Work in progress

This is an early draft of the table of contents of a book on the foundations of cryptographic authentication being coauthored by <u>Francisco Corella</u>, <u>Sukhi Chuhan</u> and <u>Veronica Wojnas</u>. Please send comments to the authors.

Book title: Foundations of Cryptographic Authentication

Part I: Introduction

Chapter 1: Introduction

- Motivation
 - Vulnerabilities of traditional multifactor authentication
 - Worldwide emergence of digital government services
- Book audiences
- Terminology
- Organization of the rest of the book

Part II. Cryptographic foundations

Chapter 2: Cryptographic primitives

- Preliminaries
 - Cryptographic assumptions and security reductions
 - System parameterization
 - Cyclic groups and discrete logarithms
 - Mathematical background on cyclic groups and discrete logarithms
 - Security strengths provided by discrete logarithm assumption
 - Group order and subgroup structure
 - Pohlig-Hellman algorithm
 - Small subgroup attacks
 - NIST classification of cryptographic primitives
 - Strength of the discrete log assumption in ECC primitives
 - Speed of generic discrete-log algorithms
 - NIST's comparison of security strengths
 - Galois fields
 - Elliptic curves
 - The projective plane
 - Algebraic plane curves
 - Weierstrass curves

- Jacobian coordinates
- Group law
- Montgomery and Edwards curves
 - Montgomery curves
 - Curve25519
 - Edwards curves
 - Twisted Edwards curves
- Primitives used in cryptographic authentication
 - Hash functions and hash trees
 - Cryptographic properties of hash functions
 - Choosing a hash function
 - Structured cryptographic digests: lists, chains, trees
 - Symmetric signatures and HMAC
 - The Merkle–Damgård construction
 - The length extension attack
 - How HMAC avoids the length extension attack
 - Should HMAC be used with SHA-3?
 - Asymmetric signature schemes
 - EUF-CMA vs SUF-CMA security
 - Discrete-log signature schemes in cyclic groups
 - Unified notation for comparison of different discrete log signature schemes
 - The Schnorr signature scheme
 - DSA and ECDSA
 - EdDSA
 - Cofactor clearing and clamping
 - Generation of the private key and the per-message secret
 - The Ed25519 signature scheme
- The many uses of cryptographic primitives in authentication

Chapter 3: Traditional cryptographic credentials

- Using a key pair for challenge-response authentication
- Public key and attribute certificates
- Hash-of-public-key certificates
- Selective disclosure public key certificates
- From zero knowledge protocols to anonymous credentials
 - Zero knowledge (ZK) proof of a fact (PoF)
 - Example: zero knowledge proof of quadratic residuosity
 - Honest-verifier zero-knowledge (HVZK) proof of knowledge (PoK) of a secret
 - Sigma protocols
 - Example: The Schnorr identification protocol
 - Non-interactive zero-knowledge proof of knowledge of a secret
 - From NIZK PoK to challenge-response authentication
 - From NIZK PoK to a signature scheme

- Two versions of Schnorr signatures
- The Fiat-Shamir transform
- Fiat-Shamir transformation of a Sigma identification protocol into a signature scheme
- Fiat-Shamir transformation of a general three-move protocol into a general one-move protocol
- Fiat-Shamir transformation of a sequence of three-move protocols into a single one-move protocol
- Honest-verifier zero-knowledge proof of knowledge of a signature
- Non-interactive zero-knowledge proof of knowledge of a signature
 - Secret signatures as anonymous credentials
 - Signature by the anonymous subject of a credential
- Example: BBS signatures as anonymous credentials
- The role of zero knowledge in anonymous credentials

Chapter 4: Phishing resistant authentication with cryptographic credentials

- Authentication across a communication channel
- <<< secure channels, key agreement, DH, ECDH, authenticated encryption...
- Credential presentation protocols
- Countermeasures against man-in-the-middle phishing attacks
- Authentication with a symmetric signature
- Returning-user authentication with a key pair credential
- Third-party authentication with a public key certificate
- Cardholder authentication and transaction confirmation with a credit card certificate
- Authentication with unlinkable credentials

Part III: Technological foundations

Chapter 5: Web technology

- The World-Wide Web
 - HTTP and TLS
 - JavaScript
 - Redirection
 - Same-origin policy
- Web APIs
 - Web Cryptography API
 - Web Storage API
 - IndexedDB API
 - Web Authentication API
 - Service workers
- Federated identity management
 - OAuth2
 - OpenID Connect

Chapter 6: Mobile technology

- Native apps
- Web apps
- Progressive web apps
- Wallets

Chapter 7: Secure storage

- Browser enforcement of the same origin policy
- Cryptokey objects
- Secure enclaves, TEEs, TPMs
- Hardware security modules

Chapter 8: Email and texting security

- Email authentication protocols
 - SPF, DKIM, DMARC
- Text messaging vulnerabilities

Chapter 9: Blockchains and distributed ledgers

- Bitcoin
- Ethereum
- Hashgraph
- Cryptocurrencies
- Fungible and non-fungible tokens
- Payment wallets

Part IV: Browser-based cryptographic authentication

Chapter 10: FIDO

- FIDO2 specifications
 - Web Authentication API
 - Client to Authenticator Protocol
- Security keys
- Platform authenticators
- Passkey synchronization
- Authentication with third-party certificates

Chapter 11: Fusion credentials

- The concept of fusion
- Biometric fusion
- Biometric cryptosystems and revocable biometrics
- Fusion a key pair with a password
- Fusion a key pair with a revocable biometric
- Fusion of a selective disclosure certificate with a password and a biometric

- Fusions of zero-knowledge credentials with biometrics
- Threats and opportunities arising from AI

Part V: Wallet-based authentication

Chapter 12: Mobile wallets

- Types of mobile wallets
 - Payment wallets
 - Cryptocurrency wallets
 - Government wallets
 - SSI wallets
- Communication methods
- Management of wallet credentials
 - In-wallet storage
 - Online storage
 - Credential revocation

Chapter 13: ISO/IEC wallet credentials

- ISO/IEC 18013-5
 - Extensible data model
 - Terminology
 - Selective disclosure
 - Age attestations
 - Session encryption and mdoc authentication
 - Authentication of the mdoc reader
 - Transaction flows
 - Innovative use of OpenID Connect
 - Security posture
 - Vulnerability to cloning and man-in-the-middle attacks
 - Mitigation and attack prevention
 - Unauthorized access attacks, mitigations, and prevention
 - Active attack against NFC activation
 - Eavesdropping attacks on NFC device engagement
 - Eavesdropping attacks on the QR code
 - Prevention of unauthorized access attacks
 - Privacy
 - User experience --- NOT WRITTEN YET
 - Device activation and engagement
 - Holder authentication
 - Attribute selection and holder consent
 - Accessibility

Chapter 14: Decentralized identifiers

• Early constructions of decentralized identifiers

- Namecoin
- Decentralized PKI
- W3C decentralized identifiers
 - did:btcr
 - DID document
 - DID creation
 - DID update
 - The "controller" concept
 - Key rotation in did:btcr
 - DID deletion
 - DID resolution
 - o did:key
 - A glossary of "25519" terminology
 - KERI
 - Key rotation and pre-rotation in KERI
 - o did:peer
 - Generation methods
- DIDComm
 - Message encoding and transport
 - Message signing and encryption

Chapter 15: Verifiable credentials and self-sovereign identity

- Origin, scope, and "verifiability" of verifiable credentials
- Using verifiable credentials for authentication
- Protection against man-in-the-middle attacks
- Self-sovereign identity
 - o **Definition**
 - SSI with existing technology
 - o Benefits of SSI
 - Privacy implications of SSI
- Anoncreds
- W3C BBS cryptosuite

Chapter 16: Combining ISO/IEC credential and verifiable credentials TBD

Part VI: User experience

Chapter 17: User experience

- Introduction
 - Why UX matters in these things: A potential case study to highlight the importance
 - Usability issues in historical authentication methods

- High level overview of user experience
 - User research basics
- Existing research ("user research that has been done to this point")
 - Literature review of existing papers
- Review of Cryptographic Authentication Methods
 - Web authentication patterns
 - Potential implementation examples: Secure Keys, Passkeys, Fusion Credentials
 - Wallet authentication patterns:
 - Potential implementation examples, BC Wallet, Mobile Drivers Licenses, Diia
- UX considerations for cryptographic authentication [working set of key themes subject to change]
 - Mental models and understanding
 - What it is: Definition of the heuristic
 - Examples of implementation patterns that speak to that theme
 - Why it matters
 - Tips to keep in mind/thinking to explore
 - Value proposition
 - What it is: Definition of the heuristic
 - Examples of implementation patterns that speak to that theme
 - Why it matters
 - Tips to keep in mind/thinking to explore
 - Accessibility:
 - What it is: Definition of the heuristic
 - Examples of implementation patterns that speak to that theme
 - Why it matters
 - Tips to keep in mind/thinking to explore
 - Delight/interactions
 - What it is: Definition of the heuristic
 - Examples of implementation patterns that speak to that theme
 - Why it matters
 - Tips to keep in mind/thinking to explore
 - SSI-specific: double-edged sword of responsibility
- Conclusion
 - Summary of key points