optional path consisting of segments separated by forward slashes that may correspond to

a path in the filesystem of the server, optionally followed by a question mark and a query

string consisting of a sequence of key=value pairs separated by ampersands (&), optionally

followed by an octothorpe (#) and a fragment, which refers to a position within a web page

addressed by the URL, as we shall see in the next section. A URL may be abbreviated by

omitting the scheme and the domain name. An abbreviated URL is called a relative URL,

and a non-abbreviated URL is called an absolute URL.

An HTTP Request comprises a request line, request headers, and an optional request body.

The request line specifies an HTTP method, usually GET or POST, the URL of the server, and

the HTTP version used to construct the request. As of this writing, the current version of

HTTP is HTTP/1.1. The URL in the request line is a relative URL, except if the request is

sent to a proxy server that will forward it to its final destination, in which case the URL is

the absolute URL of the final destination. The request line is followed by a sequence of

headers, each on a separate line, of the form header-name: header-value. If the HTTP mode

is POST, the sequence of headers is followed by a blank line and the HTTP body; GET

requests do not have an HTTP body. The sequence of headers must include a header with

name Host whose value is the hostname of the destination server. The Host header was

made mandatory by version 1.1 of HTTP to allow multiple virtual servers to be hosted on

the same physical server. Other commonly used headers include User-Agent, Referer,

Cookie and, in a POST request, Content-Type and Content-Length, which refer to the content

of the body of the request.

An HTTP response similarly comprises a status line, a sequence of response headers, and an

optional response body. The status line comprises the HTTP version, a numeric, 3-digit,

status code, and a status message. An example of a status line is “HTTP/1.1 200 OK”, and

another example is “HTTP/1.1 404 Not found”. Commonly used response headers include

Content-Type, Content-Length, and Set-Cookie. We saw a detailed example of the use of the

Set-Cookie response header and the Cookie request header in the Section 4.3 of Chapter 4,

in connection with the Evilginx attack, where the attacker impersonates the user by

capturing a login session cookie.

5.1.2 Web pages

When a user visits a web page by clicking on a link to a URL, scans a QR code containing a

URL, or types a URL on the address bar of the browser, the user’s browser establishes a

TCP or TLS connection as specified by the scheme component of the URL to the server

Page 3 of 19

Page 3 of 19

identified by the hostname component of the URL, and sends an HTTP GET request over

the connection, with a request line comprising the URL. If all goes well, the server sends an

HTTP response over the same connection containing the HTML source code of the web

page.

HTML markup

HTML is a markup language where marked up text is enclosed between an opening tag

such as <p>, where the name of the tag is enclosed by angle brackets, and a corresponding

closing tag such as </p> where the name of the tag is preceded by a forward slash and

enclosed in angle brackets.

An opening tag, may have one or more attributes. For example, the tag <a>, called the

anchor tag, may have an href attribute or a name attribute. When it has an href attribute,

as in , the text between that opening tag

and the closing tag is rendered by the browser as a hyperlink. When the user clicks

on that link, the browser sends an HTTP GET request to the URL

https://example.com/test-page.hml, and if the test page exists, it receives an HTTP

response with status line “HTTP/1.1 200 OK” and a body containing the HTML source code

of the test page.

Fragments

Continuing the example, the test page may have a section with title “Test section”, and that

title may be enclosed between an opening tag and a closing tag

. The browser does not render the title as a hyperlink, because the name attribute

does not specify a target URL. Instead, it specifies a location within the page. If the link to

the page has a fragment component “#test-section”, as in , the browser scrolls to the test

section after rendering the test page.

Since the fragment component is used by the browser after receiving the page, it is not sent

to the server that hosts the page. When the user clicks on the link , the browser sends an HTTP

request to the URL https://example.com/test-page.html, and the server at example.com

does not see the fragment. After the browser receives and renders the test page, it

searches it for an anchor tag with name attribute “test-section”, and scrolls to the position

of that tag. This behavior is used to implement the implicit flow of OAuth, as we shall see

below in Section 5.2.

https://example.com/test-page.hml

Page 4 of 19

Page 4 of 19

Page structure

The source code of a web page is enclosed between <html> and </html> tags and

comprises a head section enclosed by <head> and </head> tags and a body section

enclosed by <body> and </body> tags. The head section contains metadata such as the

title of the page, shown when hovering of a browser tab, the character set used in the page,

such as ASCII or UTF-8, and references to CSS style sheets. The body section includes

content that is rendered by the browser and displayed in the browser page or tab, such as

marked up text and tags with URLs from which the browser retrieves images and other

media.

The body section may also include forms [3]. A form is enclosed in <form> and </form>

tags and contains input elements that the browser renders as UI elements where the user

can enter data. For example, a login page may include a login form with a username input

of type “text” that is rendered as box where the user enters a username, a password input

of type “password” rendered as box that hides the password as it is being entered, and an

input of type “submit” rendered as a button that is used to submit the form.

Forms

A form tag has an action attribute whose value is the URL where the form data is to be sent,

and a method attribute whose value may be POST or GET. The form data is a collection of

name-value pairs, where the names are the name attributes of input elements, and the

values are entered into the form by the user. If the method is POST, the form data is sent in

the body of a POST request. If the method is GET, it is sent in a query string appended to

action attribute.

JavaScript embedded in the page

The HTML code of a web page may also include or reference JavaScript code. JavaScript

may be enclosed between <script> and </script> tags that are usually located in the head

section but may also be included in the body section. That JavaScript code is executed

when the browser finds it while parsing and rendering the html code. JavaScript code may

also be referenced by the src attribute of a <script> tag. When the browser encounters the

tag, it retrieves the code using a GET request and executes it. JavaScript functions known

as event handlers may also be included as the values of certain attributes and be executed

when certain events occur. For example, a <form> tag may have an onSubmit attribute,

whose value is a function that is executed when the user submits the form. That function

Page 5 of 19

Page 5 of 19

may check that all required inputs have been filled in and cancel submission by returning

false if that is not the case.

JavaScript code can send GET and POST requests using the Fetch API [4] without the user

clicking on a link or filling out a form.

Document Object Model

The Document Object Model (DOM) [5] is a hierarchical representation of a web page as a

tree, where each tag is represented by a node. JavaScript code running in the page can use

the DOM to inspect and modify the contents of the page.

The Web Origin concept

The web origin of a web page is, in first approximation, the DNS domain from which the

page has been downloaded. More precisely, it comprises the first three components of the

URL of the page: scheme, hostname, and port. The concept is “typically” used by the

browser to “isolate content retrieved from different origins to prevent malicious web site

operators from interfering with the operation of benign web sites” [6]. We shall see below

in Section 5.1.4 how Web APIs make use of the concept.

5.1.3 Redirection

A redirection response is an HTTP response to an original HTTP request that causes the

browser to immediately send a redirected request addressed to a redirection target URL

different from the target URL of the original request.

There are two kinds of redirection:

• In an HTTP redirection, the redirection response has a redirect status code and a

location header that specifies the redirection target URL. Redirect status codes

begin with the digit “3”.

• In a JavaScript redirection, the redirection response is a code-only web page with

JavaScript code that sends the redirected request to the redirection target URL.

HTTP redirection has historically been confusing, as described in [7, §15.4], because it is

used for two different purposes in two different kinds of use cases:

1. One purpose is the web equivalent of forwarding a letter to a new address; a typical

use case where it is used for this purpose is website reorganization.

Page 6 of 19

Page 6 of 19

2. Another purpose is to implement multiparty protocols, where parties communicate

with each other through the user’s browser.

Status codes 307 and 308 support the first purpose by requiring the browser to use the

method, either GET or POST in the original request and the redirected request. The

method is POST, the browser must save the body of the original request and use the same

body in the redirected request. Status code 303 supports the second purpose by requiring

the browser to redirect a POST request as a GET request. Status codes 301 and 302 are

ambiguous: some browsers will redirect a POST request as a GET request, others as a POST

request with the same body. There is no ambiguity if the original request is a GET request.

JavaScript is only used for the second purpose and provides the important benefit that the

redirected request can be a POST request whether or not the original request if a POST

request. Sending data to the redirection target URL in the body of a POST request is

preferable to sending it in the query string of a GET request because the length of the query

string is constrained by the 2048 character limit on the size of a URL, and because the

query string is recorded in the server log, where it may be exposed to attack.

5.1.4 Web APIs

Web APIs are application programming interfaces specified by the W3C, implemented by

browsers, and usable by JavaScript code running in web pages. A list of all the available

web APIs can be found in [8]. In this section we reference and briefly describe a few that

are particularly relevant to cryptographic authentication.

Web cryptography API

The Web cryptography API, published as a W3C recommendation in 2017 [9], comprises:

1. Interface definitions of cryptographic functions that can be invoked by JavaScript

code as methods of the SubtleCrypto interface, including encrypt, decrypt, sign, verify,

digest, generateKey, deriveKey, deriveBits, importKey, exportKey, wrapKey,

unwrapKey. The SubtleCrypto interface is implemented by the object crypto.subtle,

where crypto is an object available in the global scope of JavaScript code running in

web pages, and in the global scope of worker scripts, including service workers.

2. Descriptions of symmetric and asymmetric algorithms that can be used as

parameters of the above functions. Most of the functions provide symmetric or

asymmetric functionality depending on the algorithm that they are used with.

Descriptions written in Web IDL [10] are provided for the following algorithms:

RSASSA-PKCS1-v1_5, RSA-OAEP, ECDSA, ECDH, AES-CTR, AES-CBC, AES-GCM, AES-KW,

Page 7 of 19

Page 7 of 19

HMAC, the algorithms of the two SHA families, including SHA-1, SHA-256, SHA-384

and SHA-512, HKDF, and PBKDF2.

3. An interface definition of a function getRandomValues() for generating

cryptographically random values. The function can be invoked as a method of the

crypto object by JavaScript code running in a web page and by worker scripts. Two

notes at the beginning of [9, §10.1] provide explanations of how browsers

supporting the API should implement this function. The second note clarifies that

getRandomValues is not supposed to be a true random number generator that

blocks when not enough entropy is available. The first note suggests using

/dev/urandom as an entropy source for the pseudo-random number generator;

/dev/urandom is an OS-provided special file originally introduced by Linux, but

now widely available across OSes, including in Windows and MacOS.

A recent update to the API, in the form of an Editor’s Draft dated 09 January 2025 [11] adds

descriptions of two algorithms: Ed25519 for signature and verification using elliptic curve

Curve25519 as specified in RFC 8032 [12], and X25519 for key exchange, also using curve

Ed25519, as specified in RFC 7748 [13]. There had been no prior updates prior to this one

since the publication of the W3C Recommendation in 2017.

Benefits and drawbacks of the Web Cryptography API

The Web Cryptography API provides two important benefits: it can take advantage of a

source of entropy provided by OS, such as /dev/urandom, and it can store private keys in

protected storage available to the browser but not to JavaScript code running in the

browser.

But it also has two disadvantages when compared to an open source cryptographic library

not built into the browser.

The first disadvantage is that browsers that implement the API do not necessarily provide

all the algorithms described in the specification, since Section 18.1 of the specification

states:

“In addition to providing a common interface to perform cryptographic operations,

by way of the SubtleCrypto interface, this specification also provides descriptions

for a variety of algorithms that authors may wish to use and that User Agents may

choose to implement.”

Therefore, some users of a web application whose JavaScript frontend relies on the API

may encounter errors if they happen to use a browser, or a particular version of a browser,

that does not implement an algorithm used by the frontend. By contrast, a web application

Page 8 of 19

Page 8 of 19

that uses an open source cryptographic library will include in its frontend the algorithms

that it needs among those provided by the library and test its code with those algorithms.

The second disadvantage is that it is cumbersome to use, because it is an asynchronous

interface based on promises. It does not make sense to use an asynchronous interface for

very fast operations. It has been reported in [14] that a Macbook Book with an ARM

processor can perform 32,866 ECDSA signatures per second using the NIST P-256 curve.

That means it takes 30.4 microseconds to perform a signature. The reported benchmark is

for OpenSSL, which is implemented in C, while JavaScript is an interpreted language, but it

is hard to imagine a use case where JavaScript running in a browser would have to perform

thousands of operations per second. And if such a use case is ever found, there is

WebAssembly.

It would make sense for the frontend of a web application to use an open source JavaScript

cryptographic library instead of the Web Cryptography API, while using

crypto.getRandomValues to generate random bits, thus taking advantage of the

/dev/urandom noise source, and relying on alternative ways of protecting a private key

other than entrusting it to the browser. This topic is further discussed in Chapter 7.

Web workers and service workers

The JavaScript code embedded in a web page runs in a single thread of execution. This

means that, if JavaScript code in a <script> tag, or in an attribute of a tag, performs a

lengthy operation, the page becomes unresponsive to user interaction until the operation

ends. Worker threads are separate threads of execution that can perform long operations

without blocking the main thread.

There are two distinct Web APIs that can be used to create worker threads, called the Web

Workers API [15] and the Service Worker API [16].

 The Web Workers API is used to create worker threads for a variety of purposes. A web

worker thread is created by writing a file with the JavaScript code to be executed and

calling the Worker constructor, passing the URL of the file as an argument.

The Service Worker API is used to create worker threads that will intercept HTTP requests

and respond to them locally. A service worker is created by writing a file with the

JavaScript code that will later be used to handle intercepted requests, and calling a function

register(), which is a method of a ServiceWorkerContainer interface. The register()

function takes as input the URL of the file and options including the scope of the requests to

Page 9 of 19

Page 9 of 19

be intercepted, which must be within the web origin of the script that calls the register()

function. When an HTTP request is addressed to a URL within the scope, the thread

request is created and may handle the request by creating a web page on the fly and

passing it to the rendering engine of the browser.

Web Storage API

The Web Storage API [17] allows JavaScript code embedded in a web page to store name-

value pairs as properties of two global JavaScript objects called localStorage and

sessionStorage. Name-value pairs stored in localStorage by a web page can be retrieved by

a web page of same origin visited in a different tab of the browser, and remain available

after the browser is closed and reopened. Name-value pairs stored in sessionStorage are

only available in the same tab where they have been created and go away then browser is

closed.

The localStorage and sessionStorage objects are only available to JavaScript code running

in the main execution context. They are not available to web workers or service workers.

However, after a service worker intercepts a request and creates a web page that is

rendered by the browser, JavaScript in that web page can access localStorage. We shall see

in Section 12.4 of Chapter 4 how this is used for credential presentation when the browser

is used as a credential wallet.

IndexedDB API

The IndexedDB API provides the frontend of a web application with a facility for storing

and retrieving large amounts of data. To avoid blocking the main execution thread while

manipulating large amounts of data, the IndexedDB API can be accessed by worker threads

but cannot be accessed by the main execution thread. Both web workers and service

workers can use the API to create object-oriented databases equipped with indexes for

efficient search. The storage and retrieval operations are performed asynchronously as

specified by an interface based on promises.

Web Authentication API

The Web Authentication API [18] is part of the FIDO2 standard [19], which is described in

Chapter 10.

5.2 Delegated authorization for federated identity management

Page 10 of 19

Page 10 of 19

Facebook Connect, announced in 2008 [20], was a form of federated identity management

that allowed Facebook users to “log in with Facebook” to third party websites by

authorizing those websites to access their Facebook account, where they found identity

information.

This was recognized as an important innovation, and an effort was started at the IETF to

make it generally available rather than proprietary. The effort eventually resulted in the

OAuth 2.0 Authentication Framework [21], developed by the OAuth working group, which

is now working on OAuth 2.1, and the OpenID Connect specification [22], developed by the

OpenID foundation. Oauth 2.0 and OpenID Connect are described below in Sections 5.3 and

5.4 respectively.

Facebook was invited to participate in the effort, and there was hope that they would adopt

the resulting non-proprietary specifications. They did not, but OAuth 2.0 and OpenID

Connect have been successful, nevertheless. It is not clear to what extent Facebook

Connect is still being used [23].

5.3 OAuth 2.0

OAuth 2.0 [21] is a protocol that allows the user of a web service to delegate authorization

to access the user’s account at the service to a third-party client, so that the client can use

resources owned by the user and protected from unauthorized access by the service on

behalf of the user. In an example provided by the specification, the service that protects

the resources is a photo storage service, the client is a photo printing service, and the user

delegates authorization to access the photo storage service to the client so that the client

can print the user’s photos.

The OAuth 2.0 protocol has four flows, known as grant types. In the authorization-code

flow, described in Section 5.3.1, the user provides consent for an authorization server to

issue an authorization code to the client, which the client uses to obtain an access token,

which it then uses to access protected resources from a resource server. In the implicit flow,

described in Section 5.3.2, the authorization server provides the access token itself to the

client, skipping the intermediate step of issuing an authorization code to be exchanged for

the access token. In the resource owner password credentials grant, the client uses the

user’s credentials to obtain an access token that provides limited access to the user’s

account. In the client credentials flow, the client uses its own credential to obtain the access

token.

5.3.1 Authorization-code flow

Page 11 of 19

Page 11 of 19

Figures 1a-1g provides an example of a run of the authorization-code flow, without

mentioning every parameter of every step of the flow. The reader is referred to RFC 6749

for a more precise description.

In Figure 1a, the user submits a request to a photo printing service to print photos stored in

a photo storage service. This causes the browser to send an HTTP request to the client. In

this example all HTTP requests will be sent over TLS.

In Figure 1b, the client responds to the HTTP request of Figure 1a with an HTTP 302

redirection respond targeting the authorization of the photo sharing service, including as

parameters of the query string of the location header, an ID of the client known to the

authorization server, a callback URL that will be used to send the redirect response of

Figure 1d, the scope of access to protected resources being requested by the client, and a

client state parameter that will provide context for the redirection response of Figure 1d.

Re uest to
print photos

Photo storage service

Photo printing
service

302

Page 12 of 19

Page 12 of 19

In Figure 1c, the user sends an HTTP POST request to the authorization server providing

authentication and consent to grant the client the requested scope of access.

In Figure 1d, the authorization server sends an HTTP 302 response to the HTTP request of

Figure 1b, conveying the authorization code and the state that it received in Figure 1b to

the client. The authorization code specifies the scope of access that was requested in

Figure 1b.

302

Page 13 of 19

Page 13 of 19

In Figure 1e, the client authenticates to the authorization server with its client ID and

associated client secret and submits the authorization code.

In Figure 1f, the authorization server provides an access token for the scope of access

specified in the authorization code. It may also provide a refresh token that can be used to

obtain additional access tokens.

Page 14 of 19

Page 14 of 19

In Figure 1g, the client submits the access token to the resource server of the photo storage

service and is granted the scope of access that it requested in Figure 1b. The client can now

let the user browse the photos stored in the storage services and select photos to be

printed, then print the selected photos.

5.3.2 Implicit flow

In the implicit flow, the authorization server redirects back to the client with a URL that

includes the access token in the fragment instead of the authorization code in query string.

The steps of the flow are derived from the steps of the authorization code flow by replacing

Figures 1d, 1e and 1f with figures 2a and 2b below.

In Figure 2a, the authorization server responds to the HTTP request of Figure 1b with an

HTTP 302 response addressed to a URL with an access token included in the fragment. As

we saw above in Section 5.1.1, when an HTTP request is addressed to a URL with a

fragment, the fragment stays in the browser, where it is available to JavaScript running in

302

Fragment

Page 15 of 19

Page 15 of 19

the HTTP response to the request using the DOM, as window.location.hash, or

document.location.hash, or just location.hash.

In Figure 2b, the client responds to the redirected request of Figure 2a with a code-only

page containing a script that retrieves the fragment and sends it to the backend of the client

in an HTTP POST request. The client parses the fragment, obtains the access token, and

submits it to the resource server in the next step of the protocol, shown in Figure 1g.

The implicit flow is useful for clients that do not have a client ID and a client secret because

they run in the browser, where the secret might be exposed to capture. However, the

implicit flow is deemed insecure for a variety of reasons. Here is for example, what

Microsoft says about the implicit flow:

Microsoft recommends you do not use the implicit grant flow. In most scenarios, more

secure alternatives are available and recommended. Certain configurations of this

flow require a very high degree of trust in the application and carries risks that are not

present in other flows. You should only use this flow when other more secure flows

aren't viable.

A discussion of OAuth 2.0 security can be found in the recent RFC 9700 [24].

5.4 OpenID Connect

OpenID Connect is a successor of OpenID protocol, which was succeeded by OpenID 1.1 and

then OpenID 2.0. Unfortunately the specifications of these protocols are not available on

the web site of the OpenID Foundation as of this writing, with request giving 503 results.

Fragment

 cript

Access token

Page 16 of 19

Page 16 of 19

The name of the OpenID Connect protocol is a clear reference to Facebook Connect, and as

Facebook Connect it combines federated identity and delegated authentication. But it

combines them differently.

Two paradigms for combining identification with authorization

Facebook used the paradigm sketched above in Section 5.2. It leveraged delegated

authorization to provide identification by giving access to the user’s profile to the relying

party. OpenID Connect leverages instead the two subsequent redirections, from the relying

party to the authorization server, then back to the relying party, to provide identification in

addition to, but separately from, delegated authentication. In OpenID Connect the relying

party obtains two tokens: the same access token as in OAuth 2.0, plus an ID token. The

access token provides access to the user’s account at the service provider until it expires,

and it can be refreshed when it expires. The ID token provides a snapshop of identity

information about the user at the time when it is obtained.

Protocol flows

As the specification says [22, §1], “OpenID Connect 1.0 is a simple identity layer on top of

the OAuth 2.0 protocol”. It just returns the ID token in addition to the access token.

There are three flows:

• The authorization code flow is like the authorization code flow of OAuth 2.0, except

that the relying party obtains the ID token in addition to the access token when it

presents the authorization code to the authorization server.

• The implicit flow is like the implicit flow of OAuth 2.0, except that the fragment

contains the ID token instead of or in addition to the access token. The relying party

obtains the fragment as shown above in Figure 2b.

• The hybrid flow is like the authorization code flow of OAuth 2.0, and like the above

authorization code flow of OpenID Connect, except that the relying party may only

get one of the two tokens in exchange for the authorization code.

Signed response

The ID token is formatted as a JSON Web Token (JWT). It must be signed, and may also be

encrypted, by the OpenID Provider.

It is important to notice, however, that signing it does not provide increased security

because the ID token is received over TLS from the OpenID Provider. More precisely,

Page 17 of 19

Page 17 of 19

• In the authorization code flow and the hybrid code flow, it is received in the HTTP

response to the HTTP request that the relying party sent to the authorization server

at step 6 of either flow.

• In the implicit flow, it is received in the HTTP response to the HTTP request that the

relying party sends to the authorization server at step 4 of the protocol.

In both cases, the mentioned HTTP request is sent over TLS with authentication of the

authorization server by its TLS server certificate.

5.5 JSON Web Tokens (JWTs)

JSON [25] is a data interchange format that uses the same syntax that is used in the literal

object notation of the JavaScript programming language.

JSON Web Token (JWT) [26] is a format for encoding claims as name-values pairs using

JSON, where each name is a three-letter lower case abbreviation. The following claim

names were registered with IANA when RFC 7519 was published:

• "iss" (Issuer)

• “sub” (ubject)

• “aud” (Audience)

• “exp” (Expiration time)

• “nbf” (Not before)

• “iat” (Issued at)

• “jti” (JWT ID)

JWTs can be signed using JSON Web Signature (JWS) [27] and/or encrypted using JSON

Web Encryption (JWE) [28].

References

[1] Mozilla. HTTP. Retrieved from https://developer.mozilla.org/en-US/docs/Web/HTTP

[2] T. Berners-Lee et al. (1994, December). RFC 1738: Uniform Resource Locators (URL).

Retrieved from https://datatracker.ietf.org/doc/html/rfc1738

[3] Mozilla. The Form element. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/HTML/Element/form.

[4] Mozilla. Fetch API. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/API/Fetch_API

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form

Page 18 of 19

Page 18 of 19

[5] Mozilla. The Document Object Model. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/API/Document_Object_Model.

[6] Barth, A. (2020, July 29). RFC 6454: The Web Origin Concept. Retrieved from

https://datatracker.ietf.org/doc/rfc6454/.

[7] R. Fielding et al. (2022, June). RFC 9110: HTTP Semantics. Retrieved from

https://datatracker.ietf.org/doc/html/rfc9110.

[8] Mozilla. Web APIs. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/API.

[9] W3C. (2017, January 26). Web Cryptography API. Retrieved from

https://www.w3.org/TR/WebCryptoAPI/.

[10] WHATWG. Web IDL. Retrieved from https://webidl.spec.whatwg.org/.

[11] Huigens, D. (2025, January 9). Web Cryptography API, W3C Editor's Draft. Retrieved

from https://w3c.github.io/webcrypto/.

[12] Josefsson, S., & Liusvaara, I. (2017, January). RFC 8032: Edwards-Curve Digital

Signature Algorithm (EdDSA). Retrieved from

https://datatracker.ietf.org/doc/html/rfc8032.

[13] A. Langley et al. (2016, January). Elliptic Curves for Security. Retrieved from

https://datatracker.ietf.org/doc/html/rfc8032.

[14] Asecuritysite.com. Digital Signature Benchmark. Retrieved from

https://asecuritysite.com/openssl/openssl3_b2.

[15] Mozilla. Web Workers API. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/API/Web_Workers_API.

[16] Mozilla. Service Worker API. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/API/Service_Worker_API.

[17] Mozilla. Web Storage API. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/API/Web_Storage_API.

[18] W3C. Web Authentication: An API for accessing Public Key Credentials. Retrieved from

https://www.w3.org/TR/webauthn-2/.

[19] FIDO Alliance. FIDO Authentication. Retrieved from https://fidoalliance.org/fido2/.

[20] Morin, D. (2008, May 9). Announcing Facebook Connect. Retrieved from

https://developers.facebook.com/blog/post/2008/05/09/announcing-facebook-connect/.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://datatracker.ietf.org/doc/rfc6454/
https://datatracker.ietf.org/doc/html/rfc9110
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://www.w3.org/TR/WebCryptoAPI/
https://webidl.spec.whatwg.org/
https://w3c.github.io/webcrypto/
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032
https://asecuritysite.com/openssl/openssl3_b2
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://fidoalliance.org/fido2/
https://developers.facebook.com/blog/post/2008/05/09/announcing-facebook-connect/

Page 19 of 19

Page 19 of 19

[21] Hardt, D. (2012, October). RFC 6749: The OAuth 2.0 Authorization Framework.

Retrieved from https://datatracker.ietf.org/doc/html/rfc6749.

[22] N. Sakimura et al. (2023, December 15). OpenID Connect Core 1.0 incorporating errata

set 2. Retrieved from https://openid.net/specs/openid-connect-core-1_0.html.

[23] Microsoft. Facebook Connect is no longer available. Retrieved from

https://support.microsoft.com/en-us/office/facebook-connect-is-no-longer-available-

f31c8107-7b5a-4e3d-8a22-e506dacb6db6.

[24] T. Lodderstedt et al. (2025, January). RFC 9700: Best Current Practice for OAuth 2.0

Security. Retrieved from https://datatracker.ietf.org/doc/rfc9700/.

[25] T. Bray. (2014, March). RFC 7159: The JavaScript Object Notation (JSON) Data

Interchange Format. Retrieved from https://datatracker.ietf.org/doc/html/rfc7159.

[26] M. Jones et al. (2015, May). JSON Web Token (JWT). Retrieved from

https://datatracker.ietf.org/doc/html/rfc7519.

[27] Jones, M., Bradley, J., and N. Sakimura, RFC 7515: JSON Web Signature (JWS), May

2015. Retrieved from http://www.rfc-editor.org/info/rfc7515.

[28] Jones, M. and J. Hildebrand, RFC 7516: JSON Web Encryption (JWE), May 2015.

Retrieved from http://www.rfc-editor.org/info/rfc7516.

https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://support.microsoft.com/en-us/office/facebook-connect-is-no-longer-available-f31c8107-7b5a-4e3d-8a22-e506dacb6db6
https://support.microsoft.com/en-us/office/facebook-connect-is-no-longer-available-f31c8107-7b5a-4e3d-8a22-e506dacb6db6
https://datatracker.ietf.org/doc/rfc9700/
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7519
http://www.rfc-editor.org/info/rfc7515
http://www.rfc-editor.org/info/rfc7516

