
Storing	Cryptographic	Keys	in	
Persistent	Browser	Storage	

Francisco	Corella	
fcorella@pomcor.com	
Karen	Lewison	

kplewison@pomcor.com	

	
Revised	June	2,	2017	 1	

Revised	a8er	Presenta9on	at	ICMC	2017	

Please	see	the	companion	blog	post	at	
hCps://pomcor.com/blog/keys-in-browser/	

https://pomcor.com/blog/keys-in-browser/


Key	storage	in	web	clients	
•  Use	of	cryptography	in	web	apps	has	been	hindered	by	the	

problem	of	where	to	store	cryptographic	keys	on	the	client	
side	
–  Cryptographic	keys	can	be	stored	today	in	smart	cards	and	
TPMs,	and	have	been	stored	in	the	past	in	Infocards	and	files	
accessed	by	Java	applets	

–  TLS	client	cerLficates	can	be	imported	into	web	browsers	
–  But	these	soluLons	are	not	generally	available	today	to	all	
users	of	web	apps		

•  New	web	technologies	may	enable	generally	available	key	
storage	soluLons	

•  In	this	talk	we	focus	as	an	example	on	keys	in	
cryptographic	creden9als	used	for	authenLcaLon	or	
idenLficaLon	

Revised	June	2,	2017	 2	



New	web	technologies	

•  These	new	web	technologies	are	available	to	
JavaScript	(JS)	code	embedded	in	web	pages	
through	APIs:	
– Web	Storage	API	

•  Provides	“HTML5	localStorage”	
–  IndexedDB	API	
– Web	Cryptography	API	
– Service	Worker	API	
– Web	AuthenLcaLon	API	

	
Revised	June	2,	2017	 3	



Web	AuthenLcaLon	API	
•  Based	on	FIDO	U2F	specificaLon,	taken	over	by	the	W3C	

–  Will	be	available	later	this	year	in	Chrome,	Firefox,	Edge	
•  Allows	JS	code	to	store	a	cryptographic	credenLal	in	an	

“authenLcator”	
–  Cryptographic	module	in	secure	storage	(e.g.	USB	dongle,	TPM,	
Secure	Element	or	TEE)	

–  Provides	a	signed	a]estaLon	of	security	
•  But	the	cryptographic	credenLal	is	an	uncerLfied	key	pair	

–  Only	usable	for	two-party	authenLcaLon	
–  No	support	for	credenLals	issued	by	a	third	party	

•  Very	complex	

Revised	June	2,	2017	 4	



Web	Storage	API	

•  Available	in	all	browsers	
•  Provides	persistent	storage	for	JS	strings	as	
properLes	of	the	localStorage	object	

•  Data	protected	by	the	same	origin	policy	of	
the	browser	

•  Very	simple	

Revised	June	2,	2017	 5	



IndexedDB	API	

•  Available	in	all	browsers	
•  Provides	persistent	storage	of	JS	objects	
indexed	by	keys	in	databases	managed	by	the	
indexedDB	object	

•  Data	protected	by	the	same	origin	policy	of	
the	browser	

•  Complex	asynchronous	interface	
– “IndexedDB	API	is	powerful,	but	may	seem	too	
complicated	for	simple	cases”	–	MDN	

Revised	June	2,	2017	 6	



Web	cryptography	API	
•  Available	in	most	browsers	
•  Provides	RSA	and	ECDSA	(with	NIST	curves	P-256,	P-384	
and	P-512)	
–  Plus	ECDH,	AES	(including	AES-GCM),	HMAC,	SHA	(SHA-1,	
SHA-256,	SHA-384	and	SHA-512),	HKDF,	PBKDF2	

–  Does	not	provide	DSA	
•  Key	pair	generaLon	produces	two	CryptoKey	objects	and	
private	key	can	be	made	non-extractable	from	its	
CryptoKey	object	
–  CryptoKey	object	is	not	persistent	by	itself	
–  It	cannot	be	encoded	as	a	string	for	storage	in	localStorage	
–  But	it	can	be	stored	in	indexedDB	

Revised	June	2,	2017	 7	



Service	Worker	API	

•  Allows	the	front-end	of	a	web	app	to	work	“offline”	
like	a	naLve	app,	without	accessing	the	back-end	

•  Available	in	Chrome,	Firefox	and	Opera,	under	
development	in	Edge,	under	consideraLon	for	Safari	

•  JS	front-end	registers	a	service	worker	with	the	
browser	and	configures	it	to	intercept	certain	requests	
to	the	backend	and	respond	to	them	by	genera9ng	a	
web	page	that	is	rendered	by	the	browser	

•  The	generated	web	page	may	include	JS	code,	which	
can	be	used	to	present	a	cryptographic	creden9al	

Revised	June	2,	2017	 8	



Revised	June	2,	2017	 9	

Four	solu9ons	
for	storing	
cryptographic	
creden9als	in	
the	browser	

Using	localStorage	
	
	

Any	cryptographic	credenLal	(any	
cerLfied	key	pair,	anonymous	
credenLals,	rich	credenLals,	etc.)	

Using	the	IndexedDB	and	
Web	Cryptography	APIs	

	
CredenLal	must	be	RSA	or	ECDSA	
cerLfied	key	pair;	private	key	not	
extractable	from	CryptoKey	object	

No	Trusted	
Consent	
Manager	

Solu9on	1	 Solu9on	2	

With	Trusted	
Consent	
Manager	

Solu9on	3	 Solu9on	4	

Details	in	
slide	19	



Browser	
	
	
	
	
	
	
	
	
	
	

Web	page	
	
	
	

Revised	June	2,	2017	 10	

JavaScript	

localStorage	
	
	

CredenLal	
issuer	

Internet	

Creden9al	
issuance	

page	

SoluLon	1	–	Issuance	



Browser	
	
	
	
	
	
	
	
	
	
	

Web	page	
	
	
	

Revised	June	2,	2017	 11	

JavaScript	

localStorage	
	
	

CredenLal	
issuer	

Internet	

Issuance	
protocol	

SoluLon	1	–	Issuance	



Browser	
	
	
	
	
	
	
	
	
	
	

Web	page	
	
	
	

Revised	June	2,	2017	 12	

JavaScript	

localStorage	
	
	

CredenLal	
issuer	

Internet	

CredenLal	

SoluLon	1	–	Issuance	



Browser	
	
	
	
	
	
	
	
	
	
	

Web	page	
	
	
	

Revised	June	2,	2017	 13	

JavaScript	

localStorage	
	
	CredenLal	

Service	
worker	

CredenLal	
issuer	

Internet	

JS	front-end	registers	
SW	with	browser	

SoluLon	1	–	Issuance	



Browser	
	
	
	
	
	
	
	
	
	
	

Web	page	
	
	
	

Revised	June	2,	2017	 14	

localStorage	
	
	CredenLal	

Service	
worker	

CredenLal	
issuer	

CredenLal	
verifier	

Internet	
Request	that	
requires	
iden9fica9on	

SoluLon	1	–	PresentaLon	



Browser	
	
	
	
	
	
	
	
	
	
	

Web	page	
	
	
	

Revised	June	2,	2017	 15	

JavaScript	

localStorage	
	
	CredenLal	

Service	
worker	

CredenLal	
issuer	

CredenLal	
verifier	

Internet	

Request	
redirected	
to	issuer	

Redirected	
request	

intercepted	by	
service	worker	

Issuer	
backend	

doesn’t	see	
request	

SoluLon	1	–	PresentaLon	



Browser	
	
	
	
	
	
	
	
	
	
	

Web	page	
	
	
	

Revised	June	2,	2017	 16	

JavaScript	

localStorage	
	
	CredenLal	

Service	
worker	

CredenLal	
verifier	

Internet	

Consent	request	
page	generated	
by	service	
worker	

SoluLon	1	–	PresentaLon	



Browser	
	
	
	
	
	
	
	
	
	
	

Web	page	
	
	
	

Revised	June	2,	2017	 17	

JavaScript	

localStorage	
	
	CredenLal	

Service	
worker	

CredenLal	
verifier	

Internet	

SoluLon	1	–	PresentaLon	



Web	page	
	
	
	JavaScript	

Browser	
	
	
	
	
	
	
	
	
	
	

Revised	June	2,	2017	 18	

localStorage	
	
	CredenLal	

Service	
worker	

CredenLal	
verifier	

Internet	

Credential	
presenta9on	

SoluLon	1	–	PresentaLon	



Revised	June	2,	2017	 19	

Four	solu9ons	
for	storing	
cryptographic	
creden9als	in	
the	browser	

Using	localStorage	
	
	

Any	cryptographic	credenLal	(any	
cerLfied	key	pair,	rich	credenLals,	
anonymous	credenLals,	etc.)	

Using	the	IndexedDB	and	
Web	Cryptography	APIs	

	
CredenLal	must	be	RSA	or	ECDSA	
cerLfied	key	pair;	private	key	not	
extractable	from	CryptoKey	object	

No	Trusted	
Consent	
Manager	

Solu9on	1	

Issuer	FE	runs	issuance	protocol	
with	issuer	BE	

Issuer	SW	presents	credenLal	

Solu9on	2	
Issuance	protocol:	issuer	FE	
generates	key	pair,	issuer	BE	
cerLfies	public	key.		Issuer	SW	
presents	credenLal	but	cannot	
extract	private	key	

With	Trusted	
Consent	
Manager	

Solu9on	3	

TCM	FE	runs	issuance	protocol	with	
issuer	BE	

TCM	SW	presents	credenLal	

Solu9on	4	
Issuance	protocol:	TCM	FE	
generates	key	pair,	issuer	BE	
cerLfies	public	key.		TCM	SW	
presents	credenLal	but	cannot	
extract	private	key	

TCM	=	Trusted	Consent	Manager,	FE	=	Front-end,	BE	=	Back-end;	SW	=	service	worker		



Revised	June	2,	2017	 20	

SECURITY	
POSTURES	

A]ack	by	
issuer	at	
issuance	

A]ack	from	
issuer	aker	
issuance	

Malicious	JS	
from	other	

origin	
Malware	 Physical	

capture	

SoluLon	1:	LS	 Capture	 Capture	 Secure	 Capture	 Capture	

SoluLon	2:	IDB/CK	 Capture	 Use	 Secure	 Capture	 Capture	

SoluLons	3	and	4:	TCM	 Secure	 Secure	 Secure	 Capture	 Capture	

SC/preloaded	credenLal	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/on-card	key	pair	gen	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/trusted	firmware	 Secure	 Secure	 Secure	 Secure	 Secure	

TP	HW	on	device	 Secure	 Secure	 Secure	 Secure	 Secure	

TEE	 Secure	 Secure	 Secure	 Secure	 Capture	

JS	=	Javascript;	IDB	=	indexedDB;	CK	=	CryptoKey	object;	LS	=	localStorage;	SC	=	Smartcard	
	TCM	=	Trusted	consent	manager;	TP	HW	=	Tamper-proof	hardware,	e.g.	TPM,	Secure	
Element;	TEE	=	Trusted	execuLon	environment	

Capture/Use/Secure:	
refers	to	whether	the	
cryptographic	credenLal	can	
be	used	by	the	adversary	on	
the	subject’s	machine,	or	
captured	for	use	elsewhere	



Revised	June	2,	2017	 21	

SECURITY	
POSTURES	

A]ack	by	
issuer	at	
issuance	

A]ack	from	
issuer	aker	
issuance	

Malicious	JS	
from	other	

origin	
Malware	 Physical	

capture	

SoluLon	1:	LS	 Capture	 Capture	 Secure	 Capture	 Capture	

SoluLon	2:	IDB/CK	 Capture	 Use	 Secure	 Capture	 Capture	

SoluLons	3	and	4:	TCM	 Secure	 Secure	 Secure	 Capture	 Capture	

SC/preloaded	credenLal	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/on-card	key	pair	gen	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/trusted	firmware	 Secure	 Secure	 Secure	 Secure	 Secure	

TP	HW	on	device	 Secure	 Secure	 Secure	 Secure	 Secure	

TEE	 Secure	 Secure	 Secure	 Secure	 Capture	

JS	=	Javascript;	IDB	=	indexedDB;	CK	=	CryptoKey	object;	LS	=	localStorage;	SC	=	Smartcard	
	TCM	=	Trusted	consent	manager;	TP	HW	=	Tamper-proof	hardware,	e.g.	TPM,	Secure	
Element;	TEE	=	Trusted	execuLon	environment	



Revised	June	2,	2017	 22	

SECURITY	
POSTURES	

A]ack	by	
issuer	at	
issuance	

A]ack	from	
issuer	aker	
issuance	

Malicious	JS	
from	other	

origin	
Malware	 Physical	

capture	

SoluLon	1:	LS	 Capture	 Capture	 Secure	 Capture	 Capture	

SoluLon	2:	IDB/CK	 Capture	 Use	 Secure	 Capture	 Capture	

SoluLons	3	and	4:	TCM	 Secure	 Secure	 Secure	 Capture	 Capture	

SC/preloaded	credenLal	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/on-card	key	pair	gen	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/trusted	firmware	 Secure	 Secure	 Secure	 Secure	 Secure	

TP	HW	on	device	 Secure	 Secure	 Secure	 Secure	 Secure	

TEE	 Secure	 Secure	 Secure	 Secure	 Capture	

Storage	in	browser	is	secure	if:	(i)	issuer	is	honest	and	secure;	(ii)	no	malware	on	subject’s	
device;	and	(iii)	no	physical	capture	of	subject’s	device	



Revised	June	2,	2017	 23	

SECURITY	
POSTURES	

A]ack	by	
issuer	at	
issuance	

A]ack	from	
issuer	aker	
issuance	

Malicious	JS	
from	other	

origin	
Malware	 Physical	

capture	

SoluLon	1:	LS	 Capture	 Capture	 Secure	 Capture	 Capture	

SoluLon	2:	IDB/CK	 Capture	 Use	 Secure	 Capture	 Capture	

SoluLons	3	and	4:	TCM	 Secure	 Secure	 Secure	 Capture	 Capture	

SC/preloaded	credenLal	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/on-card	key	pair	gen	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/trusted	firmware	 Secure	 Secure	 Secure	 Secure	 Secure	

TP	HW	on	device	 Secure	 Secure	 Secure	 Secure	 Secure	

TEE	 Secure	 Secure	 Secure	 Secure	 Capture	

Storage	in	browser	not	secure	against	malware	or	physical	capture	



Revised	June	2,	2017	 24	

SECURITY	
POSTURES	

A]ack	by	
issuer	at	
issuance	

A]ack	from	
issuer	aker	
issuance	

Malicious	JS	
from	other	

origin	
Malware	 Physical	

capture	

SoluLon	1:	LS	 Capture	 Capture	 Secure	 Capture	 Capture	

SoluLon	2:	IDB/CK	 Capture	 Use	 Secure	 Capture	 Capture	

SoluLons	3	and	4:	TCM	 Secure	 Secure	 Secure	 Capture	 Capture	

SC/preloaded	credenLal	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/on-card	key	pair	gen	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/trusted	firmware	 Secure	 Secure	 Secure	 Secure	 Secure	

TP	HW	on	device	 Secure	 Secure	 Secure	 Secure	 Secure	

TEE	 Secure	 Secure	 Secure	 Secure	 Capture	

Storage-in-browser	soluLons	have	different	security	postures	w.r.t.	a]ack	from	issuer	
aker	issuance,	e.g.	a]ack	by	an	issuer	insider	aker	issuance	or	introducLon	of	an	XSS	
vulnerability	



Revised	June	2,	2017	 25	

SECURITY	
POSTURES	

A]ack	by	
issuer	at	
issuance	

A]ack	from	
issuer	aker	
issuance	

Malicious	JS	
from	other	

origin	
Malware	 Physical	

capture	

SoluLon	1:	LS	 Capture	 Capture	 Secure	 Capture	 Capture	

SoluLon	2:	IDB/CK	 Capture	 Use	 Secure	 Capture	 Capture	

SoluLons	3	and	4:	TCM	 Secure	 Secure	 Secure	 Capture	 Capture	

SC/preloaded	credenLal	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/on-card	key	pair	gen	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/trusted	firmware	 Secure	 Secure	 Secure	 Secure	 Secure	

TP	HW	on	device	 Secure	 Secure	 Secure	 Secure	 Secure	

TEE	 Secure	 Secure	 Secure	 Secure	 Capture	

localStorage	controlled	by	trusted	consent	manager	is	more	secure	than	SC	assuming	no	
malware	or	physical	capture,	even	with	on-card	key	pair	generaLon,	if	SC	is	provided	by	
the	issuer.		Must	use	trusted	firmware	on	SC	to	match	LS	controlled	by	TCM	



Revised	June	2,	2017	 26	

SECURITY	
POSTURES	

A]ack	by	
issuer	at	
issuance	

A]ack	from	
issuer	aker	
issuance	

Malicious	JS	
frpm	other	

origin	
Malware	 Physical	

capture	

SoluLon	1:	LS	 Capture	 Capture	 Secure	 Capture	 Capture	

SoluLon	2:	IDB/CK	 Capture	 Use	 Secure	 Capture	 Capture	

SoluLons	3	and	4:	TCM	 Secure	 Secure	 Secure	 Capture	 Capture	

SC/preloaded	credenLal	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/on-card	key	pair	gen	 Capture	 Secure	 Secure	 Secure	 Secure	

SC/trusted	firmware	 Secure	 Secure	 Secure	 Secure	 Secure	

TP	HW	on	device	 Secure	 Secure	 Secure	 Secure	 Secure	

TEE	 Secure	 Secure	 Secure	 Secure	 Capture	

Tamper-proof	hardware	on	device	(TPM,	Secure	Element)	or	TEE	are	good	soluLons;	but	
web	applicaLons	cannot	use	them	today	



PotenLal	applicaLons	

•  Remote	idenLty	proofing,	recurring	
authenLcaLon	and	privilege	escalaLon	using	a	
cryptographic	credenLal	such	as:	
– TradiLonal	public	key	cerLficate	and	associated	
private	key	

– Anonymous	credenLal	(e.g.	Idemix)	
– Rich	credenLal	

•  End-to-end	encrypLon	for	web	mail	
•  Cryptographically	secured	online	payments	

Revised	June	2,	2017	 27	



Thank	you	for	your	a]enLon!	
	

Revised	June	2,	2017	

For	more	informaLon:	
pomcor.com	

pomcor.com/blog/	
Companion	post:	pomcor.com/blog/keys-in-browser/	

	
Francisco	Corella	
fcorella@pomcor.com	
Karen	Lewison	

kplewison@pomcor.com	
	

28	

Any	quesLons?	

https://pomcor.com
https://pomcor.com/blog/
https://pomcor.com/blog/keys-in-browser/

