The work reported here was sponsored by a SBIR Phase | grant from the US
Department of Homeland Security. It does not necessarily reflect the position or
policy of the US Government.

New Techniques for
Remote Identity Proofing

Presentation at CSUS

Francisco Corella
fcorella@pomcor.com
Karen Lewison
kplewison@pomcor.com

2/22/2017 pomcor

pomcor.com

ldentity proofing is different and
harder than authentication

* |nidentity proofing there is no prior relationship
between subject and verifier

* Authentication gold standard: present three
verification factors
— Something you have: device containing private key
— Something you know: password
— Something you are: one or more biometric features

* Butin identity proofing, without prior relationship:
— The subject cannot have previously registered a password
with the verifier
— The subject cannot have previously enrolled a biometric
sample with the verifier

pomcor

pomcor.com

Existing solutions for identity proofing
over the Web have serious problems

Knowledge-based verification

— No longer works: too much PIl available to impostors
Federated login (e.g. with Facebook, Twitter or Google,
using OAuth or OpenlID Connect or a proprietary protocol)
— ldentity provider observes all identifications

— Availability and performance requirements hard to meet for
authoritative identity sources such as, e.g. a DMV

Public key certificates
1. Only one verification factor
2. Cumbersome validation of certificate chain

3. No good solution for storing the certificate and its associated
private key

pomcor

pomcor.com

We propose solutions to all 3
problems with traditional certificates

1. Rich credentials

— Enable 3-factor verification (have, know, are) without
prior relationship between subject and verifier

2. Method of implementing a PKl on a
blockchain or distributed ledger

— Simplifies the validation of a certificate chain

3. Two methods for storing a private key in the
browser
— Enabled by new web technologies

2/22/2017 pomcor

pomcor.com

Rich credentials

* Arich credential is a cryptographic credential
that binds a public key to

— Identifiers and/or attributes of the subject,
— Verification data for a password, and/or
— Verification data for one or more biometric samples

* The verifier can verify a password submitted by
the subject against the credential signed by the
issuer, without prior registration of the password

* The verifier can verify one or more biometric
samples against the credential, without prior
enrollment of the samples

pomcor

pomcor.com

Verification data in a rich credential

* For verifying a password:

— Hash of a password (and two salts, as explained
below)

* For verifying a biometric sample pertaining to
a traditional biometric modality:
— Enrollment sample or biometric code or template

* For verifying a biometric sample pertaining to
a revocable biometric modality:

— Helper data and hash of biometric key

pomcor

pomcor.com

Revocable Biometrics Helper data

* A.k.a. biometric cryptosystems, fuzzy reveals no useful
extractors, fuzzy vault, etc. Random biometric info
* Based on error correction techniques bits
Enroll- Feature Biometric Blometric Biometric
ment |3) key
extraction code , key
sample generation
A l A
ENFOLLMENT : eloer :
-------------------------- S”\/“LAR d p | |DENT|CAL " = = o= omom
VERIFICATION : ata ;
l :
Ve'f'ﬁ' Feature Biometric Blometric Biometric
cation | . key re-
extraction code _ key
sample generation

2/22/2017 pomcor 7

pomcor.com

Biometric security

* Biometric security may be based on

— Biometric secrecy
* Preserved by revocable biometrics, but
* Applicable to very few modalities (iris?)
* Highly vulnerable to adversary acquiring biometric data

— Presentation attack (a.k.a. spoofing) detection
 More robust and broadly applicable, but
* Difficult for remote presentation
* Arms race between attack and detection techniques

* Biometrics should be used only in combination
with other verification factors

— As enabled by rich credentials

pomcor

pomcor.com

A possible method for presentation
attack detection in face verification

A DMV may want to issue a rich credential using
a facial image embedded in the credential

* For presentation attack detection:

— The facial image is matched against an audiovisual
stream of the subject reading prompted text selected
at random with high entropy

— Speech recognition is used to verify that the text
being read is the prompted one

— Audiovisual synchrony is verified by using lip reading
to correlate easily distinguishable visemes to
corresponding phonemes

pomcor

pomcor.com

Privacy features of rich credentials

* Arich credential provides selective disclosure of
attributes
— Attributes to be disclosed are negotiated with the

verifier, and the subject is asked for permission to
disclose

* Arich credential also provides selective
presentation of verification factors
— Factors to presented are also negotiated with the

verifier and the subject is asked for permission to
present them

pomcor

pomcor.com

Typed hash trees

* Selective disclosure and selected presentation are
achieved using a typed hash tree containing the
attributes and the verification data

* The public key is bound to the root label of the tree
rather than to the attributes and the verification data

* The root label serves as an omission-tolerant
cryptographic checksum of attributes and verification
data contained in the tree

— Attributes and/or verification data can be removed by

pruning subtrees, but cannot be added or modified
without changing the root label

— See formal result at the end of this presentation

pomcor

pomcor.com

Components
of arich
credential

Rich credential

Private key Secret salt

Rich certificate

Public key
Metadata
Version Validity period Serial
number number
Begin End
URL of revocation Signature Issuer
checking service cryptosystem ID ID

Typed hash tree

Node array

Sparse label array

Signature on hash of public key, metadata
and root label of typed hash tree

pomcor

pomcor.com

Hash
Example of a
typed hash 0
Hash
tree, in its
0 0
issuance Hash Hash
state 0 0 0 0
Hash Hash Hash Hash
I | | |
1 1 1 1
Salt Salt Salt Salt
301 302 303 400
Name Birthdate Address HoPwsSS
0
Hash
0 0 0
Hash Hash Hash
1 502 1 504 1
Salt Left iris Salt Right iris Salt
biometric key biometric key
501 503 601
Left iris Right iris Facial image
helper datum helper datum template

pomcor

pomcor.com

Peripheral
subtrees, one 5 i j
U S Lo !
for each e T I
attributre and L. J— ,:
each 0 5 : r
o . Hash Hash Hash Hash ,"
verification 1 | ! | :
1 1 1 1 /
fa ctor Salt Salt Salt Salt i
301 302 303 400 ,'l
Name Birthdate Address HoPwsSS : HoPwsSS =
___________________________ Hash of Password
| | with Secret Salt
0 0) 0
Hash Hash Hash
1 502 1 504 1
Salt Left iris Salt Right iris Salt
biometric key biometric key
501 503 601
Left iris Right iris Facial image
helper datum helper datum template

omcor

pomcor.com

P

Issuer removes fash
HoPwsSS and o
biometric keys 0 :
to put tree Hash Hosh
. A N
In Its 0 0 0 0
Hash Hash Hash Hash
storage | [[|
1 1 1 1
state Salt Salt Salt Salt
301 302 303 400
Name Birthdate Address
0
Hash
0 0 0
Hash Hash Hash
1 502 1 504 1
Salt Salt Salt
501 503 601
Left iris Right iris Facial image
helper datum helper datum template

pomcor

pomcor.com

Subject’s device Hash
prunes peripheral o
subtrees to put 0 :
tree in its Hash Hash
. AN - N
presentation| o 0 0 0
Hash Hash Hash Hash
state N e ! | |
1 ' 1 1
Salt i Salt Salt
301 A 303 400
Name | Address
0
Hash
0 0 0
Hash Hash Hash
1 s2 |+ T 1
Salt |y { i Salt
so1 | i 601
Left iris Facial image
helper datum| 7000 template

2/22/2017

P

omcor

pomcor.com

Root label

IS omission-
tolerant
cryptogaphic
checksum

16

Verifier restores Hash
HoPwsSS and o
Has
biometric keys to 0 0
put treein its Hash Hash
verification 0 0 0 0
Hash Hash Hash Hash

state N I ! | |

1 . 1 1

Salt i Salt Salt

301 303 200
Name | Address HoPwsSS
0
Hash
0 0 0
Hash Hash Hash
1 so2 |1 T 1
Salt Left iris Salt
biometrickey| ~~"""""°7'1 TTomo
so1 | i 7 601
Left iris Facial image
helper datum| 7000 template

pomcor

pomcor.com

Public key,
HoPwsSS,
biometric
samples

Rich
certificate,
HoPwsSS,
biometric
samples

State transitions of a rich certificate

__

Issuance
state

Drop salted hash of
password & biometric keys

Storage
state

Storage
state

Presentation
state

Add salted hash of
password & biometric keys

Presentation
state

pomcor

pomcor.com

Verification
state

A rich credential can be backed by a
traditional PKI

 The issuer signs the hash of the public key, metadata
and root label of the typed hash tree, playing a role
analogous to that of a CA

* |f the issuer’s public key is not well known, the rich
credential can be backed by a chain of traditional X.509
CA certificates ending in a certificate signed by a root
CA, whose public key is well known

* But validation of the rich credential and CA certificate
chain, like validation of a traditional X.509 certificate
and CA certificate chain, is cumbersome for the verifier

pomcor

pomcor.com

Using a blockchain or distributed
ledger to simplify validation

* Distributed ledger:
— List of digitally signhed transactions
— Replicated across nodes using a P2P network

— Consensus achieved by a byzantine fault-tolerant
algorithm

* Blockchain similar to distributed ledger, but:
— Transactions grouped into blocks

— Tentative consensus achieved by proof of work or
proof of stake

pomcor

pomcor.com

On-ledger or on-chain storage

Language for describing transactions includes
instruction for storing data in named location

As storage transaction propagates each node
executes it in its own copy of the named location

Ethereum has on-chain storage, the Bitcoin
blockchain does not

Most distributed ledgers implement general-
purpose state machine replication, and as such
provide on-ledger storage

pomcor

pomcor.com

Implementing a PKI using a blockchain

or distributed ledger with on-chain/on-ledger storage

A blockchain or distributed ledger with on-chain or on-ledger
storage can be used to implement a PKI for rich credentials or
ordinary X.509 end-user certificates

To issue a rich credential, the issuer stores the hash of the public
key, metadata and root label in an on-chain or on-ledger storage
location that it controls, instead of signing it

To revoke a rich credential, the issuer stores the hash in another
such storage location

To issue an X.509 end-user or CA certificate, the issuer stores the
hash of the public key, metadata and attributes in a storage
location that it controls

To revoke an X.509 end-user or CA certificate, the issuer stores the
hash in another storage location

To validate a rich credential or X.509 end-user certificate and a CA
certificate chain, the verifier only needs to look up a hash in its local
copies of distributed storage locations

2/22/2017 pomcor 22

pomcor.com

Advantages over a traditional PKI

 Advantages over signed credentials;
— Shorter credential (no signature)
— Signature verification step is eliminated

 Advantages over revocation with CRL
— Verifier does not have to download and verify CRL updates
— Issuer does not have to set up a CRL distribution service

— Verifier does not have to rely on the availability of a CRL distribution
service

— Lag between revocation and issuance of CRL update is eliminated
 Advantages over OCSP

— lIssuer does not have to set up an OCSP service

— Verifier does not have to rely on the availability of an OCSP service

— Network latency is entirely eliminated

pomcor

pomcor.com

Two methods for storing a
private key in the browser

* Two methods made possible by new web technologies

* Method 1
— Relies on HTMLS5 localStorage and the Service Worker API

— Relatively simple, but issuer has access to private key and
can extract it and use it somewhere else

e Method 2

— Relies on the IndexedDB API, the CryptoKeyPair object of
the Web Cryptography API, and the Service Worker API

— More complicated, but issuer does not have access to
private key and cannot extract it and use it elsewhere

pomcor

pomcor.com

The root label of a typed hash tree is
an omission-tolerant cryptographic
checksum of its contents

2/22/2017 pomcor
pomcor.com

25

* Definition of a typed hash tree:
— Each node has a type and a label
— An internal node has a distinguished type d (e.g. 0) and a
label equal to the hash of a prelabel, which is an injective

encoding of the sequence of types and labels of its
children

— Pruning a subtree causes its root to become a leaf node
having the distinguished type d, which is called a dangling
node

— A proper leaf node is a leaf node with an undistinguished
type, i.e. that is not a dangling node

— An unpruned tree is a tree without dangling nodes
* Atyped hash tree can be used to represent a collection
(more precisely, a multiset) of key-value pairs

— Each proper leaf node represents a key-value pair, where
the key is the type and the value is the label

pomcor

pomcor.com

e Theorem:

— Let Xand Y be two typed hash trees with the same root
label. If X is unpruned, then either Y is a pruned derivative
of X, or a node of Y has the same label as a node of X but a
different prelabel

* Proof summary:

— Consider the computation C of the root label of Y from its
leaf types and labels

— Consider the earliest stage E of the computation C that
coincides with a stage of the computation of the root label
of a pruned derivative of X

— Among the pruned derivatives of X that have E as a
computation stage, consider a minimally pruned one X’
and let C’ be its computation

— Show that stage E is reached in C and C’ by hash steps that
hash different prelabels to the same label

pomcor

pomcor.com

* Pruning a typed hash tree removes key value
pairs

* Different prelabels that are hashed to the
same label constitute a hash function collision

=> Corollary:

— Let Xand Y be two typed hash trees representing
multisets M(X) and M(Y) of key-value pairs. If Xis
unpruned and Y has the same root label as X, then
either M(Y) is a submultiset of M(X) or X and Y
exhibit a hash function collision

pomcor

pomcor.com

Thank you for your attention!

For more information:
pomcor.com
pomcor.com/blog/
https://pomcor.com/techreports/RichCredentials.pdf
https://pomcor.com/techreports/BlockchainPKl.pdf

Francisco Corella
fcorella@pomcor.com

Karen Lewison
kplewison@pomcor.com

Any questions?

pomcor

pomcor.com

