
New	Techniques	for	
Remote	Iden5ty	Proofing	

Francisco	Corella	
fcorella@pomcor.com	
Karen	Lewison	

kplewison@pomcor.com	

	

2/22/2017	

The	work	reported	here	was	sponsored	by	a	SBIR	Phase	I	grant	from	the		US	
Department	of	Homeland	Security.		It	does	not	necessarily	reflect	the	posiLon	or	
policy	of	the	US	Government.	

1	

Presenta5on	at	CSUS	



IdenLty	proofing	is	different	and	
harder	than	authenLcaLon	

•  In	idenLty	proofing	there	is	no	prior	relaLonship	
between	subject	and	verifier	

•  AuthenLcaLon	gold	standard:	present	three	
verificaLon	factors	
–  Something	you	have:	device	containing	private	key	
–  Something	you	know:	password	
–  Something	you	are:	one	or	more	biometric	features	

•  But	in	idenLty	proofing,	without	prior	relaLonship:	
–  The	subject	cannot	have	previously	registered	a	password	
with	the	verifier	

–  The	subject	cannot	have	previously	enrolled	a	biometric	
sample	with	the	verifier	

2/22/2017	 2	



ExisLng	soluLons	for	idenLty	proofing	
over	the	Web	have	serious	problems	
•  Knowledge-based	verificaLon	

–  No	longer	works:	too	much	PII	available	to	impostors	
•  Federated	login	(e.g.	with	Facebook,	Twi[er	or	Google,	

using	OAuth	or	OpenID	Connect	or	a	proprietary	protocol)	
–  IdenLty	provider	observes	all	idenLficaLons	
–  Availability	and	performance	requirements	hard	to	meet	for	
authoritaLve	idenLty	sources	such	as,	e.g.	a	DMV	

•  Public	key	cerLficates	
1.  Only	one	verificaLon	factor	
2.  Cumbersome	validaLon	of	cerLficate	chain	
3.  No	good	soluLon	for	storing	the	cerLficate	and	its	associated	

private	key	

2/22/2017	 3	



We	propose	soluLons	to	all	3	
problems	with	tradiLonal	cerLficates	

1.  Rich	credenLals	
–  Enable	3-factor	verificaLon	(have,	know,	are)	without	
prior	relaLonship	between	subject	and	verifier	

2.	Method	of	implemenLng	a	PKI	on	a	
	blockchain	or	distributed	ledger	
–  Simplifies	the	validaLon	of	a	cerLficate	chain	

3.	Two	methods	for	storing	a	private	key	in	the	
browser	
–  Enabled	by	new	web	technologies	

2/22/2017	 4	



Rich	credenLals	
•  A	rich	credenLal	is	a	cryptographic	credenLal	
that	binds	a	public	key	to	
–  IdenLfiers	and/or	a[ributes	of	the	subject,	
–  VerificaLon	data	for	a	password,	and/or	
–  	VerificaLon	data	for	one	or	more	biometric	samples	

•  The	verifier	can	verify	a	password	submi[ed	by	
the	subject	against	the	credenLal	signed	by	the	
issuer,	without	prior	registraLon	of	the	password	

•  The	verifier	can	verify	one	or	more	biometric	
samples	against	the	credenLal,	without	prior	
enrollment	of	the	samples	

2/22/2017	 5	



VerificaLon	data	in	a	rich	credenLal	

•  For	verifying	a	password:	
– Hash	of	a	password	(and	two	salts,	as	explained	
below)	

•  For	verifying	a	biometric	sample	pertaining	to	
a	tradiLonal	biometric	modality:	
– Enrollment	sample	or	biometric	code	or	template	

•  For	verifying	a	biometric	sample	pertaining	to	
a	revocable	biometric	modality:	
– Helper	data	and	hash	of	biometric	key	

2/22/2017	 6	



2/22/2017	 7	

Enroll-
ment	
sample	

Feature	
extracLon	

Biometric	
key	

Biometric	
key	

generaLon	

Biometric	
code	

Helper	
data	

Verifi-
caLon	
sample	

Feature	
extracLon	

Biometric	
key	

Biometric	
key	re-

generaLon	

Biometric	
code	

Random	
bits	

SIMILAR	 IDENTICAL	
ENFOLLMENT	

VERIFICATION	

Revocable	Biometrics	
•  A.k.a.	biometric	cryptosystems,	fuzzy	

extractors,	fuzzy	vault,	etc.		
•  Based	on	error	correcLon	techniques	

Helper	data	
reveals	no	useful	
biometric	info	



Biometric	security	
•  Biometric	security	may	be	based	on	
–  Biometric	secrecy	

•  Preserved	by	revocable	biometrics,	but	
•  Applicable	to	very	few	modaliLes	(iris?)	
•  Highly	vulnerable	to	adversary	acquiring	biometric	data	

–  PresentaLon	a[ack	(a.k.a.	spoofing)	detecLon	
•  More	robust	and	broadly	applicable,	but	
•  Difficult	for	remote	presentaLon	
•  Arms	race	between	a[ack	and	detecLon	techniques	

•  Biometrics	should	be	used	only	in	combinaLon	
with	other	verificaLon	factors	
– As	enabled	by	rich	credenLals	

2/22/2017	 8	



A	possible	method	for	presentaLon	
a[ack	detecLon	in	face	verificaLon	

•  A	DMV	may	want	to	issue	a	rich	credenLal	using	
a	facial	image	embedded	in	the	credenLal	

•  For	presentaLon	a[ack	detecLon:	
–  The	facial	image	is	matched	against	an	audiovisual	
stream	of	the	subject	reading	prompted	text	selected	
at	random	with	high	entropy	

–  Speech	recogniLon	is	used	to	verify	that	the	text	
being	read	is	the	prompted	one	

– Audiovisual	synchrony	is	verified	by	using	lip	reading	
to	correlate	easily	disLnguishable	visemes	to	
corresponding	phonemes	

2/22/2017	 9	



Privacy	features	of	rich	credenLals	

•  A	rich	credenLal	provides	selecLve	disclosure	of	
a[ributes	
– A[ributes	to	be	disclosed	are	negoLated	with	the	
verifier,	and	the	subject	is	asked	for	permission	to	
disclose	

•  A	rich	credenLal	also	provides	selecLve	
presentaLon	of	verificaLon	factors	
–  Factors	to	presented	are	also	negoLated	with	the	
verifier	and	the	subject	is	asked	for	permission	to	
present	them	

2/22/2017	 10	



Typed	hash	trees	
•  SelecLve	disclosure	and	selected	presentaLon	are	
achieved	using	a	typed	hash	tree	containing	the	
a[ributes	and	the	verificaLon	data	

•  The	public	key	is	bound	to	the	root	label	of	the	tree	
rather	than	to	the	a[ributes	and	the	verificaLon	data	

•  The	root	label	serves	as	an	omission-tolerant	
cryptographic	checksum	of	a[ributes	and	verificaLon	
data	contained	in	the	tree	
–  A[ributes	and/or	verificaLon	data	can	be	removed	by	
pruning	subtrees,	but	cannot	be	added	or	modified	
without	changing	the	root	label	

–  See	formal	result	at	the	end	of	this	presentaLon	

2/22/2017	 11	



2/22/2017	 12	

Rich	cerLficate	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Signature	on	hash	of	public	key,	metadata	
and	root	label	of	typed	hash	tree	

Metadata	
	
	
	
	
	
	
	
	

Version	
number	

Signature	
cryptosystem	ID	

Issuer	
ID	

URL	of	revocaLon	
checking	service	

Validity	period	
	
	Begin	

Typed	hash	tree	
	
	
	
	
	

Rich	credenLal	

Private	key	

End	

Serial	
number	

Node	array	

Sparse	label	array	

Public	key	

Secret	salt	

Components	
of	a	rich	
credenLal	



2/22/2017	 13	

504	
Right	iris		

biometric	key	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

1	
Salt	

1	
Salt	

1	
Salt	

301	
Name	

302	
Birthdate	

303	
Address	

400	
HoPwSS	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

503	
Right	iris		

helper	datum	

502	
Lej	iris		

biometric	key	

0	
Hash	

1	
Salt	

501	
Lej	iris		

helper	datum	

601	
Facial	image	
template	

1	
Salt	

Example	of	a	
typed	hash	
tree,	in	its	
issuance	
state	



2/22/2017	 14	

504	
Right	iris		

biometric	key	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

1	
Salt	

1	
Salt	

1	
Salt	

301	
Name	

302	
Birthdate	

303	
Address	

400	
HoPwSS	

0	
Hash	

0	
Hash	

1	
Salt	

503	
Right	iris		

helper	datum	

502	
Lej	iris		

biometric	key	

0	
Hash	

1	
Salt	

501	
Lej	iris		

helper	datum	

601	
Facial	image	
template	

1	
Salt	

Peripheral	
subtrees,	one	
for	each	
a[ributre	and	
each	
verificaLon	
factor	

HoPwSS	=		
Hash	of	Password	
with	Secret	Salt	



2/22/2017	 15	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

1	
Salt	

1	
Salt	

1	
Salt	

301	
Name	

302	
Birthdate	

303	
Address	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

503	
Right	iris		

helper	datum	

0	
Hash	

1	
Salt	

501	
Lej	iris		

helper	datum	

601	
Facial	image	
template	

1	
Salt	

Issuer	removes	
HoPwSS	and	
biometric	keys	
to	put	tree	
in	its	
storage	
state	

504	
	
	

400	
	

502	
	



2/22/2017	 16	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

1	
Salt	

1	
Salt	

301	
Name	

303	
Address	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

501	
Lej	iris		

helper	datum	

601	
Facial	image	
template	

1	
Salt	

Subject’s	device	
prunes	peripheral	
subtrees	to	put	
tree	in	its	
presentaLon	
state	

Root	label	
is	omission-

tolerant	
cryptogaphic	

checksum	

400	
	

502	
	



2/22/2017	 17	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

1	
Salt	

1	
Salt	

301	
Name	

303	
Address	

0	
Hash	

0	
Hash	

0	
Hash	

0	
Hash	

1	
Salt	

501	
Lej	iris		

helper	datum	

601	
Facial	image	
template	

1	
Salt	

Verifier	restores	
HoPwSS	and	
biometric	keys	to	
put	tree	in	its	
verificaLon	
state	

400	
HoPwSS	

502	
Lej	iris		

biometric	key	



2/22/2017	 18	

State	transiLons	of	a	rich	cerLficate	

Issuance	
state	

Storage	
state	

IS
SU

ER
	

Storage	
state	

PresentaLon	
state	

SU
BJ
EC

T’
S	

DE
VI
CE

	

PresentaLon	
state	

VerificaLon	
state	

VE
RI
FI
ER

	

Public	key,	
HoPwSS,	
biometric	
samples	

Rich	
cerLficate,	
HoPwSS,	
biometric	
samples	

Drop	salted	hash	of	
password	&	biometric	keys	

Prune	subtrees	

Add	salted	hash	of	
password	&	biometric	keys	



A	rich	credenLal	can	be	backed	by	a	
tradiLonal	PKI	

•  The	issuer	signs	the	hash	of	the	public	key,	metadata	
and	root	label	of	the	typed	hash	tree,	playing	a	role	
analogous	to	that	of	a	CA	

•  If	the	issuer’s	public	key	is	not	well	known,	the	rich	
credenLal	can	be	backed	by	a	chain	of	tradiLonal	X.509	
CA	cerLficates	ending	in	a	cerLficate	signed	by	a	root	
CA,	whose	public	key	is	well	known	

•  But	validaLon	of	the	rich	credenLal	and	CA	cerLficate	
chain,	like	validaLon	of	a	tradiLonal	X.509	cerLficate	
and	CA	cerLficate	chain,	is	cumbersome	for	the	verifier	

2/22/2017	 19	



Using	a	blockchain	or	distributed	
ledger	to	simplify	validaLon	

•  Distributed	ledger:	
– List	of	digitally	signed	transacLons	
– Replicated	across	nodes	using	a	P2P	network	
– Consensus	achieved	by	a	byzanLne	fault-tolerant	
algorithm	

•  Blockchain	similar	to	distributed	ledger,	but:	
– TransacLons	grouped	into	blocks	
– TentaLve	consensus	achieved	by	proof	of	work	or	
proof	of	stake	

	
2/22/2017	 20	



On-ledger	or	on-chain	storage	

•  Language	for	describing	transacLons	includes	
instrucLon	for	storing	data	in	named	locaLon	

•  As	storage	transacLon	propagates	each	node	
executes	it	in	its	own	copy	of	the	named	locaLon	

•  Ethereum	has	on-chain	storage,	the	Bitcoin	
blockchain	does	not	

•  Most	distributed	ledgers	implement	general-
purpose	state	machine	replicaLon,	and	as	such	
provide	on-ledger	storage	

2/22/2017	 21	



ImplemenLng	a	PKI	using	a	blockchain	
or	distributed	ledger	with	on-chain/on-ledger	storage	
•  A	blockchain	or	distributed	ledger	with	on-chain	or	on-ledger	

storage	can	be	used	to	implement	a	PKI	for	rich	credenLals	or	
ordinary	X.509	end-user	cerLficates	

•  To	issue	a	rich	credenLal,	the	issuer	stores	the	hash	of	the	public	
key,	metadata	and	root	label	in	an	on-chain	or	on-ledger	storage	
locaLon	that	it	controls,	instead	of	signing	it	

•  To	revoke	a	rich	credenLal,	the	issuer	stores	the	hash	in	another	
such	storage	locaLon		

•  To	issue	an	X.509	end-user	or	CA	cerLficate,	the	issuer	stores	the	
hash	of	the	public	key,	metadata	and	a[ributes	in	a	storage	
locaLon	that	it	controls	

•  To	revoke	an	X.509	end-user	or	CA	cerLficate,	the	issuer	stores	the	
hash	in	another	storage	locaLon	

•  To	validate	a	rich	credenLal	or	X.509	end-user	cerLficate	and	a	CA	
cerLficate	chain,	the	verifier	only	needs	to	look	up	a	hash	in	its	local	
copies	of	distributed	storage	locaLons	

2/22/2017	 22	



Advantages	over	a	tradiLonal	PKI	
•  Advantages	over	signed	credenLals;	

–  Shorter	credenLal	(no	signature)	
–  Signature	verificaLon	step	is	eliminated	

•  Advantages	over	revocaLon	with	CRL	
–  Verifier	does	not	have	to	download	and	verify	CRL	updates	
–  Issuer	does	not	have	to	set	up	a	CRL	distribuLon	service	
–  Verifier	does	not	have	to	rely	on	the	availability	of	a	CRL	distribuLon	

service	
–  Lag	between	revocaLon	and	issuance	of	CRL	update	is	eliminated	

•  Advantages	over	OCSP	
–  Issuer	does	not	have	to	set	up	an	OCSP	service	
–  Verifier	does	not	have	to	rely	on	the	availability	of	an	OCSP	service	
–  Network	latency	is	enLrely	eliminated	

2/22/2017	 23	



Two	methods	for	storing	a	
private	key	in	the	browser	

•  Two	methods	made	possible	by	new	web	technologies	
•  Method	1	
–  Relies	on	HTML5	localStorage	and	the	Service	Worker	API	
–  RelaLvely	simple,	but	issuer	has	access	to	private	key	and	
can	extract	it	and	use	it	somewhere	else	

•  Method	2	
–  Relies	on	the	IndexedDB	API,	the	CryptoKeyPair	object	of	
the	Web	Cryptography	API,	and	the	Service	Worker	API	

– More	complicated,	but	issuer	does	not	have	access	to	
private	key	and	cannot	extract	it	and	use	it	elsewhere	

2/22/2017	 24	



The	root	label	of	a	typed	hash	tree	is	
an	omission-tolerant	cryptographic	

checksum	of	its	contents	

2/22/2017	 25	



•  DefiniLon	of	a	typed	hash	tree:	
–  Each	node	has	a	type	and	a	label	
–  An	internal	node	has	a	disLnguished	type	d	(e.g.	0)	and	a	
label	equal	to	the	hash	of	a	prelabel,	which	is	an	injecLve	
encoding	of	the	sequence	of	types	and	labels	of	its	
children	

–  Pruning	a	subtree	causes	its	root	to	become	a	leaf	node	
having	the	disLnguished	type	d,	which	is	called	a	dangling	
node	

–  A	proper	leaf	node	is	a	leaf	node	with	an	undisLnguished	
type,	i.e.	that	is	not	a	dangling	node	

–  An	unpruned	tree	is	a	tree	without	dangling	nodes	
•  A	typed	hash	tree	can	be	used	to	represent	a	collecLon	
(more	precisely,	a	mulLset)	of	key-value	pairs	
–  Each	proper	leaf	node	represents	a	key-value	pair,	where	
the	key	is	the	type	and	the	value	is	the	label	

2/22/2017	 26	



•  Theorem:	
–  Let	X	and	Y	be	two	typed	hash	trees	with	the	same	root	
label.		If	X	is	unpruned,	then	either	Y	is	a	pruned	derivaLve	
of	X,	or	a	node	of	Y	has	the	same	label	as	a	node	of	X	but	a	
different	prelabel	

•  Proof	summary:	
–  Consider	the	computaLon	C	of	the	root	label	of	Y	from	its	
leaf	types	and	labels	

–  Consider	the	earliest	stage	E	of	the	computaLon	C	that	
coincides	with	a	stage	of	the	computaLon	of	the	root	label	
of	a	pruned	derivaLve	of	X	

–  Among	the	pruned	derivaLves	of	X	that	have	E	as	a	
computaLon	stage,	consider	a	minimally	pruned	one	X’	
and	let	C’	be	its	computaLon	

–  Show	that	stage	E	is	reached	in	C	and	C’	by	hash	steps	that	
hash	different	prelabels	to	the	same	label	

2/22/2017	 27	



•  Pruning	a	typed	hash	tree	removes	key	value	
pairs	

•  Different	prelabels	that	are	hashed	to	the	
same	label	consLtute	a	hash	funcLon	collision	

=>	Corollary:	
– Let	X	and	Y	be	two	typed	hash	trees	represenLng	
mulLsets	M(X)	and	M(Y)	of	key-value	pairs.		If	X	is	
unpruned	and	Y	has	the	same	root	label	as	X,	then	
either	M(Y)	is	a	submulLset	of	M(X)	or	X	and	Y	
exhibit	a	hash	funcLon	collision	

2/22/2017	 28	



Thank	you	for	your	a[enLon!	
	

2/22/2017	

For	more	informaLon:	
pomcor.com	

pomcor.com/blog/	
h[ps://pomcor.com/techreports/RichCredenLals.pdf	
h[ps://pomcor.com/techreports/BlockchainPKI.pdf	

	
Francisco	Corella	
fcorella@pomcor.com	
Karen	Lewison	

kplewison@pomcor.com	
	

29	

Any	quesLons?	


