
Francisco Corella
fcorella@pomcor.com

Revised on April 21, 2024
after presentation at IIW 38 on April 18

Multifactor Fusion in a
Verifiable Credential

https://www.linkedin.com/in/fcorella/

Cryptographic authentication

• Definition: authentication by proof of possession of a secret, such as a
private key

• Provides protection against man-in-the-middle attacks
• … If done right

• But it is only one-factor authentication
• No protection against capture of the secret

• Strong security requires authentication with 2 or 3 of the following
factors: knowledge, possession, inherence

Three methods of providing multifactor
cryptographic authentication

1. Use the factors independently of each other in separate
authentication procedures
• Possession factor provided by presenting a cryptographic credential

• Knowledge and/or inherence factors provided by authenticating with a
password and/or a biometric

2. Use a knowledge factor and/or an inherence factor to unlock the
use of a cryptographic credential (as in FIDO)

3. Combine knowledge and/or inherence factors with a possession
factor into a fusion credential and use them together in a single
authentication procedure with the credential

Security strength of the methods

• Method 1 inherits the drawbacks of the knowledge and/or inherence
factors
• If a password is used, it is vulnerable to phishing, reuse, brute force guessing

and dictionary attacks after a backend breach

• Method 2 removes some of these drawbacks by not submitting the
knowledge and/or inherence factors to the backend, but some
drawbacks remain
• If a password is used, it is not vulnerable to a backend reach, but it is still

vulnerable to phishing, reuse and guessing

• A fusion credential provides the strongest security

Examples of fusion credentials

• Camenisch et al., 2013. Fusion of a biometric factor with a zero-
knowledge cryptographic factor

• Gunasinghe and Bertino, 2015. Another fusion of biometrics with
zero-knowledge technology

• Pomcor, 2016. Fusion of a selective disclosure certificate with a
password and/or a biometric

• Pomcor, 2023. Cross-browser authentication with a fusion a selective
disclosure certificate with a password and/or a biometric.

https://patents.google.com/patent/US20120204035
https://link.springer.com/chapter/10.1007/978-3-319-11698-3_30
https://pomcor.com/techreports/RichCredentials.pdf
https://github.com/fcorella/2F-crypto-authn-demo

Question

• Can a verifiable credential be fused with knowledge and/or inherence
factors?

Prerequisite question

• How is a verifiable credential used for authentication?

Verifiable credentials vs. traditional
cryptographic credentials
• A traditional credential is a cryptographic construct intended for

authentication and presentation of claims over a communication
channel, e.g.:
• A FIDO credential is a key pair that a browser uses for return visit

authentication to a relying party over the internet

• A TLS server certificate (resp., client certificate) is an X.509 public key
certificate that a TLS server (resp., TLS client) uses to authenticate over a TCP
connection

• An mDL credential is a selective disclosure public key certificate that a mobile
device uses to authenticate and demonstrate driving privileges over a
proximity channel such as BLE, NFC or Wi-Fi.

Verifiable credentials vs. traditional
cryptographic credentials, continued

• OTOH, a verifiable credential is a signed RDF graph that certifies a
state of affairs in the world, e.g.:
• The kinds of plastics that make up a particular plastic recyclate
• The supply-chain components in a product shipped across a border
• The emission reduction methodology, verification status, and ownership of a

carbon credit
• That an adult is a guardian of a child, both being identified by DIDs.
• That Pat is an alumna of Example University

Verifiable credentials were not originally intended for authentication

Credential presentation
• Authentication with a traditional credential is achieved by means of a

presentation protocol performed over a communication channel, e.g.:
• In authentication with a FIDO key pair, the presentation protocol consists of the

relying party sending a challenge and the browser responding with a signature on
the challenge computed with the private key

• In authentication with a TLS server or client certificate, the presentation protocol is
the TLS handshake

• The VC community has morphed the cryptographic concept of a
presentation protocol into the concept of a verifiable presentation, but:
• Since the VC specification is a data model, a verifiable presentation is data, it's not a

protocol
• The purpose of a verifiable presentation is to establish authorship of data, rather

than to authenticate a party at the other end of a communication channel: "A
verifiable presentation is a tamper-evident presentation encoded in such a way
that authorship of the data can be trusted after a process of cryptographic
verification"

Verifiable presentations are not intended for authentication either

Rephrasing the prerequisite question

• Can a verifiable credential actually be used for authentication?

Answer

• Yes, by imitating the way in which a traditional X.509 public key
certificate is used for authentication

• An X.509 certificate is functionally similar to a VC

 CA signature's <---> Issuer's signature

 Attributes <---> Claims

 Public key <---> DID of the subject

• An X.509 certificate is functionally almost identical to a VC if the DID of
the subject is a did:key decentralized identifier

 CA signature's <---> Issuer's signature

 Attributes <---> Claims

 Public key <---> Public key encoded into method-
 specific identifier of the DID of the subject

• The only difference is that a did:key identifier is used in multiple
credentials, but that does not make a difference for authentication.
• (The public key in an X.509 certificate is actually a decentralized identifier that is

usually not persisted but could be.)

Authentication with an X.509 certificate

• Wallet has:
• An X.509 certificate
• The private key associated with the public key in the certificate

• Verifier sends:
• A random challenge

• Wallet sends:
• The certificate
• A signature on the challenge computed with the private key

• Verifier verifies:
• The signature of the issuer in the certificate
• The identity and trustworthiness of the issuer (e.g. as evidenced by a certificate

chain)
• The signature on the challenge

• Wallet has:
• A verifiable credential that has a DID as subject identifier, shared with other

credentials, of the form:
 did:key:<encoding of a public key>
• The private key associated with the public key encoded into the shared DID,

stored in the secure enclave of the wallet

• Verifier sends a random challenge

• Wallet sends:
• The verifiable credential
• A signature on the challenge computed with the private key

• Verifier verifies:
• The signature of the issuer in the verifiable credential
• The identity and trustworthiness of the issuer
• The signature on the challenge

Authentication with a verifiable credential

Now that we have answered the prerequisite
question, back to the original question

• Can a verifiable credential be fused with knowledge and/or
inherence factors?

Answer

• Yes, by fusing the factors into a DID used as subject identifier

Fusion with knowledge factor:
(1) DID creation
• Wallet generates a key pair and a secret salt, and stores them in the

secure enclave of the wallet

• User chooses a password

• Wallet computes:
• A hash of the password and the secret salt (the "salted password")
• A hash of the public key and the salted password (the "joint hash")

• Wallet constructs the DID identifier as the concatenation:
did:fusion:1<encoding of the joint hash>

 where "1" indicates the kind of fusion (like "numalgo" in did:peer)

• Wallet deletes the password and the salted password

• Wallet will use the DID as subject identifier in multiple VCs

Remark

• The joint hash provides some amount of protection against post-
quantum attacks or weakness of the cryptosystem of the DID key pair
by only exposing the public key to parties to which the verifiable
credential is submitted for authentication

Fusion with knowledge factor:
(2) Authentication
• Wallet has:

• A verifiable credential with a shared DID of type did:fusion:1 as subject identifier
• The private key and secret salt associated with the shared DID

• User submits a password

• Wallet computes the salted password

• Verifier sends a random challenge

• Wallet sends:
• The verifiable credential
• The public key associated with the shared DID
• A signature on the challenge computed with the associated private key
• The salted password

• Verifier:
• Verifies the credential and the signature on the challenge
• Computes the joint hash of the public key and the salted password
• Verifies that the joint hash is encoded into the DID

Fusion with inherence factor

• Problem:
• We want to use a biometric sample instead of a password

• But genuine biometric samples have small variations, and a cryptographic
hash of a slightly different sample will be completely different

• Solution:
• A technology known as revocable biometrics can derive an immutable

biometric key from genuine but varying biometric samples, using error
correction coding

Revocable biometrics:
(1) Biometric key and helper data generation
• User supplies an enrollment biometric sample

• Wallet generates a random biometric key

• Wallet adds redundancy to the biometric key to produce an error-
correction codeword

• Wallet encodes the enrollment sample into a biometric enrollment
code

• Wallet uses bitwise x-or, written ⨁ below, to combine the codeword
and the enrollment code into helper data:

helper_data = enrollment_code⨁ codeword

Revocable biometrics:
(2) Biometric key recovery for authentication
• User supplies an authentication biometric sample, which wallet encodes into

an authentication code
• Wallet uses combines the authentication code and the helper data:

authentication_code⨁ helper_data =
authentication_code⨁ (enrollment_code⨁ codeword) =
(authentication_code⨁ enrollment_code) ⨁ codeword =
bits_that_differ⨁ codeword =
codeword_with_bit_differences

• If the authentication sample is genuine, the error correction algorithm may
be able to revert the codeword with differences to the original codeword:

 codeword = error_correction_function(codeword_with_bit_differences)
• The biometric key can then be recovered from the original codeword:

biometric_key = redundancy_removal_function(codeword)

Fusion with inherence factor:
(1) DID creation
• Wallet generates a key pair and a secret salt, and stores them in its secure

enclave

• User supplies an enrollment biometric sample

• Wallet derives a biometric code from the sample, generates a random biometric
key, computes helper data from the biometric code and the biometric key, and
stores the helper data in the secure enclave

• Wallet computes:
• A hash of the biometric key and the secret salt (the "salted biometric key")
• A hash of the public key and the salted biometric key (the "joint hash")

• Wallet constructs the DID identifier as the concatenation:
did:fusion:2<encoding of the joint hash>

 where "2" indicates the kind of fusion (like "numalgo" in did:peer)

• Wallet deletes the biometric sample, the biometric code, the biometric key, and
the salted biometric key

• Wallet will use the DID as subject identifier in multiple VCs

Fusion with inherence factor:
(2) Authentication
• Wallet has:

• A verifiable credential with a shared DID of type did:fusion:2 as subject identifier
• The private key, secret salt, and helper data associated with the shared DID

• User submits an authentication biometric sample

• Wallet derives the biometric code from the biometric sample and computes the biometric key
from the biometric code and the helper data

• Wallet computes the salted biometric key

• Verifier sends a random challenge

• Wallet sends:
• The verifiable credential
• The public key associated with the shared DID
• A signature on the challenge computed with the associated private key
• The salted biometric key

• Verifier:
• Verifies the credential and the signature on the challenge
• Computes the joint hash of the public key and the salted biometric key
• Verifies that the joint hash is encoded into the DID

Fusion with knowledge and inherence factors:
(1) DID creation
• Wallet generates a key pair and a secret salt, and stores them in its secure

enclave

• User supplies an enrollment biometric sample

• Wallet derives a biometric code from the sample, generates a random biometric
key, computes helper data from the biometric code and the biometric key, and
stores the helper data in the secure enclave

• Wallet computes:
• A hash of the password, the biometric key, and the secret salt (the "salted inputs")
• A hash of the public key and the salted inputs (the "joint hash")

• Wallet constructs the DID identifier as the concatenation:
did:fusion:3<encoding of the joint hash>

 where "3" indicates the kind of fusion (like "numalgo" in did:peer)

• Wallet deletes the password, the biometric sample, the biometric code, the
biometric key, and the salted inputs

• Wallet will use the DID as subject identifier in multiple VCs

Fusion with knowledge and inherence factors:
(2) Authentication
• Wallet has:

• A verifiable credential with a shared did:fusion:3 DID as subject identifier
• The private key, secret salt, and helper data associated with the shared DID

• User submits an authentication biometric sample

• Wallet derives the biometric code from the biometric sample and computes the biometric key
from the biometric code and the helper data

• Wallet computes the salted inputs

• Verifier sends a random challenge

• Wallet sends:
• The verifiable credential
• The public key associated with the shared DID
• A signature on the challenge computed with the associated private key
• The salted inputs

• Verifier:
• Verifies the credential and the signature on the challenge
• Computes the joint hash of the public key and the salted inputs
• Verifies that the joint hash is encoded into the DID

	Slide 1
	Slide 2: Cryptographic authentication
	Slide 3: Three methods of providing multifactor cryptographic authentication
	Slide 4: Security strength of the methods
	Slide 5: Examples of fusion credentials
	Slide 6: Question
	Slide 7: Verifiable credentials vs. traditional cryptographic credentials
	Slide 8: Verifiable credentials vs. traditional cryptographic credentials, continued
	Slide 9: Credential presentation
	Slide 10: Rephrasing the prerequisite question
	Slide 11
	Slide 12: Authentication with an X.509 certificate
	Slide 13: Authentication with a verifiable credential
	Slide 14: Now that we have answered the prerequisite question, back to the original question
	Slide 15: Fusion with knowledge factor: (1) DID creation
	Slide 16: Remark
	Slide 17: Fusion with knowledge factor: (2) Authentication
	Slide 18: Fusion with inherence factor
	Slide 19: Revocable biometrics: (1) Biometric key and helper data generation
	Slide 20: Revocable biometrics: (2) Biometric key recovery for authentication
	Slide 21: Fusion with inherence factor: (1) DID creation
	Slide 22: Fusion with inherence factor: (2) Authentication
	Slide 23: Fusion with knowledge and inherence factors: (1) DID creation
	Slide 24: Fusion with knowledge and inherence factors: (2) Authentication

