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IdenLty	proofing	is	different	and	
harder	than	authenLcaLon	

•  In	idenLty	proofing	there	is	no	prior	relaLonship	
between	subject	and	verifier	

•  AuthenLcaLon	gold	standard:	present	three	
verificaLon	factors	
–  Something	you	have:	device	containing	private	key	
–  Something	you	know:	password	
–  Something	you	are:	one	or	more	biometric	features	

•  But	in	idenLty	proofing,	without	prior	relaLonship:	
–  The	subject	cannot	have	previously	registered	a	password	
with	the	verifier	

–  The	subject	cannot	have	previously	enrolled	a	biometric	
sample	with	the	verifier	
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ExisLng	soluLons	for	idenLty	proofing	
over	the	Web	have	serious	problems	
•  Knowledge-based	verificaLon	

–  No	longer	works:	too	much	PII	available	to	impostors	
•  Federated	login	(e.g.	with	Facebook,	Twi[er	or	Google,	

using	OAuth	or	OpenID	Connect	or	a	proprietary	protocol)	
–  IdenLty	provider	observes	all	idenLficaLons	
–  Availability	and	performance	requirements	hard	to	meet	for	
authoritaLve	idenLty	sources	such	as,	e.g.	a	DMV	

•  Public	key	cerLficates	
1.  Only	one	verificaLon	factor	
2.  Cumbersome	validaLon	of	cerLficate	chain	
3.  No	good	soluLon	for	storing	the	cerLficate	and	its	associated	

private	key	
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We	propose	soluLons	to	all	3	
problems	with	tradiLonal	cerLficates	

1.  Rich	credenLals	
–  Enable	3-factor	verificaLon	(have,	know,	are)	without	
prior	relaLonship	between	subject	and	verifier	

2.	Method	of	implemenLng	a	PKI	on	a	
	blockchain	or	distributed	ledger	
–  Simplifies	the	validaLon	of	a	cerLficate	chain	

3.	Two	methods	for	storing	a	private	key	in	the	
browser	
–  Enabled	by	new	web	technologies	
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Rich	credenLals	
•  A	rich	credenLal	is	a	cryptographic	credenLal	
that	binds	a	public	key	to	
–  IdenLfiers	and/or	a[ributes	of	the	subject,	
–  VerificaLon	data	for	a	password,	and/or	
–  	VerificaLon	data	for	one	or	more	biometric	samples	

•  The	verifier	can	verify	a	password	submi[ed	by	
the	subject	against	the	credenLal	signed	by	the	
issuer,	without	prior	registraLon	of	the	password	

•  The	verifier	can	verify	one	or	more	biometric	
samples	against	the	credenLal,	without	prior	
enrollment	of	the	samples	
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VerificaLon	data	in	a	rich	credenLal	

•  For	verifying	a	password:	
– Hash	of	a	password	(and	two	salts,	as	explained	
below)	

•  For	verifying	a	biometric	sample	pertaining	to	
a	tradiLonal	biometric	modality:	
– Enrollment	sample	or	biometric	code	or	template	

•  For	verifying	a	biometric	sample	pertaining	to	
a	revocable	biometric	modality:	
– Helper	data	and	hash	of	biometric	key	
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Biometric	security	
•  Biometric	security	may	be	based	on	
–  Biometric	secrecy	

•  Preserved	by	revocable	biometrics,	but	
•  Applicable	to	very	few	modaliLes	(iris?)	
•  Highly	vulnerable	to	adversary	acquiring	biometric	data	

–  PresentaLon	a[ack	(a.k.a.	spoofing)	detecLon	
•  More	robust	and	broadly	applicable,	but	
•  Difficult	for	remote	presentaLon	
•  Arms	race	between	a[ack	and	detecLon	techniques	

•  Biometrics	should	be	used	only	in	combinaLon	
with	other	verificaLon	factors	
– As	enabled	by	rich	credenLals	
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A	possible	method	for	presentaLon	
a[ack	detecLon	in	face	verificaLon	

•  A	DMV	may	want	to	issue	a	rich	credenLal	using	
a	facial	image	embedded	in	the	credenLal	

•  For	presentaLon	a[ack	detecLon:	
–  The	facial	image	is	matched	against	an	audiovisual	
stream	of	the	subject	reading	prompted	text	selected	
at	random	with	high	entropy	

–  Speech	recogniLon	is	used	to	verify	that	the	text	
being	read	is	the	prompted	one	

– Audiovisual	synchrony	is	verified	by	using	lip	reading	
to	correlate	easily	disLnguishable	visemes	to	
corresponding	phonemes	
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Privacy	features	of	rich	credenLals	

•  A	rich	credenLal	provides	selecLve	disclosure	of	
a[ributes	
– A[ributes	to	be	disclosed	are	negoLated	with	the	
verifier,	and	the	subject	is	asked	for	permission	to	
disclose	

•  A	rich	credenLal	also	provides	selecLve	
presentaLon	of	verificaLon	factors	
–  Factors	to	presented	are	also	negoLated	with	the	
verifier	and	the	subject	is	asked	for	permission	to	
present	them	
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Typed	hash	trees	
•  SelecLve	disclosure	and	selected	presentaLon	are	
achieved	using	a	typed	hash	tree	containing	the	
a[ributes	and	the	verificaLon	data	

•  The	public	key	is	bound	to	the	root	label	of	the	tree	
rather	than	to	the	a[ributes	and	the	verificaLon	data	

•  The	root	label	serves	as	an	omission-tolerant	
cryptographic	checksum	of	a[ributes	and	verificaLon	
data	contained	in	the	tree	
–  A[ributes	and/or	verificaLon	data	can	be	removed	by	
pruning	subtrees,	but	cannot	be	added	or	modified	
without	changing	the	root	label	

–  See	formal	result	at	the	end	of	this	presentaLon	
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A	rich	credenLal	can	be	backed	by	a	
tradiLonal	PKI	

•  The	issuer	signs	the	hash	of	the	public	key,	metadata	
and	root	label	of	the	typed	hash	tree,	playing	a	role	
analogous	to	that	of	a	CA	

•  If	the	issuer’s	public	key	is	not	well	known,	the	rich	
credenLal	can	be	backed	by	a	chain	of	tradiLonal	X.509	
CA	cerLficates	ending	in	a	cerLficate	signed	by	a	root	
CA,	whose	public	key	is	well	known	

•  But	validaLon	of	the	rich	credenLal	and	CA	cerLficate	
chain,	like	validaLon	of	a	tradiLonal	X.509	cerLficate	
and	CA	cerLficate	chain,	is	cumbersome	for	the	verifier	
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Using	a	blockchain	or	distributed	
ledger	to	simplify	validaLon	

•  Distributed	ledger:	
– List	of	digitally	signed	transacLons	
– Replicated	across	nodes	using	a	P2P	network	
– Consensus	achieved	by	a	byzanLne	fault-tolerant	
algorithm	

•  Blockchain	similar	to	distributed	ledger,	but:	
– TransacLons	grouped	into	blocks	
– TentaLve	consensus	achieved	by	proof	of	work	or	
proof	of	stake	
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On-ledger	or	on-chain	storage	

•  Language	for	describing	transacLons	includes	
instrucLon	for	storing	data	in	named	locaLon	

•  As	storage	transacLon	propagates	each	node	
executes	it	in	its	own	copy	of	the	named	locaLon	

•  Ethereum	has	on-chain	storage,	the	Bitcoin	
blockchain	does	not	

•  Most	distributed	ledgers	implement	general-
purpose	state	machine	replicaLon,	and	as	such	
provide	on-ledger	storage	
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ImplemenLng	a	PKI	using	a	blockchain	
or	distributed	ledger	with	on-chain/on-ledger	storage	
•  A	blockchain	or	distributed	ledger	with	on-chain	or	on-ledger	

storage	can	be	used	to	implement	a	PKI	for	rich	credenLals	or	
ordinary	X.509	end-user	cerLficates	

•  To	issue	a	rich	credenLal,	the	issuer	stores	the	hash	of	the	public	
key,	metadata	and	root	label	in	an	on-chain	or	on-ledger	storage	
locaLon	that	it	controls,	instead	of	signing	it	

•  To	revoke	a	rich	credenLal,	the	issuer	stores	the	hash	in	another	
such	storage	locaLon		

•  To	issue	an	X.509	end-user	or	CA	cerLficate,	the	issuer	stores	the	
hash	of	the	public	key,	metadata	and	a[ributes	in	a	storage	
locaLon	that	it	controls	

•  To	revoke	an	X.509	end-user	or	CA	cerLficate,	the	issuer	stores	the	
hash	in	another	storage	locaLon	

•  To	validate	a	rich	credenLal	or	X.509	end-user	cerLficate	and	a	CA	
cerLficate	chain,	the	verifier	only	needs	to	look	up	a	hash	in	its	local	
copies	of	distributed	storage	locaLons	
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Advantages	over	a	tradiLonal	PKI	
•  Advantages	over	signed	credenLals;	

–  Shorter	credenLal	(no	signature)	
–  Signature	verificaLon	step	is	eliminated	

•  Advantages	over	revocaLon	with	CRL	
–  Verifier	does	not	have	to	download	and	verify	CRL	updates	
–  Issuer	does	not	have	to	set	up	a	CRL	distribuLon	service	
–  Verifier	does	not	have	to	rely	on	the	availability	of	a	CRL	distribuLon	

service	
–  Lag	between	revocaLon	and	issuance	of	CRL	update	is	eliminated	

•  Advantages	over	OCSP	
–  Issuer	does	not	have	to	set	up	an	OCSP	service	
–  Verifier	does	not	have	to	rely	on	the	availability	of	an	OCSP	service	
–  Network	latency	is	enLrely	eliminated	
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Two	methods	for	storing	a	
private	key	in	the	browser	

•  Two	methods	made	possible	by	new	web	technologies	
•  Method	1	
–  Relies	on	HTML5	localStorage	and	the	Service	Worker	API	
–  RelaLvely	simple,	but	issuer	has	access	to	private	key	and	
can	extract	it	and	use	it	somewhere	else	

•  Method	2	
–  Relies	on	the	IndexedDB	API,	the	CryptoKeyPair	object	of	
the	Web	Cryptography	API,	and	the	Service	Worker	API	

– More	complicated,	but	issuer	does	not	have	access	to	
private	key	and	cannot	extract	it	and	use	it	elsewhere	
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The	root	label	of	a	typed	hash	tree	is	
an	omission-tolerant	cryptographic	

checksum	of	its	contents	
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•  DefiniLon	of	a	typed	hash	tree:	
–  Each	node	has	a	type	and	a	label	
–  An	internal	node	has	a	disLnguished	type	d	(e.g.	0)	and	a	
label	equal	to	the	hash	of	a	prelabel,	which	is	an	injecLve	
encoding	of	the	sequence	of	types	and	labels	of	its	
children	

–  Pruning	a	subtree	causes	its	root	to	become	a	leaf	node	
having	the	disLnguished	type	d,	which	is	called	a	dangling	
node	

–  A	proper	leaf	node	is	a	leaf	node	with	an	undisLnguished	
type,	i.e.	that	is	not	a	dangling	node	

–  An	unpruned	tree	is	a	tree	without	dangling	nodes	
•  A	typed	hash	tree	can	be	used	to	represent	a	collecLon	
(more	precisely,	a	mulLset)	of	key-value	pairs	
–  Each	proper	leaf	node	represents	a	key-value	pair,	where	
the	key	is	the	type	and	the	value	is	the	label	
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•  Theorem:	
–  Let	X	and	Y	be	two	typed	hash	trees	with	the	same	root	
label.		If	X	is	unpruned,	then	either	Y	is	a	pruned	derivaLve	
of	X,	or	a	node	of	Y	has	the	same	label	as	a	node	of	X	but	a	
different	prelabel	

•  Proof	summary:	
–  Consider	the	computaLon	C	of	the	root	label	of	Y	from	its	
leaf	types	and	labels	

–  Consider	the	earliest	stage	E	of	the	computaLon	C	that	
coincides	with	a	stage	of	the	computaLon	of	the	root	label	
of	a	pruned	derivaLve	of	X	

–  Among	the	pruned	derivaLves	of	X	that	have	E	as	a	
computaLon	stage,	consider	a	minimally	pruned	one	X’	
and	let	C’	be	its	computaLon	

–  Show	that	stage	E	is	reached	in	C	and	C’	by	hash	steps	that	
hash	different	prelabels	to	the	same	label	
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•  Pruning	a	typed	hash	tree	removes	key	value	
pairs	

•  Different	prelabels	that	are	hashed	to	the	
same	label	consLtute	a	hash	funcLon	collision	

=>	Corollary:	
– Let	X	and	Y	be	two	typed	hash	trees	represenLng	
mulLsets	M(X)	and	M(Y)	of	key-value	pairs.		If	X	is	
unpruned	and	Y	has	the	same	root	label	as	X,	then	
either	M(Y)	is	a	submulLset	of	M(X)	or	X	and	Y	
exhibit	a	hash	funcLon	collision	
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Thank	you	for	your	a[enLon!	
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For	more	informaLon:	
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h[ps://pomcor.com/techreports/BlockchainPKI.pdf	

	
Francisco	Corella	
fcorella@pomcor.com	
Karen	Lewison	

kplewison@pomcor.com	
	

29	

Any	quesLons?	


