For presentation at IIW XXI, October 27-29, 2015

Faster Implementation of Modular
Exponentiation in JavaScript

Francisco Corella
fcorella@pomcor.com

Karen Lewison
kplewison@pomcor.com

pemecor



Context

* This work is part of an effort to develop a

cryptographic authentication toolkit for
developers of web applications

e Qutline

— Cryptographic authentication
— Modular Exponentiation
— JavaScript

OOOOOOO



Cryptographic Authentication

* A prover can authenticate to a verifier by proving
knowledge of a private key

 The private key may pertain to any kind of public
key cryptosystem:
— Encryption
— Key exchange
— Digital signature
* Digital signature is not objected to by any

governments, encryption and key exchange may
be subject to export controls

OOOOOOO



Cryptographic Authentication by
Digital Signature

* Verifier generates random nonce

* A challenge is constructed from material
including the verifier’'s nonce

* The prover signs the challenge with its private
key

OOOOOOO



Digital Signature Cryptosystems

* RSA
— 1977
— Dual-purpose: encryption, signature

* DSA

— Designed by the NSA to provide signature but no
encryption

* ECDSA

— Elliptic curve version of DSA

OOOOOOO



Elliptic curve vs. classical cryptography

e Classical crypto (RSA, DSA, DH) relies on the difficulty
of factoring (RSA) or computing discrete modular
logarithms (DSA, DH)

« ECC (ECDSA, ECDH, EC version of El Gamal) relies on
the difficulty of computing discrete “logarithms” in the
group of points of an elliptic curve

 ECCrequires shorter keys (because it is not vulnerable
to index-calculus attacks) and therefore is faster

* But ECC has a trust problem after the Snowden
revelations

 We plan to provide both classical and elliptic curve
crypto in our toolkit

OOOOOOO



DSA Is Important!

* DSA is the only cryptosystem that nobody
objects to:

— It is not under suspicion of hiding a government

nack door, even though it was designed by the
NSA

— It is not objected to by governments because it
does not provide encryption or key exchange

OOOOOOO



Modular Exponentiation

Modular exponentiation is what determines the
performance of classical crypto algorithms

RSA requires one modular exponentiation for signing,
and one with short exponent for verifying

RSA with CRT requires two modular exponentiations
for signing, with half-size moduli

DSA requires one modular exponentiation for signing,
two for verifying

DH requires one modular exponentiation by each key-
exchange participant

ECC uses scalar multiplication of curve points instead
of modular exponentiation

OOOOOOO



Techniques for Implementing

Modular Exponentiation

y g¥ mod m
* g*would not fit in any storage
* Repeated multiply-and-reduce would take forever

e Square-and-multiply with reduce-as-you-go takes
too long if reduction uses division

* Montgomery reduction avoids division

* Sliding-window exponentiation improves on square-
and-multiply

e Karatsuba multiplication is asymptotically faster
than long multiplication, should help for large
moduli

OOOOOOO



Karatsuba Multiplication

e Recursive multiplication with 3 recursive calls in
stead of 4:

X =Xx.b+ X,

y=yb+y,

xy = (b + b)X1y1 3 b(Xl 3 Xo)(y1 3 yo) + (b + 1)Xoyo
e Karatsuba runs in time O(n'8,3) instead of ©(n?)

* “As arule of thumb, Karatsuba is usually faster
when the multiplicands are longer than 320-640
bits” (Wikipedia)

OOOOOOO



JavaScript

The language of web applications

Runs in the browser

Originally intended for simple tasks in web
pages

Now a feature-rich language used on clients
and servers

Arguably the most important programming
language today

OOOOOOO



JavaScript Not Designed for
Cryptography

* Interpreted => slower than a compiled
anguage like C

* Floating point but no integer arithmetic!!!

e Options for implementing cryptographic
authentication in a web application

— Web Cryptography API spec of W3C?
— Stanford JavaScript Crypto Library?

OOOOOOO

12



Web Cryptography API

* Appealing:
— Crypto available to JavaScript apps

— But implemented in C and/or assembly language
and/or hardware

* But:
— No DSA!
— Asynchronous interface!!!
— Unfinished and in a state of flux

OOOOOOO

13



Stanford JavaScript Crypto Library
(SJCL)

e Started as a fast implementation of AES in
Javascript

* Paper at 2009 ACSAC:

http://bitwiseshiftleft.github.io/sjcl/acsac.pdf

* GitHub project has added public key
cryptography

pomcor 14

oooooooo



SICL (continued)

But
— SJCL focuses on ECC
— No RSA or classical DSA

SJCL does provide classical DH, and
implements modular exponentiation to that
purpose

SJCL features Montgomery reduction and
sliding-window exponentiation

But no Karatsuba multiplication

OOOOOOO



We Chose Another Option:

* Build our own big integer library and our own
crypto algorithms

— We were hoping to improve modular

exponentiation performance by a factor of 2 using
Karatsuba

— Karatsuba did not help for < 4000 bit moduli

— But we increased performance by a factor of 6 to
8 without Karatsuba!

pomeor ”

OOOOOOO



Performance Results for DSA-DH bit lengths
in Firefox on Mac with 1.7 GHz 64-bit Processor

Security
strength

Exponent

Modulus 2048 3072 7680 15360

Stanford 74 ms 180 ms 1549 ms 7908 ms
library

Pomcor 10 ms 23 ms 199 ms 1050 ms
library

Performance 7y faster ~ 8x faster  8x faster  8xfaster
improvement

pomcor 1

pomcor.com



Performance Results for RSA-with-CRT bit lengths
in Firefox on Mac with 1.7 GHz 64-bit Processor

Security 112 128
strength

Exponent 2048 3072 7680 15360
Modulus 1024 1536 3840 7680
Stanford 148 ms 460 ms 6636 ms 50818 ms
library
Pomcor 25 ms 75 ms 882 ms 7424 ms
library
Performance gy faster 6x faster 8x faster 7x faster
improvement

pomcor ’

pomcor.com



Performance Results for DSA-DH bit lengths
in Chrome on Phone with 2.3 GHz 32-bit Processor

Security
strength

Exponent
Modulus 2048 3072 7680 15360
Stanford 315 ms 742 ms 6264 ms 34460 ms
library
Pomcor 46 ms 103 ms 644 ms 3379 ms
library using Karatsuba  using Karatsuba
Performance 7y faster 7x faster  10x faster  10x faster
|mprovement

pomcor -

pomcor.com



Performance Results for RSA-with-CRT bit lengths
in Chrome on Phone with 2.3 GHz 32-bit Processor

Security 112 128
strength

Exponent 2048 3072 7680 15360
Modulus 1024 1536 3840 7680
Slt_inford 710 ms 2108 ms 29300 ms Not tested
ibrary
Pomcor 115 ms 263 ms 3263 ms  Not tested
library
Performance gy faster 7x faster 7x faster
improvement

pomcor .

pomcor.com



Practical Benefits

* With our fast implementation of modular
exponentiation on a laptop...

— Crypto authentication using DSA becomes

practical on a 64-bit laptop at all security
strengths

— And on a 32-bit phone at security levels 112, 128
and 256

OOOOOOO

21



Thank you for your attention

e These slides are available online at
— http://pomcor.com/documents/ModExplnlJS.pptx

* See also the blog post at

— http://pomcor.com/2015/10/25/faster-modular-
exponentiation-in-javascript/

* Or contact us at
— fcorella@pomcor.com +1.619.770.6765
— kplewison@pomcor.com +1.669.300.4510

pomeor 2

OOOOOOO



