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1 Preliminaries

1.1 Change in Revision 2 of Version 0.9.1

In Revision 2, the ancillary file browserEntropy. js has been modified to work with Internet
Explorer. IE refers to crypto.getRandomValues() as msCrypto.getRandomValues(). To
cope with this we have defined

var cryptoObject = self.crypto || self.msCrypto; // for IE
and replaced the statement

crypto.getRandomValues (ui32Array) ;
with

cryptoObject.getRandomValues (ui32Array) ;

in the functions pjclBrowserEntropy128Bits and pjclBrowserEntropy192Bits. We use
self rather than the more traditional window because window is not available in web worker
scope. (IE and Safari do not support getRandomValues () in web worker scope, but Chrome,
Firefox and Edge do.)

(© Copyright 2018 Pomcor
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1.2 Change in Revision 1 of Version 0.9.1

Revision 1 differs from the original version 0.9.1 in the way in which functions are defined.
Function names are now global variables whose values are anonymous functions. For exam-
ple, instead of defining

function pjclDSASignMsg(rbgStateStorage,p,q,g,x,msg) {...}
we now define
pjclDSASignMsg = function(rbgStateStorage,p,q,g,x,msg) {...}

Furthermore, global variables are now declared implicitly without using the var keyword.

This has no performance impact, and requires no changes in client code running on a
browser, while making it possible to call library functions in Node.js exactly as in client
code, without having to use the module.exports mechanism. That is, instead of wrapping
the library in a Node.js module wrapped-pjcl.js and exporting the functions you need, as
in:

var crypto = require(./wrapped-pjcl.js);
var sig = crypto.pjclDSASignMsg(rbgStateStorage,p,q,g,x,msg) ;

you simply write

require(./pjcl.js);
var sig = pjclDSASignMsg(rbgStateStorage,p,q,g,X,msg);

In this way require () provides the same functionality as the #include preprocessor directive
of C and C++.

The rest of this documentation has not been modified and still refers to functions as they
were previously defined.

1.3 Functionality provided in Version 0.9.1
The present version of PJCL provides:
e Big integer arithmetic, including:

— Long multiplication and Karatsuba multiplication [1, § 15.1.2].
— Montgomery reduction [2, § 14.3.2].

— Sliding window exponentiation [2, Algorithm 14.85] in a generic monoid, with
specializations including modular exponentiation with Montgomery reduction and
scalar multiplication of a point of an elliptic curve. (The latter may be imple-
mented differently in a future version.) Our implementation of modular expo-
nentiation with Montgomery reduction is several times faster than the one in the
Stanford JavaScript Cryptographic Library (SJCL) [3] according to performance
testing described in https://pomcor.com/pjcl/pjcl-performance.pdf.
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The hash functions SHA-256 and SHA-384 [4].
The message authentication codes HMAC-SHA256 and HMAC-SHA384 [5, 6].
The key derivation functions HKDF [7] and PBKDF2 [g].

Utility functions for converting JavaScript strings to byte arrays and bit arrays, ac-
cording to four byte serializations, a.k.a. transformation formats: UTF-16BE, UTF-
16LE, UTF-8 and ASCII. These conversions enable unambiguous hashing of JavaScript
strings and unambiguous key derivation from string-encoded passwords using PBKDF2.

Statistical random number generation.

Cryptographic random number generation based on the NIST Hash-Based Determinis-
tic Random Bit Generator Hash_DRBG [9] with hash functions SHA-256 and SHA-384.

Generation and validation of Finite Field Cryptography (FFC) domain parameters
(p, q, g) for use in DSA and Diffie-Hellman (DH), with p and ¢ sizes (L, N) = (3072, 256)
and (L, N) = (2048, 256).

Generation of FFC key pairs for use in DSA and DH.
Partial and full validation of FFC public keys.

DSA [10].

DH [11].

Operations on the group of points of an elliptic curve, for NIST curves P-256 [10,
§ D.2.3] and P-384 [10, § D.2.4]. Other curves will be supported in the future.

Generation of ECC key pairs, for NIST curves P-256 and P-384.
Validation of ECC public keys, for NIST curves P-256 and P-384.
ECDSA [12] in NIST curves P-256 and P-384.

ECDH [11] in NIST curves P-256 and P-384.

The next version of the library will provide RSA and AES.

1.4

Additions and changes from version 0.9.0

1.4.1 Main additions and changes

The main additions and changes from version 0.9.0 are as follows:

Addition of DH, ECDH, HKDF and PBKDF2.

(© Copyright 2018 Pomcor
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e Addition of functions that convert JavaScript strings to byte arrays according to the
Unicode transformation formats UTF-16BE, UTF-16LE and UTF-8.

e Introduction of FFC (Finite Field Cryptography) as an explicit concept, encompassing
a common set of functions for generating domain parameters and key pairs usable for
DSA and DH, and validating domain parameters and public keys.

e DSA can now be used with domain parameters (p, ¢) generated by pjclFFCGenPQ with
bit lengths (2048, 256) or (3072, 256), and with parameters of other bit lengths obtained
from an external source.

e Introduction of ECC as an explicit concept, encompassing the generation of key pairs
usable for both ECDSA and ECDH, and the validation of public keys.

e ECC key pair generation now produces the public key in affine coordinates, i.e. with z =
1. (The library treats an affine coordinate as a special case of a Jacobian coordinate.)
Functions that take a public key as an argument continue to accept the public key in
Jacobian coordinates.

e The code for computing and verifying ECDSA signatures now closely follows X9.62
[13], rather than the Certicom paper [12], down to the choice of variable names. X9.62
includes a stipulation that the hash of the message is to be truncated to the bit length
of the order n of the generator. This stipulation is unnecessary if the hash function is
fixed and its output has the same length as n, which is the case in [12] and in version
0.9.0 of PJCL, but is necessary in the present version, where pjclECDSAVerifyHash
enables a choice of hash function for a given curve. The DSA code similarly truncates
the hash to the bit length of ¢ as stipulated in [10, Section 4.6], which was not necessary
in version 0.9.0 but is necessary in this version.

1.4.2 Non-backward compatible changes
We regret that the following changes are not backward compatible:

e The function pjclBitArray2Hex(bitArray) used to return a string containing the
single character “0” when passed an empty bit array as its argument. Now it returns
the empty string, but a second optional parameter minHexLength has been added that
can be set to 1 to cause the function to return the string containing “0” in that case.

e The function pjclBigInt2Hex (x,minHexLength) used to return a string containing
the single character “0” when x was (the big integer representation of) 0 and either
minHexLength was 0 or the function was called with only one argument. Now it returns
the empty string in those cases.

e The functions:

pjclCryptoRNG128(rbgStateStorage,a,b), and
pjclCryptoRNG192(rbgStateStorage,a,b),

(© Copyright 2018 Pomcor
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which generated random numbers with security strengths 128 and 192 respectively,
have been replaced with the function:

pjclCryptoRNG(rbgStateStorage,requestedSecStrength,bitLength),

which generates a random number with the security strength of the DRBG whose
internal state is stored at rbgStateStorage, after verifying that the security strength of
the DRBG is not less that the one specified by the requestedSecStrength parameter.

e The function pjc1DSAGenPQ, which generated primes (p, ¢) with bit lengths (3072, 256),
has been replaced with the function pjclFFCGenPQ_3072_256, which provides the same
functionality, and the function pjclFFCGenPQ_2048_256, which generates (p, ¢) with bit
lengths (2048,256). Synonyms pjclDSAGenPQ 3072 256 and pjclDSAGenPQ 2048 256
are provided for pjclFFCGenPQ_3072_256 and pjclFFCGenPQ_2048_256.

e The function pjclDSAGenG has been replaced with pjclFFCGenG_256 and its synonym
pjclDSAGenG_256, which provide the same functionality.

e In version 0.9.0, the function pjclDSAGenKeyPair (rbgStateStorage,p,q,g) could be
used to generate random domain parameters on the fly in addition to generating a DSA
key pair, by calling it with only one argument. In this version, pjclDSAGenKeyPair,
which is now a synonym of pjclFFCGenKeyPair, no longer generates domain parame-
ters and must be called with four arguments.

e The function pjclDSASign, which computed a signature taking as input a message, has
been replaced by the functions pjc1DSASignHash and pjclDSASignMsg, which compute
a signature taking as input a hash of the message and the message itself, respectively.
Similarly, the function pjclDSAVerify, which verified a signature taking as input a
message, has been replaced with pjclDSAVerifyHash and pjclDSAVerifyMsg, which
take as input the hash of the message and the message itself respectively.

e The functions

pjclECDSA128GenKeyPair (rbgStateStorage,curve), and
pjclECDSA192GenKeyPair (rbgStateStorage, curve)

have been replaced with
pjclECCGenKeyPair (rbgStateStorage,curve)
and its synonym
pjclECDSAGenKeyPair (rbgStateStorage,curve),

which generate an ECC key pair for the curve specified by the second parameter, after
verifying that the security strength of the DRBG whose internal state is stored in
the object specified by the rbgStateStorage parameter is not less than the security
strength of the curve.
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e The functions

pjclECDSA128Sign(rbgStateStorage, curve,d,msg) and
pjclECDSA192Sign(rbgStateStorage, curve,d,msg)

have been replaced with
pjclECDSASignHash(rbgStateStorage,curve,d,hash) ,

which signs a message taking the hash of the message as input, with a security strength
determined by the curve, and

pjclECDSASignMsg(rbgStateStorage,curve,d,msg) ,

which takes as input the message itself and hashes it with the hash function of the SHA-
2 family that produces the shortest output of length greater than or equal to twice the
security strength of the curve. Both of these functions verify that the security strength
of the DRBG whose internal state is in rbgStateStorage is not less than the security
strength of the curve.

e Similarly, the functions

pjclECDSA128Verify(curve,Q,msg,r,s), and
pjclECDSA192Verify(curve,Q,msg,r,s)

have been replaced with

pjclECDSVerifyHash(curve,Q,hash,r,s), and
pjclECDSAVerifyMsg(curve,Q,msg,r,s).

1.5 Requirements

PJCL does not require any recent features of JavaScript, nor any particular JavaScript
engine, runtime environment or framework. The PJCL API is a collection of global functions
and variables whose names are all prefixed by pjcl to avoid name conflicts. (The PJCL
acronym and the pjcl prefix are trademarks of Pomcor.) Therefore PJCL can be used
wherever JavaScript is used. It can be used in a browser, in a native app (e.g. using React
Native [14]), or in a server (e.g. using node.js [15]).

The PJCL pseudo-random bit generator must be seeded with random bits with sufficient
entropy obtained from a true random source. It may be reseeded before generating random
bits for the sake of prediction resistance [9, § 8.8]. You are responsible for providing the
random bits used for seeding or reseeding. Methods for obtaining entropy are discussed
below in Section 21.2. Math.random does not provide entropy.

1.6 License

The PJCL library can be used subject to the terms of the PJCL license, which can be found
at https://pomcor.com/pjcl/pjcl-license.txt.
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1.7

Downloadable zip archive

The current version of the PJCL library can be downloaded as a zip archive that can be
found at https://pomcor.com/pjcl/pjcl-091.zip. The archive contains a pjcl directory,
which itself contains the following files:

The file pjcl. js contains the PJCL library.

The file pjcl-withArgChecking. js differs from pjcl.js in that most of the API
functions include code that checks the validity of their arguments. This may be useful
for debugging applications that use the library, and as a precise specification of the
properties of the arguments expected by the functions.

The directory KaratsubaThresholds contains files that let you estimate optimal thresh-
olds for Karatsuba multiplication and Karatsuba squaring in a particular JavaScript
environment, as described below in Section 30.

The directories DSAPerfTesting and DHPerfTesting contain facilities that allow you
to test the performance of DSA and DH on a browser of your choice as described below
in Section 31.1.

The file browserEntropy. js contains examples of how to generate random bits in
browsers that support the Web Crypto API. It is used in DSAPerfTesting and DHPerfTesting.

Additional performance testing facilities and results will be provided in the future.

2

2.1

Data encodings

Small integers

JavaScript numbers are represented in IEEE 754 double-precision (64-bit) floating point
format [16], which allows every nonnegative integer n in the range 0 < n < 25 to be
represented exactly. Floating point numbers are silently converted to 32-bit integers before
applying bitwise boolean and shift operators, but there are no integer arithmetic operators
in JavaScript.

This library uses JavaScript floating point numbers to encode bits, bytes, unsigned 32-bit
integers and, as discussed below, 24-bit limbs of big integers. Hex digits, on the other hand,
are always encoded as characters in JavaScript strings. Whenever a sequence of bits is the
binary representation of a byte, 32-bit integer, or hex digit, the most significant bit goes first
in the sequence; we refer to this a big-endian bit ordering.

We represent a sequence of bits as a bit array, i.e. an array of numbers where each element
is 0 or 1, and a sequence of bytes (sometimes called an octet string) as a byte array, i.e. an
array of numbers where each element is an 8-bit integer. Cryptographic hash functions and
HMAC take bit arrays as inputs, while HKDF and PBKDF2 take byte arrays as inputs.

(© Copyright 2018 Pomcor


https://pomcor.com/pjcl/pjcl-091.zip

PJCL Version 0.9.1 14

Representing a bit sequence as a JavaScript array of 64-bit numbers is not space-efficient,
but it is computationally efficient, and the space inefficiency does not matter for purposes
such as authentication or key derivation. It would matter for hashing the contents of a very
large file, since it might be difficult or impossible to represent the entire contents of the file
as a bit array; but a future version of the library will provide incremental hashing for that
purpose.

In function names “UI32” refers to an unsigned 32-bit integer represented as a JavaScript
number, and “UI32Array” to an array of unsigned 32-bit integers. Notice that “UI32Array”
refers to an ordinary JavaScript array, not to a typed array.

2.1.1 Typed arrays and Node.js buffers

The library does not construct any typed arrays, nor any Node.js buffers, and library functions
do not return such constructs. However, when a function parameter is expected to be an
array of bytes, or an array of unsigned 32-bit integers, a typed array or a Node.js buffer can
be passed instead as an argument.

2.2 Big integers

PJCL represents nonnegative integers of arbitrary size in base B = 27, with § = 24. Follow-
ing tradition, we refer to the digits of the base-B representation as limbs. A limb is thus a
24-bit quantity. It is unlikely but not impossible that the number of bits per limb will change
in the future. Your own code should use the variables of Section 4.1 to avoid hardcoding the
number of bits per limb.

The limbs are stored in an array. For performance reasons, the least significant limb is
the first element of the array, i.e. the element with index 0. Thus, the index of each limb is
its weight in the base-B representation: limb \; of the nonnegative integer N = _._, A B’
is stored at position ¢ in the n-limb array that represents V. N

The order in which the limbs are stored in the array only matters for understanding the
implementation of the library; it should not matter to developers who use the API, and it
does not affect the API-level metaphors. For example, “shifting left by one limb” shall mean
shifting by one limb towards the most significant end of the array, i.e. multiplying by B, even
though the most significant limb is the array element with the highest index, which is the
rightmost element in an array literal; and the “leading limb” shall mean the most significant
limb.

JavaScript arrays are not objects, but can have properties like objects. A negative integer
is represented by encoding its absolute value as an array of limbs, and giving the array
a property negative with value true. A nonnegative integer does not have a negative
property.

We use the term big integer to refer to an integer represented in base B as an array
of limbs with an optional negative property. A big integer has a unique representation.
Leading zero limbs are not allowed, i.e. the most significant limb must not be zero. The big
integer zero is represented as an empty array without a negative property.
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For the sake of performance and code footprint minimization, some functions ignore the
negative property of big integer arguments and thus operate on the absolute values of those
arguments, while other functions take the negative property into account and thus operate
on their relative values. The latter functions are distinguished by the suffix Rel in their
names. For example, pjclAdd(x,y) adds the absolute values of the parameters x and y,
while pjclAddRel adds their relative values.

2.3 Unicode text

JavaScript uses the type String to encode Unicode text in UTF-16, a variable-length encoding
where each code point is encoded by a 16-bit code unit or a so-called surrogate pair of
code units, referred to as the high-surrogate code unit and the low-surrogate code unit. A
JavaScript string is a sequence of code units. If s is a string and n a non-negative number
less than s.length, then s.charCodeAt(n) is the code unit at position n in s. If a code
point is encoded by a surrogate pair, the high code unit goes before the low code unit in the
sequence.

The Unicode standard defines two byte serializations, which specify how a sequence of
code units is mapped to a sequence of bytes: big endian (UTF-16BE), where the most
significant byte of each code unit goes before the least significant byte, and little-endian
(UTF-16LE), where the least significant byte goes first. In both serializations, the high-
surrogate code unit, a.k.a. the leading surrogate, goes before the low-surrogate code unit,
a.k.a. the trailing surrogate. The standard provides an optional byte order mark, OXFEFF,
that can be prefixed to a byte serialization to indicate its byte order. This version of the
library treats OxFEFF (which is the code point of an invisible character) and 0xFFFE (which
is an unassigned code unit) as ordinary UTF-16 code units.

The JavaScript language does not provide individual access to each byte of a code unit,
and therefore does not specify a particular byte serialization. Unfortunately, this means that
the concept of a cryptographic hash is ambiguous for a JavaScript string. The string must
be converted to a bit sequence before it can be hashed, and there are different ways of doing
that, resulting in different bit sequences. It also means that password-based key derivation,
e.g. as specified by PBKDF2, is undefined if the password is encoded as a JavaScript string.
The password must first be converted to a byte sequence before it can be passed as an
argument to PBKDF2, and again there are different ways of doing that, which result in
different byte sequences.

This version of the library provides four functions that convert strings to byte arrays that
can be used as inputs to hashing (after further conversion to bit arrays) or key derivation:

e pjclString2ByteArray UTF16BE implements big-endian serialization.
e pjclString2ByteArray UTF16LE implements little-endian serialization.

e pjclString2ByteArray UTF8 converts the string to a byte array by converting each
UTF-16 character in the string (represented by one code unit or a surrogate pair) to
the one-to-four byte sequence of its UTF-8 encoding.
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e pjclString2ByteArray ASCII assumes that the string contains only ASCII characters
and converts the string to a byte array whose elements are the ASCII code points of
the characters.

The library also provides a function pjclByteArray2BitArray and, for convenience and
performance, four functions that convert directly from strings to bit arrays:

pjclString2BitArray UTF16BE,
pjclString2BitArray UTF16LE,
pjclString2BitArray UTF8, and
pjclString2BitArray ASCII.

Version 0.9.0 had functions pjclUTF16toBitArray and pjclASCII2BitArray. These are
now global variables that can be used as synonyms for the functions pjclString2BitArray UTF16BE
and pjclString2BitArray ASCII respectively.

2.4 Hex strings

We use the term hex string to refer to a JavaScript string whose characters are hexadecimal
digits: 0...9, A...F or a...f. Functions that take a hex string as input accept both upper and
lower case hexadecimal digits. Functions that produce a hexadecimal string as output use
the JavaScript method toString(16), which may produce upper or lower case hexadecimal
digits depending on the JavaScript engine that interprets the function.

3 API generalities

Sections 4 through 29 describe the global variables and functions that comprise the API in
the order in which they are declared in the code.

3.1 Argument checking

When a description of a function states that a parameter is expected to have some property,
it is an error if the expectation is not met. In pjcl-withArgChecking. js, most of the API
functions have argument checking code that throws an exception if such expectations are
not met.

3.2 Side effects

Functions have no side effects unless otherwise indicated in their documentation. The fol-
lowing functions have side effects in the current version of the library: pjclShortShiftLeft,
pjclShiftLeft, pjclShortShiftRight, pjclShiftRight, pjclPreExp and pjclPreExp?2.
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4

4.1

Global variables and functions related to the repre-
sentation of big integers

var pjclBaseBitLength
var pjclBase

var pjclBaseMask

var pjclBaseMaskMinusOne
var pjclBaselnv

var pjclBaseAsBigInt

var pjclHalfBase

These global variables encapsulate most of the dependencies on the fact that a limb has 24
bits. Your code should not hardcode the fact that a limb has 24 bits.

4.2

The value of pjclBaseBitLength is 3, i.e. 24.
The value of pjclBase is B, i.e. 224, encoded as a JavaScript number.

The value of pjclBaseMask is B — 1, encoded as a JavaScript number, which is viewed
as
00000000 1111111111111 11111111111
S——— ~~
8 24
by JavaScript bitwise operators.

The value of pjclBaseMaskMinusOne is B — 2, encoded as a JavaScript number, which
is viewed as
00000000 111111111111111111111110
S——— ~~ d
8 24
by JavaScript bitwise operators.

The value of pjclBaseInv is 1/B encoded as a JavaScript (floating point) number.
The value of pjclBaseAsBigInt is B, encoded as a big integer.

The value of pjclHalfBase is B/2, encoded as a JavaScript number, which is viewed
as

00000000 100000000000000000000000
8 21
by JavaScript bitwise operators.

function pjclWellFormed(x)

Returns true if the parameter x is a well-formed big integer, or false otherwise. It is used
for argument checking.
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5 Conversion functions

5.1 function pjclByte2BitArray(byte)

The parameter byte is expected to be a JavaScript floating point number whose value is an
integer n in the range 0 < n < 2%, which is converted to a bit array whose elements are the
8 bits of the binary representation of n.

5.2 function pjclByteArray2BitArray(byteArray)

Converts a byte array to a bit array, using big-endian bit ordering.

5.3 function pjclBitArray2ByteArray(bitArray)

The parameter bitArray is expected to be a bit array whose length is a multiple of 8. The
function returns the result of converting the bit array to a byte array, using big-endian bit
ordering.

5.4 function pjclString2ByteArray ASCII(s)

The parameter s is expected to be an ASCII string, which the function converts to a byte
array where the value of each byte is the code point of the corresponding ASCII character.
Note that although each character is encoded as a 16-bit UTF-16 code unit in the JavaScript
string s, it is mapped to a single byte in the resulting bit array.

When s is an ASCII string, pjclString2ByteArray ASCII(s) produces the same result
as pjclString2ByteArray UTF8(s) but more efficiently. (Another reason to use
pjclString2ByteArray ASCII(s) instead of pjclString2ByteArray UTF8(s) is that, with
argument checking, it checks that s is an ASCII string.)

5.5 function pjclString2BitArray ASCII(s)
var pjclASCII2BitArray = pjclString2BitArray ASCII

In version 0.9.1 the function pjclString2BitArray ASCII is the function that was called
pjclASCII2BitArray in version 0.9.0. The old name can still be used as a synonym.

The parameter s is expected to be an ASCII string, which the function converts to a
bit array by mapping each ASCII character in s to the eight-bit binary representation of
the code point of the character in big-endian bit ordering. Since an ASCII code point is
an integer in the range 0...127, the first of the eight bits is 0. Note that although each
character is encoded as a 16-bit UTF character in the JavaScript string s, it is mapped to
only eight bits in the resulting bit array.

As other string-to-bit-array conversion functions, pjclString2BitArray ASCII could be
implemented by a call to pjclString2ByteArray_ASCII followed by a call to
pjclByteArray2BitArray, but this would reduce performance.
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5.6 function pjclString2ByteArray UTF8(s)

The parameter s is expected to be a JavaScript string, which the function converts to a byte
array by converting each UTF-16 character in the string (represented by one code unit or
a surrogate pair) to the one-to-four byte sequence of its UTF-8 encoding. With argument
checking, the function throws an exception if s ends at a high surrogate, or a high surrogate
in s is not followed by a low surrogate.

5.7 function pjclString2BitArray UTF8(s)

This is a convenience function that applies pjclString2ByteArray UTF8 to s, then applies
pjclByteArray2BitArray to the resulting byte array.

5.8 function pjclString2ByteArray UTF16BE(s)

The parameter s is expected to be a JavaScript string. The function returns the big-endian
byte serialization of the sequence of UTF-16 code units of s. With argument checking, the
function checks that s is a JavaScript string, but, contrary to pjclString2ByteArray UTF8
it does not check whether s ends in a high surrogate or contains a high surrogate not followed
by a low surrogate.

5.9 function pjclString2BitArray UTF16BE(s)
var pjclUTF16toBitArray = pjclString2BitArray UTF16BE

In version 0.9.1, the function pjclString2BitArray UTF16BE is the function that was called
pjclUTF16toBitArray in version 0.9.0. The old name can still be used as a synonym.

The parameter s is expected to be a string, which the function converts to a bit array by
mapping each UTF-16 code unit in s to a sequence of 16 bits in big-endian bit order. Like
pjclString2ByteArray UTF16BE, with argument checking pjclString2BitArray UTF16BE
checks that s is a JavaScript string, but does not check whether s ends in a high surrogate
or contains a high surrogate not followed by a low surrogate.

As other string-to-bit-array conversion functions, pjclString2BitArray UTF16BE could
be implemented by a call to pjclString2ByteArray UTF16BE followed by a call to
pjclByteArray2BitArray, but this would reduce performance.

5.10 function pjclString2ByteArray UTF16LE(s)

The parameter s is expected to be a JavaScript string. The function returns the little-
endian serialization of the sequence of UTF-16 code units of s. With argument checking, the
function checks that s is a JavaScript string, but does not check whether s ends in a high
surrogate or contains a high surrogate not followed by a low surrogate.
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5.11 function pjclString2BitArray UTF16LE(s)

This is a convenience function that applies pjclString2ByteArray UTF16LE to s, then ap-
plies pjclByteArray2BitArray to the resulting byte array. Since the mapping from UTF-16
code units to bytes uses little-endian byte order, but the subsequent mapping from bytes to
bits uses big-endian bit order, the order of the bits in the resulting bit array is peculiar: for
example, the least significant bit of the first 16-bit code unit is at position 7 in the bit array,
and is followed by the most significant bit at position 8.

5.12 function pjclUI32toBitArray(ui3?2)

The parameter ui32 is expected to be a JavaScript number whose value is an unsigned 32-bit
integer, i.e. an integer n in the range 0 < n < 232, which is converted to a bit array whose
elements are the 32 bits of the binary representation of n.

5.13 function pjclUI32Array2BitArray(x)

The parameter x is expected to be an array where each element is a JavaScript number
whose value is an integer n in the range 0 < n < 232, The function converts x to a bit
array by mapping each integer n to the 32 bits of its binary representation. As discussed
above in Section 2, PJCL does not construct typed arrays, but an application may pass a
Uint32Array as an argument to the function instead of an ordinary JavaScript array.

5.14 function pjclUI32Array2ByteArray(x)

The parameter x is expected to be an array where each element is a JavaScript number whose
value is an integer n in the range 0 < n < 232, The function returns a byte array obtained
by mapping each n to four bytes and pushing the bytes to the array, most significant byte
frst.

5.15 function pjclBigInt2ByteArray(x)

function pjclBigInt2ByteArray(x,minByteLength)
The parameter x is expected to be a big integer with mathematical value x, and the parameter
minByteLength, if the function is called with two arguments, a JavaScript number whose
value is a nonnegative integer n. The function returns a byte array whose elements comprise

the big-endian representation of x in base 256. If the second argument is not omitted,
sufficient leading zero bytes are added to the byte array to bring its length to n.

5.16 function pjclBigInt2BitArray(x)

The parameter x is expected to be a big integer with mathematical value . The negative
property of x, if present, is ignored. The function returns a bit array representing the binary
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encoding of |z| without leading zeros. If x = 0 the bit array is empty.

5.17 function pjclBigInt2SizedBitArray(x,size)

The parameter x is expected to be a big integer with value . The negative property of
x, if present, is ignored. The parameter size is expected to be a JavaScript number whose
value is a nonnegative integer n. The function returns a bit array of length n. If |z| < 2,
the bit array is the n-bit binary representation of |z| (with leading zero bits as needed). If
|z| >= 2", the bit array is the n-bit binary representation of || mod 2".

5.18 function pjclBitLengthOfBigInt (x)

The parameter x is expected to be a big integer with value z. The negative property of x,
if present, is ignored. The function returns the length of the binary representation of |z|, i.e.
the length of the bit array that would be returned by pjclBigInt2BitArray(x).

5.19 function pjclBitArray2UI32Array(bitArray)

The parameter bitArray is expected to be a bit array of length 32n. The function returns
an array of n 32-bit unsigned integers obtained by partitioning the bit array into groups of
32 bits and viewing each group as the binary representation of a nonnegative integer.

5.20 function pjclBitArray2BigInt(bitArray)

The parameter bitArray is expected to be a bit array of any length. The function returns
the nonnegative big integer whose binary representation is the bit array.

5.21 function pjclBitArray2Hex(bitArray)
function pjclBitArray2Hex(bitArray,minHexLength)

The parameter bitArray is expected to be a bit array of any length. The optional parameter
minHexLength, if present, is expected to be a JavaScript number whose value [ is a nonneg-
ative integer. The function returns the hex string that would be obtained by: (i) prepending
leading zero bits to the bit array as needed to make the length of the array a multiple of four;
(ii) mapping each group of four bits in the array to a hex digit, with big-endian bit ordering;
and (iii) if the function is called with two arguments, prepending zero hex digits as needed
to bring the value of the hex string up to [. If the bit array is empty and minHexLength is
not supplied or has value 0, the function returns an empty string.
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5.22 function pjclHex2BitArray(s)

The parameter s is expected to be a hex string, which the function converts to a bit array
by mapping each hex digit in s to the four bits comprising the binary representation of the
digit.

5.23 function pjclHex2ByteArray(s)

The parameter s is expected to be a hex string of even length, which the function converts
to a byte array by mapping each consecutive pair of hex digits in s to a byte.

5.24 function pjclByteArray2Hex (byteArray)

The function expects its argument to be a byte array, which it converts to a hex string by
concatenating the hexadecimal representations of the bytes.

5.25 function pjclHex2BigInt(s)

The parameter s is expected to be a hex string. The function returns the big integer having
s as its hexadecimal representation.

5.26 function pjclBigInt2Hex(x)
function pjclBigInt2Hex (x,minHexLength)

The parameter x is expected to be a big integer with mathematical value x, and the parameter
minHexLength, if the function is called with two arguments, a JavaScript number whose value
[ is a nonnegative integer. The negative property of x, if present, is ignored. The function
returns the hexadecimal representation of x as a hex string, with leading zero hex digits as
needed to bring its length up to [ if the function is called with two arguments. If x = 0 and
the second argument is omitted or has value 0, the resulting hex string is empty.

5.27 function pjclUI32toHex(x)

The parameter x is expected to be an unsigned 32-bit integer, which is converted to its
hexadecimal representation encoded as a hex string of length four.

5.28 function pjclUI32Array2Hex(x)

The parameter x is expected to be an array of n unsigned 32-bit integers. The function
converts x to a hex string by mapping each integer to its hexadecimal representation, of
length 4n.
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6 Basic arithmetic functions

6.1 function pjclGreaterThan(x,y)

The parameters x and y are expected to be big integers with mathematical values z and .
Their negative properties, if present, are ignored. The function returns true if |z| > |y|,
false otherwise.

6.2 function pjclGreaterThanRel(x,y)

The parameters x and y are expected to be big integers with mathematical values z and y.
The function returns true if x > y, false otherwise.

6.3 function pjclGreaterThanOrEqual(x,y)

The parameters x and y are expected to be big integers with mathematical values z and .
Their negative properties, if present, are ignored. The function returns true if |z| > |y|,
false otherwise.

6.4 function pjclGreaterThanOrEqualRel(x,y)

The parameters x and y are expected to be big integers with mathematical values z and y.
The function returns true if x > y, false otherwise.

6.5 function pjclEqual(x,y)

The parameters x and y are expected to be big integers with mathematical values z and y.
Their negative properties, if present, are ignored. The function returns true if |z| = |y|,
false otherwise.

6.6 function pjclEqualRel(x,y)

The parameters x and y are expected to be big integers with mathematical values z and y.
The function returns true if x = y, false otherwise.

6.7 function pjclAdd(x,y)

The parameters x and y are expected to be big integers with mathematical values z and y.
Their negative properties, if present, are ignored. The function returns the nonnegative big
integer representing ||+ |y|. Thus if z,y > 0, it simply returns the big integer representing
T+ y.
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6.8 function pjclAddRel(x,y)

The parameters x and y are expected to be big integers with mathematical values z and .
The function returns the big integer representing x + y, which may be negative.

6.9 function pjclSub(x,y)

The parameters x and y are expected to be big integers with mathematical values x and y.
Their negative properties, if present, are ignored. The function expects that |x| > |y|, and
returns the nonnegative big integer representing |z| — |y|.

6.10 function pjclSubRel(x,y)

The parameters x and y are expected to be big integers with mathematical values z and .
The function returns the big integer representing x — y, which may be negative.

6.11 var pjclMult
function pjclMult Long(x,y)
function pjclMult Karatsuba(x,y)

Big integer multiplication is performed by calling the function pjclMult(x,y). However,
there is no definition of that function. Instead, pjclMult is a global variable which must be
assigned either the function pjclMult_Long, which implements long multiplication, or the
function pjclMult Karatsuba, which implements Karatsuba multiplication. Both imple-
mentations may be used within the same application by assigning different implementations
to pjclMult at different times.

Both implementations expect the parameters x and y to be big integers with mathematical
values = and y, ignore the negative properties of the parameters if present, and return the
big integer representing the product of the absolute values of z and y, |z| - |y|.

Long multiplication uses an optimized version of the same algorithm that is used for
multiplication by hand. Karatsuba multiplication uses the recursive algorithm described in
[1, § 15.1.2], carefully implemented for good performance on JavaScript.

The Karatsuba algorithm is asymptotically faster than long multiplication, so it is faster
for larger operands but slower for smaller operands. During an execution of the algorithm,
recursive calls fall back on long multiplication when the size of the operands becomes less
than a Karatsuba multiplication threshold. The optimal threshold depends on the plat-
form (machine and JavaScript engine) being used, and can be estimated for a particular
machine and engine combination using the tool described below in Section 30. The esti-
mated threshold, expressed as a number of limbs, should be assigned to the global variable
pjclKaratsubaThresholdMult before using pjclMult Karatsuba. An exception is thrown
if pjc1Mult Karatsuba is called when pjclKaratsubaThresholdMult is undefined, but a
default is provided to avoid the exception.
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6.12 function MultRel(x,y)

The parameters x and y are expected to be big integers, with mathematical values x and y.
Returns a big integer whose mathematical value is the product xy.

6.13 function pjclShortMult(x,y)

The parameter x is expected to be a big integer, with mathematical value z, whose negative
property, if present, is ignored. The parameter y is expected to be a JavaScript number whose
mathematical value y is an integer in the range 0 < y < B = 2?*. The function returns the
big integer representing the product |z| - y.

6.14 var pjclSqr
function pjclSqr Long(x,y)
function pjclSqr Karatsuba(x,y)

Big integer squaring is performed by calling the function pjclSqr(x). Computing pjclSqr (x)
is faster than computing pjclMult(x,x).

As is the case for big integer multiplication, two implementations of the algorithm are
available, which can be selected by assigning either pjclSqr_Long or pjclSqr_Karatsuba to
the global variable pjclSqr.

Both implementations expect the parameter x to be a big integer with mathemati-
cal value z and return the big integer representing x?. There is a Karatsuba squaring
threshold analogous to the Karatsuba multiplication threshold. An optimal value of this
threshold should be estimated using the tool described below in Section 30 and assigned to
pjclKaratsubaThresholdSqr, replacing the default, before using pjclSqr_Karatsuba.

6.15 function pjclShortShiftLeft(x,k)

As discussed above in Section 2.2, “shifting left” a big integer means shifting it towards
its most significant end, i.e. multiplying it by a power of 2. For performance reasons,
pjclShortShiftLeft operates by side-effect, modifying its first argument and returning
no result; see pjclMultByPower0£f2 for an alternative without side-effect.

The parameter x is expected to be a big integer, possibly negative, with mathematical
value . The parameter k is expected to be a JavaScript number whose mathematical value
k is a nonnegative integer in the range 0 < k£ < 8 = 24. The function operates by side-effect,
computing the big integer representing x - 2¢ and assigning it to x.

Although at the API level the parameter x is expected to be a big integer, which must
not have leading zero limbs, internally, in pjclDiv, the function pjclShortShiftLeft is
used with a first argument that may have leading zero limbs. In pjcl-withArgChecking the
argument checking code of pjclShortShiftLeft throws an exception if x has leading zero
limbs, which pjclDiv catches and cancels.
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6.16 function pjclShiftLeft(x,k)
function pjclMultByPower0f2(x,k)

As discussed above in Section 2.2, “shifting left” a big integer means shifting it towards
its most significant end, i.e. multiplying it by a power of 2. For performance reasons,
pjclShiftLeft operates by side-effect, modifying its first argument and returning no re-
sult; on the other hand pjclMultByPower0£2 is a wrapper that avoids the side-effect, at the
cost of a small performance penalty, by making a copy of its first argument before modifying
it and returning the result.

The parameter x is expected to be a big integer, possibly negative. The parameter k is
expected to be a JavaScript number whose mathematical value k is a nonnegative integer.
The function returns the big integer representing z-2*. The functions compute the big integer
representing x - 2¥; pjclShiftLeft assigns this big integer to its first argument, while
pjclMultByPower0f2 returns the result without modifying its arguments.

6.17 function pjclShortShiftRight(x,k)

This function is analogous to pjclShortShiftLeft, shifting towards the least significant
rather than the most significant end. It differs from pjclShortShiftLeft in that x is
expected to be nonnegative. Without argument checking, the negative property is ignored
and x may become ill-formed if its negative property is set and it becomes the empty array
as a result of the shift.

6.18 function pjclShiftRight(x,k)
function pjclDivByPowerOf2(x,k)
These functions are analogous to pjclShiftLeft and pjclMultByPower0f2, but like

pjclShortShiftRight they expect x to be nonnegative. They shift towards the least signif-
icant end, thus dividing by a power of 2, i.e. computing |z/2*].

6.19 function pjclDiv(x,y)

The parameter x and y are expected to be big integers, with mathematical values x and y,
whose negative properties, if present, are ignored; y must not be zero. The function divides
|z| by |y| using Algorithm 14.20 of [2] and returns an object with properties quotient and
remainder whose values are big integer representations of the quotient and the remainder.

6.20 function pjclDivRel(x,y)

The parameter x is expected to be a (relative) big integer with mathematical value z, the
parameter y a positive big integer with mathematical value y. The function returns an object
with properties quotient and remainder whose values are big integer representations of the
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quotient and remainder of the division of x by y. The mathematical values ¢ and r of the
quotient and remainder properties are defined as follows: ¢ is the largest (relative) integer
such that qy <=z, and r = x — qy.

6.21 function pjclShortDiv(x,y)

The parameter x is expected to be a big integer, with mathematical value x, whose negative
property, if any, is ignored. The parameter y is expected to be a nonzero limb, i.e. a
JavaScript number whose mathematical value y is an integer in the range 0 < y < B = 224,
Returns an object with a property quotient whose value is the big integer representation of
the quotient of the division of |z| by y, and a property remainder whose value is a JavaScript
number representing the remainder.

This function relies on the fact that the JavaScript floating-point % operator is not the
same as the “remainder” operation defined by IEEE 754, as explained in [17, §11.5.3].

6.22 function pjclMod(x,m)

The parameter x is expected to be a big integer with mathematical value x, the parameter
m a positive big integer with mathematical value m. The function returns the big integer
representing x mod m.

6.23 function pjclTruncate(x,t)
function pjclModPower0f2(x,t)

The parameter x is expected to be a nonnegative big integer, with mathematical value x
and the parameter t a JavaScript number whose mathematical value ¢ is a positive integer.
Both functions compute the big integer representing x mod 2°. For performance reasons,
pjclTruncate operates by side-effect, modifying its first argument and returning no result;
on the other hand pjclModPower0f2 is a wrapper that avoids the side-effect, at the cost of
a small performance penalty, by making a copy of its first.

Please note that pjclModPower0f2 can only be used to reduce a nonnegative integer.
You may use pjclMod to reduce relative integers, at a much higher computational cost.

6.24 function pjclModLimb(x,m)

The parameter x is expected to be a nonnegative big integer with mathematical value z, the
parameter m a JavaScript number whose mathematical value m is a positive integer less than
B, i.e. less than 2%*. Returns a JavaScript number whose mathematical value is £ mod m.
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6.25 function pjclEGCD(a,b)
function pjclEGCD(a,b,computeBothBezoutCoeffs)

The parameters a and b are expected to be nonnegative big integers with mathematical values
a and b. If the function is called with three arguments and computeBothBezoutCoeffs is
or type-converts to true, the function implements the Extended Euclidean Algorithm and
returns an object with properties gcd, x and y whose mathematical values are d, x and y,
where d is the greatest common divisor of a and b, and (z,y) is a pair of integers, called
Bézout coefficients, that satisfy d = ax+by. If only two arguments are passed to the function,
y is not computed and the object returned by the function does not have y property.

6.26 function pjclModInv(x,m)

The parameter x is expected to be a big integer with mathematical value x, the parameter
m a positive big integer with mathematical value m. The function returns undefined if x
and m are not coprime. Otherwise it returns a big integer whose mathematical value is the
inverse of x modulo m.

7 Montgomery reduction

Our implementation of Montgomery reduction is based on Section 14.3.2 of the Menezes et
al. Handbook of Applied Cryptography [2]. More specifically, it is based on the optimized
Algorithm 14.32, further optimized and adapted for use with our big integer representation.

In this Section 7 we use the same mathematical variables as in algorithm 14.32, except
that we write B instead of b, since B = 2° = 22* is the base of our representation of big
integers, as defined in Section 2.2.

Thus m is the modulus, which must be coprime with B, i.e. odd; n is the number of limbs
of the big integer representation (m,_; ... my,mg)p of m; R = B"; m' = —m~! mod B; and
T is the nonnegative integer to be reduced, which must be less than mR and therefore have
a big integer representation with no more than 2n limbs.

In our implementation, the big integer representation of m must have at least two limbs.
This is not required by algorithm 14.32, but it it is required by our further optimization of
the algorithm. For one-limb moduli you may use ordinary modular reduction as provided
by pjclModLimb.

Montgomery reduction is much faster than ordinary modular reduction, but instead of
computing 7" mod m, it computes TR~ mod m. It is intended to be used in an algorithm
that requires many multiplications (and/or squarings), such as modular exponentiation. All
quantities in the algorithm are modified to incorporate the factor R. Instead of multiplying
x by y to obtain z = zy and then reducing z modulo m, the modified algorithm multiplies
R by yR to obtain (zR)(yR), then uses Montgomery reduction to compute (zR)(yR)R™ =
ryR = zR. zR can then be further multiplied by uR and Montgomery-reduced to produce
vR with v = zu, and so on.
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Our implementation includes a function pjclPreMontRed that precomputes m’' and a
function pjclMontRed that computes the Montgomery reduction of 7" modulo m using m/'.

7.1 function pjclPreMontRed(m)

The parameter m is expected to be an odd positive big integer with at least two limbs, whose
mathematical value is the modulus m. The function returns a JavaScript number whose
mathematical value is m’ = —m~! mod B.

7.2 function pjclMontRed(t,m,ml)

The parameter t is expected to be a nonnegative big integer, the parameter m an odd big
integer having at least two limbs, and m1 a JavaScript number whose mathematical value
is m’ = —m~! mod B, as returned by pjclPreMontRed(m). The mathematical values T' of
t and m of m must satisfy T < mR with R = B™, where n is the number of limbs of the
modulus. The function returns a big integer with mathematical value TR™! mod m.

8 Generic sliding window exponentiation in a monoid

8.1 function pjclOptimalWindowSize (1)
function pjclPreExp(slidingWindowSize,context)
function pjclExp(exponent,context)

The function pjclExp(exponent,context) implements generic sliding window exponentia-
tion in some monoid M using a slightly optimized version of Algorithm 14.85 of [2]. In this
section we refer to the monoid operation as multiplication, but pjclExp can be used, and we
do use it in this version of the library, to implement scalar multiplication in monoids where
the operation is usually written as addition;' pjc1Exp is used by pjc1PlainExp to implement
exponentiation in N, by pjclModExp to implement modular exponentiation with ordinary
reduction, by pjclMontExp to implement modular exponentiation with Montgomery reduc-
tion, and, as described below in Section 26.13, by pjclScalarMult to implement scalar
multiplication in the group of points of an en elliptic curve. (In a future version of the
library we plan to implement a sliding window exponentiation function further optimized for
groups by using nonadjacent form (NAF) to represent the exponent, and use it to implement
pjclScalarMult, taking advantage of the fact that the points of an elliptic curve form a
group and point subtraction can be implemented efficiently.)

The parameter exponent of pcjlExp is expected to be a big integer whose mathematical
value is a positive integer e. (We exclude the case e = 0, where the function would return

L“Scalar multiplication” and “exponentiation” are alternative names given to the same external operation
in a monoid, the term “scalar multiplication” being used when the operation is called “addition” while the
term “exponentiation” is used when the operation is called “multiplication”.

(© Copyright 2018 Pomcor



PJCL Version 0.9.1 30

the unit of the monoid, but the functions that call pjclExp, i.e. pjclPlainExp, pjclModExp,
pjclMontExp and pjclScalarMult, take care of this special case). The parameter context
is expected to be an object with a property context.g specifying the base g € M of the
exponentiation, whose encoding depends on the nature of M. The function returns an
encoding of the element ¢¢ of M.

The parameter context must also have a method context.mult implementing the
monoid operation, a method context.sqr such that context.sqr(x) produces the same
result as context.mult(x,x), and a property context.preComputed whose value must be
an array providing the results of the precomputation that takes place at step 1 of Algo-
rithm 14.85. It may also have additional properties specific to a particular monoid, such
as context.m, whose value is the modulus m, when pjclExp is called by pjclModExp or
pjclMontExp, and context.mi, whose value is m’ = —m ™! mod B where B = 28 = 2%
when it is called by pjclMontExp.

The function pjclPreExp(slidingWindowSize,context) is a side-effect function that
performs the precomputation of step 1 of Algorithm 14.85. The parameter slidingWindowSize
is expected to be a Javascript number whose mathematical value is a positive integer, called
k in the algorithm, to be used as the window size. The parameter context is expected to
be an object with the above-mentioned properties and methods context.g, context.mult
and context.sqr. The function creates and fills the array context.preComputed. It does
not return a result.

The function pjclOptimalWindowSize(1l) gives the optimal window size for a given
exponent size. The parameter 1 is expected to be a JavaScript number whose mathematical
value is a positive integer that should be the approximate bit length of the exponent. The
function returns a JavaScript number whose mathematical value is the optimal window size.

9 Exponentiation in N

9.1 function pjclPlainExp(g,x)

The function pjclPlainExp(g,x) performs exponentiation in the monoid (N, +). The pa-
rameters g and x are expected to be nonnegative big integers with mathematical values g
and z. The function returns the big integer representation of g*.

Notice that the result of this function will be unmanageable if the exponent has more
than one limb: if g and x have big integer representations [2] and [0,1], with mathematical
values ¢ = 2 and & = 224, then the result of the function should have the mathematical value
22" whose big integer representation has 3,659,183 limbs.
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10 Modular exponentiation with ordinary reduction

10.1 function pjclModExp(g,x,m)

The function pjclModExp(g,x,m) performs exponentiation in the monoid (Z,,, X ), where m
is the mathematical value of the parameter m, and Z is the set of integers modulo m. The
parameters g, x and m are expected to be big integers with mathematical values g > 0, x > 0
and m > 1. The function returns the big integer representation of g* mod m.

Although pjclModExp does not produce unmanageable results like pjclPlainExp, it is
too slow to be used in most cryptographic applications.

11 Modular exponentiation with Montgomery reduc-
tion

11.1 function pjclMontExp(g,x,m)

The function pjclMontExp(g,x,m) produces the same result as pjclModExp(g,x,m), but
using Montgomery reduction rather than ordinary reduction, which makes it fast enough to
be used in cryptographic applications.

The parameters g and x are expected to be nonnegative big integers, with mathematical
values g and x. The parameter m is expected to be a nonnegative big integer with n > 2
limbs whose mathematical value m is odd.

Recall that B = 27 = 2%* was defined in Section 7 as the base of the big integer representa-
tion. Let R = B". Using Montgomery reduction amounts to performing the exponentiation
in the isomorphic image of the monoid (Z,,, x) by the function ¢ that maps u € Z,, to uR. If
we call g the operator of the image monoid, the product uR*gvR of two elements of ¢r(Z,,)
is uv R mod m, which is computed in two steps by first multiplying «R and vR to obtain
uvR? then performing a Montgomery reduction to obtain (uvR?)R~! mod m = uv R mod m.

pjclMontExp assigns the big integer representation of g R to context.g and uses pjclExp
to raise g R to x in the image monoid by performing multiplications followed by Montgomery
reduction using pjclContextualMontMult and squarings followed by Montgomery reduction
using pjclContextualMontSqr. The result ¢g*R mod m is converted to g* mod m by one
final Montgomery reduction.
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12 Generic double exponentiation in a commutative
monoid

12.1 function pjclOptimalWindowSize2(1)
function pjclPreExp2(slidingWindowSize,context)
function pjclExp2(exponentG,exponentY,context)

These functions are like those of Section 8.1, with the difference that pjclExp2 computes the
product of two exponentials, with exponents exponentG and exponentY and corresponding
bases context.g and context.y, using “Shamir’s trick” of combining the squarings of the
two exponentiations. FEither exponent, but not both, may be (the big integer) zero. In
this version of the library, pjclExp2 is used by pjclMontExp2 and pjclScalarMult2. The
array context.preComputed computed by pjclPreExp2 as a side-effect is doubly indexed,
and pjclOptimalWindowSize2 computes the optimal window size for double exponentiation,
taking as input the bit length of the longest of the two exponents.

13 Double exponentiation with Montgomery reduction

13.1 function pjclMontExp2(g,y,exponentG,exponentY,m)

The function pjclMontExp2(g,y,exponentG,exponentY m) produces the same result as
pjclMod(pjclMult (pjclMontExp (g, exponentG,m) ,pjclMontExp(y,exponentY,m)) ,m)

but substantially faster, using pjclExp2.

14 Hash functions (SHA-2 family)

This version of the library provides two members of the SHA-2 family of hash functions:
SHA-256 and SHA-384.

14.1 function pjclSHA256 (bitArray)
function pjclSHA384(bitArray)

The function pjc1SHA256 takes as input a sequence of bits encoded as a bit array and returns
a bit array that encodes the result of applying the function SHA-256 of [18] to the input.
The functions pjcl1SHA384 similarly implements SHA-354.
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15 Message authentication codes (HMACQC)

15.1 function pjclHMAC_SHA256 (key,text)

The function pjclHMAC_SHA256 implements the HMAC algorithm of [6] instantiated with
the hash function SHA-256 of [18]. The parameters key and text are expected to be bit
arrays, and the result is a bit array.

15.2 function pjclHMAC_SHA384(key,text)

The function pjclHMAC_SHA384 performs an HMAC computation as above, using the hash
function SHA-384 instead of SHA-256.

15.3 function pjclHMAC_SHA256PreComputeKeyHashes (key)
function pjclHMAC SHA256WithPreCompute (
iKeyHash, oKeyHash,text)

An HMAC computation consists of two hash computations, and the first block of each
computation does not depend on the text. When you need to perform many HMAC com-
putations with the same key, you can use pjclHMAC_SHA256PreComputeKeyHashes (key) to
precompute the hashes of those two blocks. The result is an object with properties iKeyHash
and oKeyHash, whose values you can pass as arguments to
pjclHMAC_SHA256WithPreCompute (iKeyHash, oKeyHash,text) to obtain the value of the
HMAC computation for each text.

15.4 function pjclHMAC SHA384PreComputeKeyHashes (key)
function pjclHMAC SHA384WithPreCompute (
iKeyHash, oKeyHash, text)
The functions pjc1HMAC_SHA384PreComputeKeyHashes and pjc1HMAC_SHA384WithPreCompute

perform a split HMAC precomputation like pjc1HMAC_SHA256PreComputeKeyHashes and
pjclHMAC_SHA256WithPreCompute using the hash function SHA-384 instead of SHA-256.

16 Extract-and-expand key derivation (HKDF)

The HMAC-based Extract-and-Expand Key Derivation Function (HKDF), specified in RFC
5869 [7], is used to derive an unlimited amount of pseudo-random output keying material
from a limited amount of input keying material that contains entropy but may or may
not be uniformly distributed. The input keying material may be, e.g., a shared secret
established using a key establishment primitive such as Diffie-Hellman, and the output keying
material may be used, e.g., to construct a symmetric encryption key plus a symmetric
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message authentication key that may be used to provide traffic confidentiality and integrity
protection in a secure channel.

HKDF uses HMAC instantiated with a cryptographic hash function. This version of the
library provides HKDF using HMAC instantiated with SHA-256, which is suitable for use in
conjunction with all key establishment primitives contemplated by NIST, as seen in Tables
1-3 of SP 800-56C [19].2

As described in [7], HKDF has two steps. Step 1, the Extract step, takes as input
an optional salt and the input keying material IKM, and produces a uniformly distributed
pseudo-random key PRK. Step 2, the Fxpand step, produces the output keying material OKM,
taking as input PRK, optional context-specific information info, and the desired length in
bytes L of OKM. Step 1 is optional, because IKM itself can be used as the PRK input to Step
2 if it is a uniformly distributed pseudo-random key. So the library provides two functions,
pjclHKDF _SHA256 Expand, which implements Step 2 by itself, and pjclHKDF_SHA256, which
implements both steps.

16.1 pjclHKDF_SHA256_Expand(PRK,info,L)

The function pjclHKDF_SHA256 Expand implements Step 2 of HKDF as described in [7],
using HMAC instantiated with SHA-256. The pseudo-random key parameter PRK and the
optional context-specific information parameter info are expected to be byte arrays. To
omit the context-specific information, pass an empty array [] as the second argument. The
parameter L is expected to be a positive JavaScript number, specifying the length L in bytes
of the output keying material to be derived. The function returns the output keying material
as a byte array of length L.

16.2 pjclHKDF SHA256 (IKM,L,salt,info)

The function pjclHKDF_SHA256 implements both steps of HKDF as described in [7], using
HMAC instantiated with SHA-256. The input keying material parameter IKM is expected to
be a byte array. The parameter L is expected to be a positive JavaScript number, specifying
the length L in bytes of the output keying material to be derived. The parameters salt and
info are optional, and are expected to be byte arrays if supplied. If info is omitted, the
empty array [] is used as its default value. If salt is also omitted, the function behaves as
if it was an array of 32 bytes. The function returns the output keying material as a byte
array of length L.

2When used for purposes that require collision resistance, SHA-256 provides a security strength equal to
only half the bit length of its output, i.e. 128 bits; but when used for other purposes it provides a security
strength equal to the full bit length of its output, i.e. 256 bits, as seen in Table 3 of SP 800-57 [20]. HKDF
does not require collision resistance.
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17 Password-based key derivation (PBKDF2)

Password-Based Key Derivation Function 2 (PBKDF2) derives a key from a password and
a salt using a method designed to be slow for the purpose of mitigating dictionary attacks
against the password. Computing the derived key requires calling an underlying hash func-
tion ¢ times, where c is an iteration count passed to the function as an argument.

PBKDF2 is specified in RFC 8018 [8], which is a republication of PKCS #5 and obsoletes
RFC 2898 [21].

17.1 pjclPBKDF2 SHA256(P,salt,count,dkLen)

The function pjc1PBKDF2_SHA256 computes PBKDF2 using SHA-256 as the underlying hash
function.

The parameter P is expected to be an encoding of the password as a byte array. A
string encoding cannot be used because, as explained in Section 2.3, a JavaScript string
cannot be unambiguously hashed. If the password is provided as a string, it must be
converted to a byte array using one of the functions pjclString2ByteArray UTF16BE,
pjclString2ByteArray UTF16LE, pjclString2ByteArray UTFS8, or
pjclString2ByteArray ASCII.

The parameter salt is expected to be a byte array. The parameter count is expected to
be a JavaScript number whose value ¢ is a positive integer, used as the iteration count. The
parameter dkLen is expected to be a JavaScript number whose value n is a positive number
specifying the desired length in bytes of the derived key. For the sake of strict adherence to
the standard, with argument checking the function throws an exception if n is greater than
(232 — 1) times the length in bytes of SHA-256, i.e. if n > (23 — 1) x 32 = 0x1FFFFFFFEQ.
Otherwise it returns the derived key as an array of n bytes.

18 Statistically random data vs. cryptographically ran-
dom data

We make a distinction between statistically random data and cryptographically random
data. We say that data produced by a data source is statistically random if it is uniformly
distributed over a given range but may be predictable from data previously generated by
the source. By contrast we say that data produced by a data source is cryptographically
random if it is uniformly distributed and unpredictable from data previously generated by
the source.

We use the built-in JavaScript function Math.random to generate statistically random
data, and a pseudo-random bit generator implemented as specified in [9, § 10.1.1] to gener-
ate cryptographically random data. Math.random is well suited for generating statistically
random data because its output is specified as having an approximately uniform distribution
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[17, 15.8.2.14]. Tt must not be used to generate cryptographically random data, or to seed
or reseed the random bit generator, because its output may be predictable.

19 Random bit generation (RBG) vs. random number
generation (RNG)

We make a distinction between random bit generation and random number generation.
Generating [ random bits is equivalent to generating a random number n in the range
0 < n < 2. We use the term random bit generation (RBG) to refer to the generation of
random bits or to the generation of a number in such a range. On the other hand we use
the term random number generation (RNG) to refer to the generation of a random number
n in a range a < n < b, where a may not be zero and b — a may not be a power of two.

20 Generation of statistically random data

20.1 function pjclStRndLimb()

The function pjclStRndLimb takes no arguments and returns a statistically random JavaScript
number that can serve as big integer limb, i.e. whose mathematical value n is an integer in
the range 0 < n < B = 2/ = 2%,

20.2 function pjclStRndBigInt(n)

The parameter n is expected to be a JavaScript number whose mathematical value is a
nonnegative number n. The function returns a statistically random big integer with up to n
limbs, i.e. whose mathematical value x is uniformly distributed in the range 0 < z < B".

20.3 function pjclStRndHex(n)

The parameter n is expected to be a JavaScript number whose mathematical value is a
nonnegative number n. The function returns a hex string consisting of n statistically random
hex digits. Whether hex digits greater than 9 are in upper or lower case depends on the
implementation of the toString(16) method by the JavaScript engine.

20.4 function pjclStatisticalRNG(a,b)

The parameters a and b are expected to be big integers with mathematical values a and
b such that 0 < a < b. The function returns a statistically random big integer whose
mathematical value x is uniformly distributed in the range a < x < b.
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21 Cryptographic random number generation

The functions in this section implement a deterministic random bit generator (DRBG) based
on hash functions. More specifically, they implement the Hash-DRBG mechanism of [9,
§ 10.1.1], instantiated with the hash function SHA-256 for 128 bits of security strength or
SHA-384 for 192 bits of security strength.

21.1 Storage of the internal state of a DRBG

In functions that use a DRBG, the parameter called rbgStateStorage is expected to be
an object used to store the internal state of the DRBG. That object may be an ordinary
JavaScript object or, in a JavaScript runtime environment that implements the W3C Web
Storage specification [22], a storage object, either localStorage or sessionStorage.

The localStorage object persists across browser sessions but cannot be accessed by web
workers. However a DRBG that uses localStorage can provide random bits that can be
passed to a web worker and used by the web worker to initialize its own DRBG. Examples
of how to do this can be found in DSAPerfTesting and DHPerfTesting.

If an ordinary JavaScript object is used in a browser environment, it can be persisted
across browser sessions by saving it to a browser database using the IndexedDB APT [23].
If an ordinary JavaScript object is used in Node.js running on a server, the DRBG may
be initialized (instantiated in NIST terminology) each time Node.js is started or, if desired,
the object may be persisted by saving it to a server-side database such as MongoDB. The
parameter rbgStateStorage may be viewed as an implementation of the state_handle of [9].

A DRBG has a nominal security strength and can be used for purposes that require
up to that strength. When random bits are needed for different purposes that require
different security strengths, a DRBG supporting the highest strength can be used for all
those purposes. However, it may be desirable to use DRBGs with different strengths for
different purposes to take advantage of the higher performance provided by DRBGs with
lower strength. Only one DRBG state can be stored in a given object. Multiple DRBGs can
be implemented by storing their states in different objects. However only one DRBG can
store its state in localStorage.

21.2 function pjclRBG128Instantiate(rbgStateStorage,entropy)
function pjclRBG128Instantiate(rbgStateStorage,entropy,nonce)

This function instantiates a DRBG with 128 bits of security strength as specified in Section
10.1.1.2 of [9]. No personalization_string is used. As discussed in Section 21.1, the parameter
rbgStateStorage is expected to be a storage object or an ordinary JavaScript object where
the function will create the internal state of the DRBG. To use localStorage, call the
function as follows:

var myEntropy = ...;
var myNonce = ...; //optional
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pjclRBG128Instantiate(localStorage,myEntropy,myNonce) ;
To use an ordinary object, call the function as follows:

var myEntropy = ...;

var myNonce = ...; //optional

var myRBGState = new Object();

pjclRBG128Instantiate (myRBGState ,myEntropy,myNonce) ;

The parameter entropy is expected to be an array of at least 128 bits. An exception is
thrown otherwise by both the argument checking and the production versions of the library.
However this is only a sanity check, since there is no way for the function to know if the value
of the parameter has full entropy. (A bit string is said to have full entropy if its entropy is
equal to its length.)

Do not use Math.random to generate the value of the entropy parameter. In a browser en-
vironment that implements the Web Cryptography API you may use crypto.getRandomValues ()
to generate entropy; notice, however, that the Web Cryptography API does not explicitly
guarantee that the output of crypto.getRandomValue () has full entropy. Examples of how
to use browser entropy are provided by two functions pjclBrowserEntropy128Bits and
pjclBrowserEntropy192Bits, which can be found in the file browserEntropy.js. In a
JavaScript runtime environment such as Node.js that provides access to an underlying Unix-
like OS you may use /dev/random, which provides full entropy but may block if not enough
entropy is available, or /dev/urandom, which does not block but is not guaranteed to provide
full entropy. A web application may want to download entropy from the back-end to the
front-end if a source of full entropy is available on the back-end.

The parameter nonce is also expected to be a bit array, but it is optional. (The use of
this input is motivated in Section 8.6.7 of [9].) If no value is supplied, the function uses a
value derived from Data.getTime().

The function instantiates the DRBG by storing its initial internal state in three proper-
ties of rbgStateStorage: pjclRBG128_v, pjclRBG128_c and pjclRBG128 reseed _counter.
If these properties exist, they are overwritten. If corresponding properties for the 192 se-
curity strength exist (pjc1RBG192_v, pjclRBG192_c and pjclRBG192 reseed_counter) the
function throws an exception. To avoid the exception you may use a fresh ordinary ob-
ject, or remove the offending properties from a storage object using its removeItem method.
(Actually, strictly speaking, only the existence of pjc1RBG192_v is checked and needs to be
removed, but it is a best practice to remove them all.)

21.3 function pjclRBG128Reseed(rbgStateStorage,entropy)

This function reseeds a DRBG based on the Hash.DRBG mechanism instantiated with
SHA-256 as specified in Section 10.1.1.3 of [9]. No additional_input is used. The parameter
rbgStateStorage is expected to be an ordinary object or a storage object containing the
internal state of a DRBG with 128 bits of security strength, and an exception is thrown
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otherwise by the argument checking version of the library. As in pjclRBG128Instantiate,
the parameter entropy is expected to be an array of at least 128 bits, and an exception is
thrown otherwise by both the argument checking and the production versions of the library.
The function updates the internal state of the DRBG at rbgStateStorage and returns no
value.

21.4 function pjclRBG128InstantiateOrReseed(
rbgStateStorage,entropy,nonce)

The parameters rbgStateStorage, entropy and nonce are expected to be as in

pjclRBG128Instantiate. The function pjclRBG128InstantiateOrReseed is a convenience

function that calls pjc1RBG128Instantiate (rbgStateStorage,entropy,nonce) to initial-

ize a DRBG at rbgStateStorage unless one already exists there, in which case it calls

pjclRBG192Reseed to reseed the existing DRBG using the concatenation of the entropy and
the nonce as the entropy argument.

21.5 function pjclRBG192Instantiate(
rbgStateStorage,entropy,nonce)
function pjclRBG192Reseed(
rbgStateStorage,entropy)
function pjclRBG192InstantiateOrReseed(
rbgStateStorage,entropy,nonce)
The functions pjclRBG192* are like the corresponding functions pjclRBG128* except that
they use SHA-384 as the hash function and provide 192 bits of security strength. The value

of the entropy parameter in pjc1RBG192Instantiate, pjc1RBG192Reseed and
pjclRBG192InstantiateOrReseed must be a bit array of length at least 192.

21.6 function pjclRBGSecStrength(rbgStateStorage)

The parameter rbgStateStorage is expected to be an ordinary object or a storage object.
The function returns a JavaScript number whose value is the security strength of a DRBG
whose internal state is stored in rbgStateStorage, or zero if no well-formed DRBG state
can be found in rbgStateStorage.

21.7 function pjclRBGGen(
rbgStateStorage,requestedSecStrength,bitLength)

This function generates random bits from a DRBG as specified in Section 10.1.1.4 of [9].
The parameter rbgStateStorage is expected to be an ordinary object or a storage ob-
ject containing the internal state of the DRBG as discussed in Section 21.1. The parame-
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ter requestedSecStrength is expected to be a JavaScript number specifying the security
strength requested for the random bits. An exception is thrown if this is greater than the
security strength of the DRBG whose state is found in rbgStateStorage. The bitLength
parameter is expected to be a JavaScript number specifying the number of bits to be re-
turned, whose mathematical value must be a positive integer no greater than 2'° according
to Table 2 of [9]. The function throws an exception otherwise. The function returns a bit
array with the specified number of bits.

21.8 function pjclCryptoRNG(
rbgStateStorage,requestedSecStrength,a,b)

This function generates a cryptographically random big integer in a specified range. The pa-
rameter rbgStateStorage is expected to be an ordinary object or a storage object containing
the internal state of the DRBG as discussed in Section 21.1. The parameter requestedSecStrength
is expected to be a JavaScript number specifying the security strength requested for the ran-
dom number generation. An exception is thrown if this is greater than the security strength
of the DRBG whose state is found in rbgStateStorage. The parameters a and b are ex-
pected to be big integers with mathematical values a and b such that 0 < a < b.

The function returns a cryptographically random big integer whose mathematical value x
is quasi-uniformly distributed in the range a < = < b. To ensure a quasi-uniform distribution,
the function uses the “extra random bits” method used in Section B.1.1 of [10] for key pair
generation and in Section B.2.1 for per-message secret number generation.

22 Primality testing

22.1 function pjclIsPrime(n,t)
function pjclMillerRabin(n,t)

The function pjclIsPrime performs a probabilistic primality test on a big integer n, using
the Miller-Rabin test if the big integer has more than one limb, and checking for divisibility
by a 12-bit prime if it has only one limb. This is one place in the library where the number
of bits per limb is hardwired.

The function pjclMillerRabin, which is called by pjclIsPrime, implements the Miller-
Rabin probabilistic primality test as described in Algorithm 4.42 of [2] with a number of repe-
titions specified by the parameter t. In cryptographic applications the number to be tested is
usually cryptographically random, but the potential witnesses to compositeness only need to
be statistically random, so the function pjclIsPrime uses the function pjclStatisticalRNG
to generate witnesses.

In both functions the parameter n is expected to be a nonnegative integer and the parame-
ter t a JavaScript number whose mathematical value is a positive integer. In pjclMillerRabin
the parameter n must have two limbs and be odd.
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23 Finite Field Cryptography (FFC) for DSA and DH

NIST uses the term Finite Field Cryptography (FFC) to refer to public-key cryptographic
primitives, including DSA and Diffie-Hellman (DH), that rely on the difficulty of computing
discrete logarithms in the multiplicative group (Z;, x) of the field Z, of integers modulo p,
where p is a prime number such that p — 1 is divisible by a large prime gq.

Such primitives use domain parameters (p,q,g), where g is a generator of the unique
cyclic subgroup of order ¢ of the group (Z;, x), and key pairs (z,y) where the public key y
is such that y = ¢* mod p. Section B.1.1 of [10] specifies that the private key x must be in
the range 1 < x < ¢, but x = 1 could be trivially detected from the public quantities y and
g. While there is a negligible probability that a secure DRBG will generate x = 1 within
the range 1 < z < ¢, as a matter of defense in depth it is preferable to restrict  to be in
the range 2 < x < ¢. In this documentation we say that (x,y) is a well-formed key pair
relative to the domain parameters (p, ¢, g) if 2 < x < ¢ and y = ¢” mod p. We also say that
x is a well-formed private key and y a well-formed public key relative to (p,q,g) if (z,y) is
a well-formed key pair.

FFC primitives have nominal security strengths that depend on the bit lengths L and
N of p and ¢. The nominal security strength of a primitive, however, is only an upper
limit on its actual security strength, which may also be limited by other factors, such as the
security strength of the DRBG used to generate a key pair or the per-message secret used to
compute a signature, or the security strength of the hash function used to hash a message
to be signed. With argument checking, functions implementing FFC primitives verify that
these other factors do not reduce the actual security strength of a primitive below its nominal
strength.

This version of the library can generate domain parameters with lengths (L, N) =
(3072,256) and (L, N) = (2048,256), which provide nominal security strengths of 128 and
112 bits respectively according to [20, Table 2], and can validate domain parameters of those
lengths provided by untrusted parties. It can also make use of domain parameters of other
lengths provided by trusted sources.

23.1 function pjclFFCSecStrength(p,q)

The parameters p and q are expected to be non-negative big integers. The function observes
the bit lengths L and N of p and q and returns the security strength assigned by [20, Table 2]
to domain parameters with those bit lengths. The function does not otherwise validate p
and q; domain parameter validation is performed by pjclFFCValidatePQ.

23.2 function pjclFFCGenPQ 3072 256 ()
function pjclFFCGenPQ_3072_256(domainParameterSeed)

The function pjclFFCGenPQ_3072_256 generates probable primes p and ¢ of bit lengths
L = 3072 and N = 256 respectively, with ¢ dividing p — 1, to be used as FFC domain
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parameters. It is implemented as specified in Section A.1.1.2 of [10] using SHA-256 as the
hash function, Miller-Rabin with 64 repetitions as the probabilistic primality test, and a seed
length of 256 bits.

The algorithm of A.1.1.2 is non-deterministic: a domain parameter seed with the specified
seed length is chosen at step 5, then a deterministic attempt at generating a probable prime
q is made, going back to step 5 if the attempt fails. Once an attempt at generating q
succeeds, a deterministic attempt at generating a probable prime p such that ¢ divides p—1
is made, going back to step 5 if the attempt fails. The algorithm returns p, ¢, the last domain
parameter seed chosen at step 5 and a counter. The returned values can be used to validate
prime numbers p and ¢ if generated by a non-trusted party, as described below.

The optional parameter domainParameterSeed is expected to be a bit array, which can
be chosen arbitrarily and is used as the initial domain parameter seed of step 5 of the NIST
algorithm. If not supplied, a bit array with 256 statistically random bits is used.

The function returns an object with properties p and q, whose values are big integers
representing the domain parameters p and ¢, as well as properties domainParameterSeed
and counter whose values are the domain parameter seed and counter of Algorithm A.1.1.2,
encoded as a bit array and a JavaScript number respectively. The domain parameter seed
and counter can be provided to a third party who wishes to validate the generation of p and
q as specified in Algorithm A.1.1.3 of [10]. The domain parameters p and ¢ produced by the
function provide a nominal security strength of 128 bits.

23.3 function pjclFFCValidatePQ 3072 256(
p,q,domainParameterSeed, counter)

This function can be used to validate domain parameters p and ¢ of bit lengths L = 3072
and N = 256 when they are provided by an untrusted third party, using a domain parameter
seed and a counter provided by the third party, as specified by Algorithm A.1.1.3 of [10].
The parameters p and q are expected to be big integers whose values are p and ¢, while the
last two parameters are expected to encode the domain parameter seed and the counter as
a bit array and a JavaScript number respectively. The function returns true if validation
succeeds, false otherwise.

23.4 function pjclFFCGenPQ 2048 256 ()

function pjclFFCGenPQ 2048 256 (domainParameterSeed)
This function and its optional parameter domainParameterSeed are like pjc1lFFCGenPQ_3072_256,
except that the bit length of the generated prime p is L = 2048 instead of L = 3072. The

domain parameters p and g generated by the function provide a nominal security strength
of 112 bits.
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23.5 function pjclFFCValidatePQ 2048 256(
p,q,domainParameterSeed, counter)

This function can be used to validate domain parameters p and ¢ like pjc1FFCValidatePQ_3072_256,
when their bit lengths are L = 2048 and N = 256. It returns true if validation succeeds,
false otherwise.

23.6 function pjclFFCGenG 256(p,q)
function pjclFFCGenG 256(p,q,domainParameterSeed,index)

This function can be used to generate the component g of the FFC domain parameters
(p,q,9) given p and g, i.e. to produce a generator g of the subgroup of order ¢ of the mul-
tiplicative group of the field Z,. The parameters p and q are expected to be big integers
representing p and ¢. If four arguments are supplied, the function performs verifiable gener-
ation of g as specified by Algorithm A.2.3 of [10], with SHA-256 as the hash function used
by the algorithm. The parameter domainParameterSeed is then expected to be a bit array
of length 256, encoding the domain parameter seed produced by Algorithm A.1.1.3 and used
by Algorithm 1.1.4 for validation of p and ¢, and the parameter index is expected to be
a bit array of length 8. If only two arguments are supplied, the function performs unveri-
fiable generation of g as specified by Algorithm A.2.1. The function returns a big integer
representing g.

23.7 function pjclFFCValidateG 256(g,p,q)
function pjclFFCValidateG_256(g,p,q,domainParameterSeed,index)

This function can be used to validate the component g of the FFC domain parameters (p, ¢, g)
when it is provided by an untrusted third party. The parameters p and q are expected to be
big integers whose values are p and gq.

If five arguments are supplied, the function performs full validation as specified by Al-
gorithm A.2.4 of [10], assuming that g was generated using Algorithm A.2.3, with SHA-256
as the hash function used by the algorithm. The parameter domainParameterSeed is then
expected to be a bit array of length 256, encoding the domain parameter seed produced by
Algorithm A.1.1.3 and used by Algorithm 1.1.4 for validation of p and ¢, while the parameter
index is expected to be a bit array of length 8, encoding the index that Algorithm A.2.4
takes as input. The function returns false if the full validation fails, or the truthy value
“Valid” if it succeeds.

If only three arguments are supplied, the function performs partial validation of g as
specified by Algorithm A.2.2. The function returns false if partial validation fails, or the
truthy value “Partially valid” if it succeeds.

Notice that the function will never return “Partially valid” if five arguments are
supplied. It will only return false or “Valid” in that case.
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23.8 function pjclFFCGenPQG 3072 256 ()
function pjclFFCGenPQG_3072_256 (domainParameterSeed, index)

This is a convenience function that generates FFC domain parameters (p, ¢, g) where the bit
length of p is L = 3072 and the bit length of ¢ is N = 256, by calling pjclFFCGenPQ_3072_256
then pjclFFCGenG_256. It returns an object with the properties p, q, domainParameterSeed
and counter produced by pjclFFCGenPQ_3072_256, and a property g whose value is the big
integer returned by pjclFFCGenG_256. Both arguments may be omitted.

23.9 function pjclFFCGenPQG 2048 256 ()
function pjclFFCGenPQG_2048_256 (domainParameterSeed, index)

This function is like pjclFFCGenPQG_3072_256, with (L, N) = (2048, 256).

23.10  function pjclFFCGenKeyPair (rbgStateStorage,p,q,g)

The parameter rbgStateStorage is expected to be an ordinary object or a storage object
containing the internal state of the DRBG as discussed in Section 21.1. The parameters
p, q and g are expected to be big integers representing FFC domain parameters (p,q, g)
generated by pjclFFCGenPQG or obtained from an external party. The function generates
a well-formed FFC key pair (x,y) relative to the domain parameters (p,q,g), as defined
above in the preamble of Section 23. With argument checking, an exception is thrown if
the security strength of the RBG is less than the nominal security strength provided by the
bit lengths (L, N') of (p,q). The function returns an object with properties x and y, whose
values are the big integer representations of z and y.

23.11  function pjclFFCValidatePublicKey(p,q,g,y)

The parameters p, q, g are expected to be big integers representing FFC domain parameters
(p,q, g) generated by pjclFFCGenPQG or obtained from an external source. The parameter y
is expected to be a big integer representing a well-formed public key relative to the domain
parameters(p, ¢, g). The function validates the public key as specified in Algorithm 5.6.2.3.1
of [11], returning true if it is valid or false otherwise.
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24 DSA

24.1 Synonyms: using DSA instead of FFC in function names

The library defines the following global variables as synonyms for the names of API functions
that begin with pjclFFC, replacing FFC with DSA in each name:

var pjclDSAGenP(Q_3072_256 = pjclFFCGenP(Q_3072_256

var pjclDSAValidatePQ_3072_.256 = pjclFFCValidatePQ_-3072_256
var pjclDSAGenP(Q_2048_256 = pjclFFCGenP(_2048_256

var pjclDSAValidatePQ_2048_256 = pjclFFCValidatePQ_2048_256
var pjclDSAGenG_256 = pjclFFCGenG_256

var pjclDSAValidateG_256 = pjclFFCValidateG_256

var pjclDSAGenPQG_3072_256 = pjclFFCGenPQG_3072_256

var pjclDSAGenPQG_2048_256 = pjclFFCGenP(QG_2048_256

var pjclDSAGenKeyPair = pjclFFCGenKeyPair

var pjclDSAValidatePublicKey = pjclFFCValidatePublicKey

You can use these synonyms to make DSA-related code more readable by people who may
be unfamiliar with the FFC acronym and its use by NIST.

24.2 function pjclDSASignHash(rbgStateStorage,p,q,g,x,hash)

The parameter rbgStateStorage is expected to be an ordinary object or a storage object
containing the internal state of a DRBG as discussed in Section 21.1. The parameters p, q
are g are expected to be big integers representing FFC domain parameters (p, ¢, g), generated
by pjclFFCGenPQG or obtained from an external source. The parameter x is expected to be
a big integer representing a well-formed FFC private key relative to the domain parameters
(p,q,g). The parameter hash is expected to be the bit array encoding of the cryptographic
hash of a message to be signed. The function generates a cryptographically random per-
message secret k and its inverse k~! mod ¢, then computes the signature (r, s) on the message,
as described in [10, Section 4.6]. It returns an object with properties r and s whose values
are the big integer representations of r and s.

With argument checking, the function verifies that the security strength of the DRBG
is not less than the security strength S of the domain parameters and the bit length of the
hash is not less than 25.

The generation of the per-message secret and the computationally expensive modular
inverse operation for computing k! mod ¢ can be performed ahead of time; then a function
called pjclDSASignHashK can be used instead of pjc1DSASignHash, passing the per-message
secret and its inverse as the last two arguments. However this may facilitate a timing attack
against DSA, as suggested in Section 8 of [24]. For that reason we do not recommend doing
it and do not view pjclDSASignHashK as an API function.
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24.3 function pjclDSASignMsg(rbgStateStorage,p,q,g,x,msg)

The parameter rbgStateStorage is expected to be an ordinary object or a storage object
containing the internal state of a DRBG as discussed in Section 21.1. The parameters p, q
are g are expected to be big integers representing FFC domain parameters (p, ¢, g), generated
by pjclFFCGenPQG or obtained from an external source. The parameter x is expected to be a
big integer representing a well-formed private key relative to the domain parameters (p, ¢, g).
The parameter msg is expected to be a bit array that encodes a message to be signed. The
function computes a hash of the message using the hash function of the SHA-2 family that
produces the shortest output of length greater than or equal to twice the nominal security
strength of the domain parameters, throwing an exception if no such function is available.
Then it calls pjclDSASignHash(rbgStateStorage,p,q,g,x,hash), passing as the value of
hash the bit array encoding of the computed hash, and returns its output. (With argument
checking, the function pjclDSASignHash called by pjclDSASignMsg verifies that the security
strength of the DRBG is not less than the security strength of the domain parameters.)

24.4 function pjclDSAVerifyHash(p,q,g,y,hash,r,s)

The function pjclDSAVerifyHash verifies a DSA signature on a message as described in
Section 4.7 of [10], taking the hash of the message as input. The parameters p, q and g are
expected to be big integers representing FFC domain parameters (p, ¢, g). The parameter y
is expected to be a big integer representing a well-formed public key relative to the domain
parameters (p,q,g). The parameter hash is expected to be the bit array encoding of the
hash of the message. The parameters r and s are expected to be big integers representing
the components (r,s) of the signature. The function returns true if verification succeeds,
false otherwise.

24.5 function pjclDSAVerifyMsg(p,q,g,y,msg,r,s)

The function pjclDSAVerify verifies a signature as described in Section 4.7 of [10], taking
the message itself, rather then its hash, as input. The parameters p, q and g are expected to
be big integers representing FFC domain parameters (p, ¢, g). The parameter y is expected
to be a big integer representing a well-formed public key relative to the domain parameters
(p,q,g). The parameter msg is expected to be the bit array encoding of the message. The
parameters r and s are expected to be big integers representing the components (r,s) of
the signature. The function computes a hash of the message using the hash function of the
SHA-2 family that produces the shortest output of length greater than or equal to twice
the nominal security strength of the domain parameters, throwing an exception if no such
function is available, then it calls pjc1DSAVerifyHash(p,q,g,y,hash,r,s), passing as the
value of hash the bit array encoding of the computed hash, and returns its output.
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24.6 How to achieve target security strengths with DSA

The present version of the library can be used as follows to compute DSA signatures with
112, 128 and 192 bits of security strength, based on the assignment of security strengths to
FFC domain parameters in [20, Table 2, Column 3].

To achieve 192 bits of security strength:

1. Use domain parameters (p,q) with lengths (L, N) such that L > 7680 and N > 384.
Such parameters cannot be generated by this version of the library, but could be
obtained from a trusted source.

2. Set up a DRBG with 192 bits of security strength using pjclRBG192Instantiate,
and use it for generation of the per-message secret by passing the object containing its
internal state as the first argument when calling pjc1DSASignMsg or pjclDSASignHash.

3. Call pjclDSASignMsg, which will choose SHA-384 to hash the message, or sign the
message using SHA-384 and call pjc1DSASignHash.

To achieve 128 bits of security strength:

1. Use domain parameters (p,q) with lengths (L, N) such that L > 3072 and N >
256, while either L < 7680 or N < 384. Such parameters can be generated using
pjclFFCGenPQ_3072_256, obtained from a trusted source, or obtained from an un-
trusted source and validated using pjclFFCValidatePQ_3072_256.

2. Set up a DRBG with 128 bits of security strength using pjclRBG128Instantiate,
and use it for generation of the per-message secret by passing the object containing its
internal state as the first argument when calling pjc1DSASignMsg or pjclDSASignHash.

3. Call pjclDSASignMsg, which will choose SHA-256 to hash the message, or sign the
message using SHA-256 and call pjc1DSASignHash.

To achieve 112 bits of security strength:

1. Use domain parameters (p,q) with lengths (L, N) such that L > 2048 and N >
224, while either L < 3072 or N < 256. Such parameters can be generated using
pjclFFCGenPQ_2048_256, obtained from a trusted source, or obtained from an un-
trusted source and validated using pjclFFCValidatePQ_2048_256.

2. Set up a DRBG with 128 bits of security strength using pjclRBG128Instantiate,
and use it for generation of the per-message secret by passing the object containing its
internal state as the first argument when calling pjc1DSASignMsg or pjclDSASignHash.
(This version of the library does not provide a DRBG with only 112 bits of security
strength.)

3. Call pjclDSASignMsg, which will choose SHA-256 to hash the message, or sign the
message using SHA-256 and call pjc1DSASignHash. (This version of the library does
not provide SHA-224.)
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25 Diffie-Hellman (DH)

25.1 Synonyms: using DH instead of FFC in function names

The library defines the following global variables as synonyms for the names of API functions
that begin with pjclFFC, replacing FFC with DH in each name:

var pjclDHGenP(Q_3072_256 = pjclFFCGenP(Q_3072_256

var pjclDHValidatePQ_3072_256 = pjclFFCValidatePQ_3072_256
var pjclDHGenPQ_2048_256 = pjclFFCGenP(_2048_256

var pjclDHValidatePQ_2048_256 = pjclFFCValidatePQ_2048_256
var pjclDHGenG_256 = pjclFFCGenG_256

var pjclDHValidateG_256 = pjclFFCValidateG_256

var pjclDHGenPQG_3072_256 = pjclFFCGenPQG_3072_256

var pjclDHGenPQG_2048_256 = pjclFFCGenPQG_2048_256

var pjclDHGenKeyPair = pjclFFCGenKeyPair

var pjclDHValidatePublicKey = pjclFFCValidatePublicKey

You can use these synonyms to make DH-related code more readable by people who may be
unfamiliar with the FFC acronym and its use by NIST.

25.2 function pjclDH(p,x A,y B)

The function pjclDH implements the Diffie-Hellman primitive as specified in Section 5.7.1.1
of [11]. It is used by a party A to compute a secret z shared with a party B.

The parameter p is expected to be a positive big integer representing the first component
p of a triple of FFC domain parameters (p,q, g); domain parameters ¢ and g are not used
in the computation. The parameters x_A and y_B are expected to be positive big integers
representing the private key x 4 of A and the public key yg of B respectively, with yz expected
to be in the range 2 < yp <p — 2.

The function computes z = yg™ mod p and throws an exception if z = 1, which cannot
happen if x4 is the private key component of a well-formed key pair relative to the FFC
domain parameters (p,q, g), and yp is the public key component of a well-formed key pair
relative to those same domain parameters. If z = 1, the function returns a byte array whose
elements comprise the big-endian base-256 representation of z, prefixed with leading zero
bytes as needed so that its length is equal to the length of the base-256 representation of p.?

3In Section 5.7.1.1 of [11], NIST specifies that the output of the DH primitive is to be constructed as
specified by the integer-to-byte-string conversion routine of Appendix C.1, which refers to an intended length
n of the byte string, without specifying what that intended length is. NIST should have referred instead
to the field-element-to-byte-string conversion routine of Appendix C.2, which unambiguously specifies the
length of the output when considering that z is an element of the field Z,,.
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26 Elliptic curves

26.1 NIST curves

NIST specifies five elliptic curves over prime fields [10, § D.2]: P-192, P-224, P-256, P-384
and P-521. Descriptions of these curves can also be found in [12, §10.2], [25], [26] and [13].
This version of the library implements ECDSA on curves P-256 and P-384. Other NIST and
non-NIST curves will be supported in future versions.

The term “Weierstrass equation” is defined with various degrees of generality. Here we
shall use the term to refer to an equation of the form y? = 2 + ax + b over a field F', where
a,b € F are constants such that 4a® +27b? # 0. We shall refer to a curve with a Weierstrass
equation as a Weierstrass curve. Here we shall only be concerned with Weierstrass curves
over a prime field F' = I,

NIST curves over prime fields have Weierstrass equations where the coefficient a is —3.
An explanation of the motivation for choosing a = —3 can be found in [27, § 2.6.2]. This
version of the library hardcodes the fact that a = —3.

The specification of a Weierstrass curve over a prime field [, includes, in addition to p,
a, and b, the choice of a base point G. The base point is a point of prime order n, i.e. a
point that generates a subgroup of order n of the group E(F,) of points of the curve. By
Lagrange’s theorem, n divides the order #E(IF,) of (the group of points of) the curve. The
quotient h = #E(F,)/n, called the cofactor, is another domain parameter. In all the NIST
curves over prime fields the order of the curve is a prime number, and therefore the cofactor
is 1. The fact that the cofactor is 1 is hardcoded in this version of the library. This will
change in the future when the library supports other curves.

NIST [10, § D.2] suggests taking advantage of the fact that the primes p in the five curves
over prime fields are Generalized Mersenne Primes whose exponents are multiples of 32 in
order to improve the performance of reduction modulo p. However the suggested method
is only suitable for big integer representations with 32-bit limbs. But those primes are also
Pseudo-Mersenne Primes (see Section 26.7) and reduction modulo a Pseudo-Mersenne prime
can be performed using [2, Algorithm 14.47] (see also [28, Algorithm 3]). This is what the
library does.

26.2 Affine vs. projective vs. Jacobian coordinates

(This section can be skipped without loss of continuity.)

An elliptic curve has a “point at infinity” that cannot be represented in affine coordinates,
but can be represented in projective coordinates or, preferably for performance reasons, in
Jacobian coordinates.

A point with affine coordinates (X, Y') in a two-dimensional space over a field F' has pro-
jective coordinates (x,y, z) such that z # 0, x = Xz and y = Yz, which are the coordinates
in the three-dimensional space of the points of the line containing the origin and the point
(X,Y, 1), excluding the origin. On the other hand the projective coordinates of a point at
infinity are the coordinates of the points of a line that goes through the origin and lies in
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the plane z = 0, again not including the origin itself, i.e. there are the triples (z,y, z) such
that z # 0 and ax + by = 0 for some a,b € F not both equal to zero.

A line with equation aX + bY + ¢ = 0 in affine coordinates has equation a? + 0% + ¢ =
0,z # 0 in projective coordinates, which becomes ax + by + cz = 0 when the point at infinity
of the line is included. The projective coordinates of the point at infinity are obtained by
making z = 0 but x,y # 0 in the equation, i.e. they are the triples (z,y,0) other than the
origin (0,0, 0) such that ax + by = 0.

An elhp‘mc curve with affine equation Y2 = X 34+ aX + b has a projective equation
gi = z3 +a% +b, z # 0, which becomes y?z = a® + axz? + bz when completed with the
point at 1nﬁn1ty The projective coordinates of the point at infinity of the ellipical curve are
obtained by making z = 0 but z,y # 0 in the equation, i.e. they are the triples (z,y,0) other
than (0,0,0) such that 2* = 0, which implies z = 0.

A point with affine coordinates (X, Y’) has Jacobian coordinates (x,y, z) such that z # 0,
x = Xz? and y = Y23, while a point at infinity in Jacobian space has the set of coordinates
(z,v,2) such that z # 0 and az® + by? = 0 for some a,b € F not both equal to zero.

An elliptic curve with affine equation Y2 = X? + aX + b has a projective equation
Z—z = i—z +a% +b, 2 # 0, which becomes y? = 2° + axz* + b2% when completed with the
point at infinity. The Jacobian coordinates of the point at infinity of the elliptical curve are
obtained by making z = 0 but z,y # 0 in the equation, i.e. they are the triples (z,y, 0) other
than (0,0,0) such that y? = 3.

26.3 Jacobian representation of a point

In the library, a point of an elliptic curve is represented in Jacobian coordinates, as a
JavaScript object with three properties x, y and z whose values are big integers repre-
senting the Jacobian coordinates x, y and z of the point. We shall refer to such an object
as a Jacobian representation of the point.

26.4 Affine representation as a special case of Jacobian represen-
tation

If (z,y, 1) are Jacobian coordinates of a point P, then (x,y) are its affine coordinates. In the
library, the affine representation of a finite point is a special case of a Jacobian representation
where the value of the z property is the big integer representation of 1, i.e. [1]. The function
pjclJacobian2Affine produces that affine representation.

26.5 Jacobian-affine optimization of point addition

The function pjclPointAdd takes as arguments two Jacobian representations, but checks if
the second one is an affine representation and optimizes that special case.
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26.6 function pjclModSpecial(x,t,xc,m)

The function pjclModSpecial computes x mod m, where m = 2! — ¢, using Algorithm 14.47
of [2], which is applicable when 0 < ¢ < 27! and efficient when ¢ is “small” compared to
2!=1 which we shall write ¢ < 2¢71.

The parameter x is expected to be a nonnegative big integer representing the integer x
to be reduced. The parameter t is expected to be a JavaScript number representing the
exponent ¢, which must be a positive integer. The parameter xc, read “times c”, is expected
to be a function that takes as its only argument a positive big integer and returns a big
integer representing its product by ¢; different such functions can be written and optimized
for different values of ¢. The parameter m is expected to be a positive big integer representing
the modulus m = 2¢ — ¢. The function returns a big integer representing x mod m.

In this version of the library, the function pjclModSpecial is used to compute reductions
modulo Pseudo-Mersenne primes. Note, however, that pjclModSpecial can also be used in
cases where m is not a prime.

26.7 Pseudo-Mersenne representation of a prime

A Pseudo-Mersenne Prime is a prime of the form p = 2! — ¢ with 0 < ¢ < 2!=!. Modular
reduction by such a prime p can thus be sped up by using pjclModSpecial instead of
pjclMod. A Pseudo-Mersenne representation of p is a triple of JavaScript values consisting
of the JavaScript number representing ¢, a function that multiplies a big integer by ¢, and the
big integer representation of p suitable to be passed as second, third and fourth arguments
to pjclModSpecial.

26.8 var pjclCurve_P256

The value of the global variable pjclCurve_P256 is an object whose properties describe NIST
curve P-256, which is the curve with equation

v =2 — 322+ b
over prime field F,,, where
p— 226 _ 9224 L 9192 | 996 _

and b has the big integer representation shown in the code as the value of the property b.
The prime p can be written p = 2! — ¢ with

c = 2224 o 2192 o 296 + 1
The object has the following properties and methods:

e Three properties t, xc and p comprising the Pseudo-Mersenne representation of the
prime p.
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e A property b whose value is a big integer representing the coefficient b of the curve.

e A property n whose value is a big integer representing the order n of the base point of
the curve, which is also the order of the curve since the cofactor is 1.

e A property G whose value is the affine representation of the base point of the curve.
(Recall that, in the library, an affine representation is a special case of a Jacobian
representation, as explained in Section 26.4.)

26.9 var pjclCurve P384

The value of the global variable pjclCurve P384 is an object whose properties describe the
NIST curve P-384, which is the curve with equation

P =23 —322+0b

over prime field F,,, where
p= 2384 . 2128 . 296 + 232 -1

and b has the big integer presentation shown in the code as the value of the property b. The
prime p can be written p = 2! — ¢ with

022128+296_232+1

The object has properties and methods like those of pjclCurve _P256.

26.10  function pjclJacobian2Affine(P,curve)

The parameter P is expected to be a Jacobian representation of a finite point P over a
prime field F,. The parameter curve is expected to be an object with properties t, xc and
p that comprise a Pseudo-Mersenne representation of the prime number p, such as one of
the curve objects pjclCurve P256 or pjclCurve P384. Recall that, in the library, an affine
representation is a special case of a Jacobian representation, as explained in Section 26.4. If
P is an affine representation, i.e. if the mathematical value of P.z is 1, the function returns
its first argument with no other processing. Otherwise it computes and returns the affine
representation of P.

26.11  function pjclPointAdd(P1,P2,curve)

The parameters P1 and P2 are expected to be Jacobian representations of two points P; and
P, of a Weierstrass curve over a prime field IF,, and the parameter curve is expected to be
an object representing the curve. There are two objects representing curves in the current
version of the library: pjclCurve P256 and pjclCurve P384.

If one of the points P, P, is the point at infinity of the curve, the function represents
the value of the parameter representing the other point. Otherwise, if P; # P,, the function
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returns a Jacobian representation of the sum P; + P, and if P, = P, the function calls
pjclPointDouble(P1,curve) and returns the result.

The function optimizes the case where P, is given by an affine representation. (Recall
that, in the library, an affine representation is a special case of a Jacobian representation, as
explained in Section 26.4.) This is useful for scalar multiplication, as explained below.

26.12  function pjclPointDouble(P,curve)

The parameter P is expected to be the Jacobian representation of a point P of a Weierstrass
curve with coefficient a = —3, and the parameter curve is expected to be an object repre-
senting the curve. There are two objects representing curves in the current version of the
library, pjclCurve P256 and pjclCurve_P384, both representing Weierstrass curves with
coefficient @ = —3. The function returns a Jacobian representation of the point 2P = P+ P.

26.13 function pjclScalarMult(P,k,curve)

The parameter P is expected to be a Jacobian representation of a point P of a Weierstrass
curve with coefficient a = —3, the parameter k is expected to be a big integer whose math-
ematical value is a nonnegative integer k, and the parameter curve is expected to be an
object representing the curve. There are two objects representing curves in the current
version of the library, pjclCurve P256 and pjclCurve P384, both representing Weierstrass
curves with coefficient a = —3.

The function returns a Jacobian representation of the point kP = P+ --- + P, calcu-

k
lated using the sliding window algorithm implemented by pjclExp,* after calling pjclPreExp
to perform the precomputation. The call to pjclPreExp is followed by a loop that calls
pjclJacobian2Affine on all the precomputed values, so that pjclPointAdd can take ad-
vantage of the Jacobian-affine optimization mentioned above in Section 26.5 when used in
pjclExp.

In a future version of the library we plan to use NAF to further optimize scalar multiplica-
tion. Different code will then be used for modular exponentiation and scalar multiplication.

26.14  function pjclScalarMult2(P1,P2,ul,u2,curve)
The function pjclScalarMult2(P1,P2,ul,u2,curve) produces the same result as
pjclPointAdd(pjclScalarMult (P1,ul,curve),pjclScalarMult (P2,u2,curve))

but substantially faster, by combining the point doublings of the two exponentiations. It
calls pjclPreExp2 and pjclExp2, and, like pjclScalarMult, calls pjclJacobian2Affine
on the values precomputed by pjclPreExp2 before using them in pjclExp2.

4Recall that “scalar multiplication” and “exponentiation” are alternative names given to the same external
operation in a monoid, the term “scalar multiplication” being used when the operation is called “addition”
while the term “exponentiation is used when the operation is called “multiplication”.
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27 Elliptic Curve Cryptography (ECC)

The term Elliptic Curve Cryptography (ECC) is used to refer to public-key cryptographic
primitives, including Elliptic Curve DSA (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH),
that rely on the difficulty of computing discrete logarithms in the group of points of an ellip-
tic curve. The specification of the curve and its chosen base point G play the role of domain
parameters and determine the nominal security strength of the primitives.

As in FFC, the nominal security strength of a primitive is an upper limit on its actual
security strength, which may also be limited by other factors, such as the security strength
of the DRBG used to generate a key pair or the per-message secret used to compute a
signature, or the security strength of the hash function used to hash a message being signed.
With argument checking, functions implementing ECC primitives verify that these other
factors do not reduce the actual security strength of a primitive below its nominal strength.
The curves implemented by this version of the library, P-256 and P-384, provide security
strengths of 128 and 192 bits respectively, according to [20, Table 2] and [11, Table 2].

An ECC key pair relative to an elliptic curve with a chosen base point G of order n is a
pair (d, @), where the private key d is an integer in the range 1 < d < n and the public key
Q is a Jacobian representation of the point () = dG.

27.1 function pjclCurveSecStrength(curve)

The parameter curve is expected to be an object specifying one of the curves supported by
the library. The function returns the nominal security strength of the curve.

27.2 function pjclECCGenKeyPair(rbgStateStorage,curve)

The parameter rbgStateStorage is expected to be an ordinary object or a storage object
containing the internal state of a DRBG as discussed in Section 21.1. The parameter curve
is expected to be an object specifying one of the curves supported by the library; this version
of the library includes pjclCurve P256 and pjclCurve_P384, which provide 128 and 192 bits
of security strength respectively. With argument checking, the function throws an exception
if the security strength of the DRBG is less than that of the curve.

The function returns an object containing two properties d and Q representing an ECC
key pair (d, Q) relative to the curve and its chosen base point G, d being the big integer repre-
sentation of d and Q an affine representation of ) = dG. (Recall that an affine representation
is a special case of a Jacobian representation, as explained above in Section 26.4.)

27.3 function pjclECCValidatePublicKey(Q,curve)

The function pjclECCValidatePublicKey(Q, curve) implements Algorithm 5.6.2.3.2 of [11]
for ECDSA public key validation after verifying that Q is finite and converting it to its
affine representation, except that it omits the last step of the algorithm. The last step is
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unnecessary if the cofactor is 1, since in that case (with the notations of Algorithm 5.6.2.3.2)
n is the order of the curve, and therefore nQ = (. This hardcodes the fact that the cofactor
is 1 in NIST curves over prime fields, and will change in the future if the library supports
curves with other cofactors.

28 ECDSA

28.1 Synonyms: using ECDSA instead of ECC in function names

The library defines the following global variables as synonyms for the names of API functions
that begin with pjclECC, replacing ECC with ECDSA in each name:

var pjclECDSAGenKeyPair = pjclECCGenKeyPair
var pjclECDSAValidatePublicKey = pjclECCValidatePublicKey

28.2 function pjclECDSASignHash(rbgStateStorage,curve,d,hash)

The parameter rbgStateStorage is expected to be an ordinary object or a storage object
containing the internal state of a DRBG as discussed in Section 21.1. The parameter curve is
expected to be an object specifying one of the curves supported by the library; this version
of the library includes pjclCurve P256 and pjclCurve P384, which provide 128 and 192
bits of security strength respectively. The parameter d is expected to be a nonnegative big
integer, whose value is the private key to be used for signing the message. The parameter
hash is expected to be the bit array encoding of the cryptographic hash of a message to
be signed. The function generates a cryptographically random per-message secret k and
its inverse k~! mod n, where n is the order n of the base point of the curve (and of the
curve, since the cofactor is 1), represented by the big integer curve.n. Then it computes the
signature (7, s) on the message as described in [10, Section 6.4]. It returns an object with
properties r and s whose values are the big integer representations of r and s.

With argument checking, the function verifies that the security strength of the DRBG is
not less than the security strength S of the curve and the bit length of the hash is not less
than 25.

As is the case for DSA, the generation of the per-message secret and the computa-
tionally expensive modular inverse operation for computing its inverse modulo n can be
performed ahead of time; then a function called pjclECDSASignHashK can be used instead
of pjclECDSASignHash, passing the per-message secret and its inverse as the last two argu-
ments. However, for consistency with DSA, we do not view pjclECDSASignHashK as an API
function in this version of the library.

The implementation of pjc1ECDSASignHashK, and of pjcl1ECDSAVerifyHash below, hard-
codes the fact that the order n of the generator has the same bit length as the prime p that
defines the field, which is true for all the NIST curves over prime fields. This may change in
the future as other curves are included in the library.

(© Copyright 2018 Pomcor



PJCL Version 0.9.1 56

28.3 function pjclECDSASignMsg(rbgStateStorage,curve,d,msg)

The parameters rbgStateStorage, curve and d are as those of pjclECDSASignHash. The
parameter msg is expected to be a bit array that encodes a message to be signed. The
function computes a hash of the message using the hash function of the SHA-2 family
that produces the shortest output of length greater than or equal to twice the security
strength of the curve, throwing an exception if no such function is available, then it calls
pjclECDSASignHash(rbgStateStorage,curve,d,hash), where the value of hash is the bit
array encoding the computed hash, and returns its output. (With argument checking,
pjclECDSASignHash verifies that the security strength of the DRBG is not less than the
security strength of the curve.)

28.4 function pjclECDSAVerifyHash(curve,Q,hash,r,s)

The function pjclECDSAVerifyHash verifies an ECDSA signature on a message taking the
hash of the message as input. The parameter curve is expected to be an object specifying
one of the curves supported by the library. The parameter Q is expected to be a Jacobian
representation of a point, to be used as the public key. The parameter hash is expected to
be the bit array encoding of the hash of the message. The parameters r and s are expected
to be big integers representing the components (r, s) of the signature. The function returns
true if verification succeeds, false otherwise.

28.5 function pjclECDSAVerifyMsg(curve,Q,msg,r,s)

The function pjclECDSAVerifyMsg verifies a signature taking the message itself, rather
than its hash, as input. The parameter curve is expected to be an object specifying one
of the curves supported by the library. The parameter Q is expected to be the Jacobian
representation of a point, to be used as the public key. The parameter msg is expected to be
the bit array encoding of the message. The parameters r and s are expected to be big integers
representing the components (r, s) of the signature. The function computes a hash of the
message using the hash function of the SHA-2 family that produces the shortest output of
length greater than or equal to twice the security strength of the curve, throwing an exception
if no such function is available, then it calls pjc1ECDSAVerifyHash(curve,Q,hash,r,s),
where the value of hash is the bit array encoding the computed hash, and returns its output.
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29 Elliptic Curve Diffie-Hellman (ECDH)

29.1 Synonyms: using ECDH instead of ECC in function names

The library defines the following global variables as synonyms for the names of API functions
that begin with pjclECC, replacing ECC with ECDH in each name:

var pjclECDHGenKeyPair = pjclECCGenKeyPair
var pjclECDHValidatePublicKey = pjclECCValidatePublicKey

29.2 function pjclECDH(curve,d A,Q B)

The function pjclECDH implements the Elliptic-Curve Diffie-Hellman (ECDH) primitive as
specified in Section 5.7.1.2 of [11], except that the cofactor is not used, because the curves
supported by this version of the library are NIST curves over prime fields, where the cofactor
is 1. The function is used by a party A to compute a secret z shared with a party B.

The parameter curve is expected to be an object specifying one of the curves supported
by the library, either pjclCurve_P256 or pjclCurve P384. The parameter d_A is expected
to be a big integer representing the private key d4 of party A, and the parameter Q_B a
Jacobian representation of the public key ()5 of party B.

The function computes the point P = d4(Qp and throws an exception if P is the point
at infinity, which cannot happen if d4 and () are the private and public key components
of two ECC key pairs relative to the curve and its chosen base point. If P is not the point
at infinity, the function returns the base-256 representation of the = coordinate of the affine
representation of P as a byte array.

30 Estimation of the Karatsuba thresholds

The directory KaratsubaThresholds contains a facility for estimating the optimal Karat-
suba thresholds for multiplication and squaring on a target browser in a particular ma-
chine. JavaScript does not provide a means of measuring the number of clock cycles used
in a computation, so the estimates are computed by measuring elapsed time, using the
performance.now() method of the User Timing API. Results may be highly inaccurate if
there is other activity on the machine where the browser is running.

To compute the optimal thresholds, simply visit the file KaratsubaThresholds.html
found in the KaratsubaThresholds directory with the target browser. You may place the
KaratsubaThresholds directory in a server and access the file using an http or https URL,
or in the same machine where the browser is running and access the file using a file URL or
open the file with the browser. However the facility cannot be used with Chrome if the file
is local, and it cannot be used at all with Safari or Internet Explorer because those browsers
do not support the User Timing API in web workers. There are no problems with Firefox or
Edge. You must place the file pjcl. js containing the PJCL library in the parent directory
of the KaratsubaThresholds directory.
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The computation of the optimal thresholds is performed in the background by a web
worker, which is launched automatically as soon as you visit the file, It takes a couple
of minutes and may be monitored on the browser console. You may want to repeat the
computation several times, discard outliers that might be caused by other activity on the
machine, and average the retained results.

Once computed, the optimal thresholds should be assigned to the global variables
pjclKaratsubaThresholdMult and pjclKaratsubaThresholdSqr, overriding the defaults.
The default thresholds should be adequate for ordinary laptops. They may be too high for
some smartphones, and too low for machines with very fast floating-point multiplication.
Karatsuba is unlikely to be useful for elliptic curve computations.

31 Performance testing

31.1 Testing the performance of DSA and DH

The directories DSAPerfTesting and DHPerfTesting, found in the zip archive under pjcl,
contain files DSAPerfTest.html and DHPerfTest.html that allow you to measure the per-
formance of DSA and DH on Firefox, Chrome or Edge. (Safari and Internet Explorer do
not support the User Timing API in web workers.) To measure performance, place the pjcl
directory in a server, visit the files with your browser, and follow instructions. (If using
Firefox, you may also place pjcl in the same machine where the browser is running, and
open the files DSAPerfTest.html and DHPerfTest.html with the browser.)

Tables 1, 2 and 3 provide measurements that we have made ourselves on Firefox, Chrome
and Edge.
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Machine: Surface with Intel Core 15-6300U CPU @ 2.40 GHz 2.50 GHz

Browser: Firefox 59.0.1 (64-bit)

Length | Length | Security | Key pair | DSA | DSA DH
of p of ¢ | Strength | generation | sign | verify

2048 bits | 256 bits | 112 bits 12ms | 12 ms | 14 ms 11 ms

3072 bits | 256 bits | 256 bits 26 ms | 25 ms | 31 ms 24 ms

Table 1: DSA and DH performance in Firefox.

Machine: Surface with Intel Core 15-6300U CPU @ 2.40 GHz 2.50 GHz
Browser: Chrome 64.0.3282.186 (64-bit)

Length | Length | Security | Key pair | DSA | DSA DH
of p of ¢ | Strength | generation sign | verify

2048 bits | 256 bits | 112 bits 14 ms | 16 ms | 20 ms 14 ms

3072 bits | 256 bits | 256 bits 27 ms | 31 ms | 42 ms 27 ms

Table 2: DSA and DH performance in Chrome.

Machine: Surface with Intel Core 15-6300U CPU @ 2.40 GHz 2.50 GHz

Browser: Edge 41.16299.248.0, EdgeHTML 16.16299

Length | Length | Security | Key pair | DSA | DSA DH
of p of ¢ | Strength | generation sign | verify

2048 bits | 256 bits | 112 bits 16 ms | 17 ms | 19 ms 15 ms

3072 bits | 256 bits | 256 bits 31 ms | 32 ms | 39 ms 31 ms

Table 3: DSA and DH performance in Edge.
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