The Rise of Cryptographic Authentication

Presentation at SJSU, April 5, 2018
Updated April 9

Francisco Corella
fcorella@pomcor.com
Karen Lewison
kplewison@pomcor.com
Cryptographic authentication

• Authentication by demonstrating possession/knowledge of a cryptographic key
• Very successful for server authentication
 – X.509 TLS certificates
• Limited use on the client
 – TLS client certificates
 – PIV Authentication certificates in PIV or CAC cards
 – Anonymous credentials
Passwords are still the dominant client authentication technology

- **Two-party** authentication
 - E.g. user authentication to a web app
 - User registers password, submits password at authentication time to be recognized as repeat visitor

- **Three-party** authentication via federated login, e.g. login with Facebook
 - Relying party (RP) redirects browser to identity provider (IdP)
 - IdP authenticates user as repeat visitor with password
 - IdP redirects browser back to RP, passing user info
But problems with passwords have reached a critical mass

- Phishing
- Proliferation of passwords to be remembered by user
- Password reuse leading to capture on malicious sites
- Frequent breaches of large password databases
- Difficulty of entering high-entropy passwords on smart phone
Alternatives have emerged but have their own issues

• Two-factor authentication with one-time password (OTP) sent in message or produced by hardware or software generator
 – Carries cost and friction

• Explosion of biometric authentication modalities and architectures
 – Local biometric verification to unlock device
 – Remote biometric verification by voice or face recognition to log in to a bank
Hard problems in biometric authentication

• Presentation attack detection (spoofing detection)
 – Voice morphing
 – Fake finger created from photograph
 • MSU research program on fake fingers
 – IARPA research program
• Adversarial perturbation attacks against face recognition
 – Glass frames
 – ICLR 2018
But cryptographic authentication, alone or in combination with other authentication methods, is rising as an effective solution for client authentication
This is made possible by recent technology developments

• JavaScript morphing into a powerful and fast programming language, usable on client, server (under Node.js) and native apps (within React)

• Emergence of many web APIs
 – Web Storage API
 • Provides “HTML5 localStorage”
 – IndexedDB API
 – Web Cryptography API
 – Service Worker API
 – Web Authentication API
Cryptographic authentication supports many different architectures, which can be classified along two facets

- **Parties involved**
 - Two-party (2P), repeat-visitor authentication
 - Authentication by trusted third party (3P)
 - Involved or not involved at transaction time

- **Factors**
 - One factor (1F)
 - Multiple factors (2F, 3F)
 - All of them verified remotely
 - Some of them verified locally to unlock the cryptographic credential
A sample of cryptographic authentication architectures for web applications

A. Key pair stored in browser (2P, 1F)
B. 2P-1F with credential in secure storage
C. 2P-2F with biometric unlocking of credential
D. Like (A) + password, with joint hash of password and public key (2P, 2F) stored in database
E. Third-party cryptographic credential, presented by a “service worker”, with issuer not involved in transaction (3P, 1F)
F. “Rich credential” with credential issuer not involved in transaction, using a “service worker” (3P, 3F)
A. Key pair stored in browser

• Credential is username plus DSA, ECDSA or RSA key pair, which replaces password
 – Stored in browser, protected by *same origin policy*
 – Private key may be made unextractable even by same origin

• *Registration*: JavaScript (JS) front-end (FE) of web application generates key pair, registers public key with back-end (BE) (and proves possession of private key to back-end)

• *Login*: JS FE proves possession of private key

• Proving possession of private key means signing a challenge from the BE
 – JS redirection + HTTP redirection
B and C: FIDO specifications

• Key pair is kept in an authenticator, which may provide secure storage (protected against malware and possibly against physical tampering), such as:
 – USB dongle
 – TPM
 – TEE
• Use of the key pair may be unlocked by fingerprint or face recognition, provided by the platform (phone or laptop)
• Optional authenticator attestation
• The W3C Web Authentication API specifies how the JS FE accesses the authenticator
D. Joint hash of password and public key*

• Browser registers public key and password
• BE stores a joint hash of public key and password (instead of a salted hash of the password) in the user database
• Password is secure against a breach of the database

* As mentioned during the talk, Pomcor has been granted a patent related to this architecture (US Patent 9887989).
E. Third-party cryptographic credential presented by a “service worker”

• A service worker is a web worker that can intercept HTTP requests to its back-end and respond locally

• At registration time, the credential issuer (the trusted third party) provisions the credential to browser and registers service worker with the browser

• At authentication time, relying party redirects to issuer, but redirected request is intercepted by service worker, which responds locally without involvement of the issuer back-end
Issuance

- Credential issuer
- Internet
- Browser
- Web page
- JavaScript
- Credential issuance page
- localStorage
Issuance

Internet

Browser

Credential issuer

Service worker

Web page

JS front-end registers SW with browser

localStorage

Credential

JavaScript
Presentation

Browser

Credential issuer

Service worker

Web page

Credential

localStorage

Credential verifier

Internet

Request that requires identification
Redacted request intercepted by service worker.

Issuer backend doesn’t see request.

Browser

Credential

Service worker

Web page

JavaScript

localStorage

Credential

Internet

Credential verifier

Redirected request redirected to issuer.
Presentation

Internet

Browser

Service worker

Web page

JavaScript

Consent request page generated by service worker

localStorage

Credential
Presentation

Internet

Browser

Credential

Service worker

Web page

JavaScript

localStorage

Credential

Credential verifier
F. “Rich credential”

- Cryptographic credential extended to support 3F authentication
- Includes biometric and password verification data signed by the issuer
- Allows biometric and password factors to be verified by relying party without prior relationship of the user with the relying party
- Uses a *typed hash tree* to provide selective disclosure of attributes and selective presentation of verification factors
Typed hash tree

• Each node has a type in addition to a label
• The label of a node is a cryptographic hash of the types and labels of its children
• Internal nodes have a distinguished type
• A subtree can be pruned, leaving a dangling node (a leaf node with the distinguished type)
• The root label serves as an omission-tolerant cryptographic checksum of the type-label pairs of the non-dangling leaf nodes
• The rich credential comprises a private key and a certificate that binds the public key to the root label
Example of a typed hash tree, in its issuance state.
Peripheral subtrees, one for each attribute and each verification factor

HoPwSS = Hash of Password with Secret Salt
Issuer removes HoPwSS and biometric keys to put tree in its storage state
Subject’s device prunes peripheral subtrees to put tree in its presentation state.
Verifier receives HoPwSS and biometric keys, restores them to put tree in its verification state, computes the root label and verifies the certificate signature.
Thank you for your attention!

A demo of cryptographic authentication for a web application (architecture A) can be found at:

https://pomcor.com/pjcl/

For more information:

Francisco Corella
fcorella@pomcor.com

Karen Lewison
kplewison@pomcor.com

Any questions?
Appendix
Revocable Biometrics

- A.k.a. biometric cryptosystems, fuzzy extractors, fuzzy vault, etc.
- Based on error correction techniques

<table>
<thead>
<tr>
<th>Enrollment sample</th>
<th>Feature extraction</th>
<th>Biometric code</th>
<th>Biometric key generation</th>
<th>Biometric key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random bits</td>
<td>Helper data</td>
<td>Similar</td>
<td>IDENTICAL</td>
<td></td>
</tr>
</tbody>
</table>

Verificaction sample | Feature extraction | Biometric code | Biometric key regeneration | Biometric key |