
Pomcor JavaScript Cryptographic Library
(PJCL)

Version 0.9 (beta test version)

Contents

1 Functionality provided in Version 0.9 6

2 Requirements 7

3 License 8

4 Downloadable zip archive 8

5 Data encodings 9
5.1 Numbers in JavaScript . 9
5.2 Big integers in PJCL . 9
5.3 Other data types . 10

6 API 11
6.1 Argument expectations . 11
6.2 Side effects . 11
6.3 Global variables and functions related to the representation of

big integers . 12
6.3.1 var pjclBaseBitLength

var pjclBase

var pjclBaseMask

var pjclBaseMaskMinusOne

var pjclBaseInv

var pjclBaseAsBigInt

var pjclHalfBase . 12
6.3.2 function pjclWellFormed(x) 13

c© Copyright 2018 Pomcor

PJCL Version 0.9 2

6.4 Conversion functions . 13
6.4.1 function pjclHex2BitArray(s) 13
6.4.2 function pjclASCII2BitArray(s) 13
6.4.3 function pjclUTF16toBitArray(s) 13
6.4.4 function pjclByte2BitArray(byte) 14
6.4.5 function pjclUI32toBitArray(ui32) 14
6.4.6 function pjclUI32Array2BitArray(x) 14
6.4.7 function pjclBigInt2BitArray(x) 14
6.4.8 function pjclBigInt2SizedBitArray(x,size) . . . 14
6.4.9 function pjclBitLengthOfBigInt(x) 15
6.4.10 function pjclBitArray2UI32Array(bitArray) . . . 15
6.4.11 function pjclBitArray2BigInt(bitArray) 15
6.4.12 function pjclBitArray2Hex(bitArray) 15
6.4.13 function pjclHex2BigInt(s) 15
6.4.14 function pjclBigInt2Hex(x)

function pjclBigInt2Hex(x,minHexLength) 16
6.4.15 function pjclUI32toHex(x) 16
6.4.16 function pjclUI32Array2Hex(x) 16

6.5 Basic arithmetic functions . 16
6.5.1 function pjclGreaterThan(x,y) 16
6.5.2 function pjclGreaterThanRel(x,y) 16
6.5.3 function pjclGreaterThanOrEqual(x,y) 16
6.5.4 function pjclGreaterThanOrEqualRel(x,y) 17
6.5.5 function pjclEqual(x,y) 17
6.5.6 function pjclEqualRel(x,y) 17
6.5.7 function pjclAdd(x,y) 17
6.5.8 function pjclAddRel(x,y) 17
6.5.9 function pjclSub(x,y) 17
6.5.10 function pjclSubRel(x,y) 17
6.5.11 var pjclMult

function pjclMult Long(x,y)

function pjclMult Karatsuba(x,y) 18
6.5.12 function MultRel(x,y) 18
6.5.13 function pjclShortMult(x,y) 19
6.5.14 var pjclSqr

function pjclSqr Long(x,y)

function pjclSqr Karatsuba(x,y) 19
6.5.15 function pjclShortShiftLeft(x,k) 19

c© Copyright 2018 Pomcor

PJCL Version 0.9 3

6.5.16 function pjclShiftLeft(x,k)

function pjclMultByPowerOf2(x,k) 20
6.5.17 function pjclShortShiftRight(x,k) 20
6.5.18 function pjclShiftRight(x,k)

function pjclDivByPowerOf2(x,k) 20
6.5.19 function pjclDiv(x,y) 21
6.5.20 function pjclDivRel(x,y) 21
6.5.21 function pjclShortDiv(x,y) 21
6.5.22 function pjclMod(x,m) 21
6.5.23 function pjclTruncate(x,t)

function pjclModPowerOf2(x,t) 22
6.5.24 function pjclModLimb(x,m) 22
6.5.25 function pjclEGCD(a,b)

function pjclEGCD(a,b,computeBothBezoutCoeffs) 22
6.5.26 function pjclModInv(x,m) 22

6.6 Montgomery reduction . 23
6.6.1 function pjclPreMontRed(m) 23
6.6.2 function pjclMontRed(t,m,m1) 24

6.7 Generic sliding window exponentiation in a monoid 24
6.7.1 function pjclOptimalWindowSize(l)

function pjclPreExp(slidingWindowSize,context)

function pjclExp(exponent,context) 24
6.8 Exponentiation in N . 25

6.8.1 function pjclPlainExp(g,x) 25
6.9 Modular exponentiation with ordinary reduction 26

6.9.1 function pjclModExp(g,x,m) 26
6.10 Modular exponentiation with Montgomery reduction 26

6.10.1 function pjclMontExp(g,x,m) 26
6.11 Generic double exponentiation in a commutative monoid . . . 27

6.11.1 function pjclOptimalWindowSize2(l)

function pjclPreExp2(slidingWindowSize,context)

function pjclExp2(exponentG,exponentY,context) 27
6.12 Double exponentiation with Montgomery reduction 27

6.12.1 function pjclMontExp2(

g,y,exponentG,exponentY,m) 27
6.13 Hash functions and message authentication codes (SHA, HMAC) 28

6.13.1 function pjclSHA256(bitArray) 28
6.13.2 function pjclSHA384(bitArray) 28

c© Copyright 2018 Pomcor

PJCL Version 0.9 4

6.13.3 function pjclHMAC SHA256(key,text) 28
6.13.4 function pjclHMAC SHA384(key,text) 28
6.13.5 function pjclHMAC SHA256PreComputeKeyHashes(key)

function pjclHMAC SHA256WithPreCompute(

iKeyHash,oKeyHash,text) 28
6.13.6 function pjclHMAC SHA384PreComputeKeyHashes(key)

function pjclHMAC SHA384WithPreCompute(

iKeyHash,oKeyHash,text) 29
6.14 Statistically random data vs. cryptographically random data . 29
6.15 Random bit generation (RBG) vs. random number generation

(RNG) . 29
6.16 Generation of statistically random data 30

6.16.1 function pjclStRndLimb() 30
6.16.2 function pjclStRndBigInt(n) 30
6.16.3 function pjclStRndHex(n) 30
6.16.4 function pjclStatisticalRNG(a,b) 30

6.17 Cryptographic random number generation 30
6.17.1 function pjclRBG128Instantiate(

rbgStateStorage,entropy)

function pjclRBG128Instantiate(

rbgStateStorage,entropy,nonce) 31
6.17.2 function pjclRBG128Reseed(

rbgStateStorage, entropy) 32
6.17.3 function pjclRBG128InstantiateOrReseed(

rbgStateStorage,entropy,nonce) 32
6.17.4 function pjclRBG128Gen(rbgStateStorage, bitLength) 32
6.17.5 function pjclCryptoRNG128(rbgStateStorage,a,b) 33
6.17.6 function pjclRBG192Instantiate(

rbgStateStorage,entropy,nonce)

function pjclRBG192Reseed(

rbgStateStorage,entropy)

function pjclRBG192InstantiateOrReseed(

rbgStateStorage,entropy,nonce)

function pjclRBG192Gen(

rbgStateStorage,bitLength)

function pjclCryptoRNG192(rbgStateStorage,a,b) 33
6.18 Primality testing . 34

c© Copyright 2018 Pomcor

PJCL Version 0.9 5

6.18.1 function pjclIsPrime(n,t)

function pjclMillerRabin(n,t) 34
6.19 DSA . 34

6.19.1 function pjclDSAGenPQ(domainParameterSeed)

function pjclDSAGenPQ() 34
6.19.2 function pjclDSAGenG(

p,q,domainParameterSeed,index) 35
6.19.3 function pjclDSAGenPQG(

domainParameterSeed,index) 35
6.19.4 function pjclDSAGenKeyPair(rbgStateStorage,p,q,g)

function pjclDSAGenKeyPair(rbgStateStorage) . . 36
6.19.5 function pjclDSASign(rbgStateStorage,p,q,g,x,msg) 36
6.19.6 function pjclDSAVerify(p,q,g,y,msg,r,s) 37

6.20 Elliptic curves . 37
6.20.1 NIST curves . 37
6.20.2 Affine vs. projective vs. Jacobian coordinates 38
6.20.3 Jacobian representation of a point 39
6.20.4 Affine representation as a special case of Jacobian rep-

resentation . 39
6.20.5 Jacobian-affine optimization of point addition 39
6.20.6 function pjclModSpecial(x,t,xc,m) 39
6.20.7 Pseudo-Mersenne representation of a prime 40
6.20.8 var pjclCurve P256 40
6.20.9 var pjclCurve P384 41
6.20.10function pjclJacobian2Affine(P,curve) 41
6.20.11function pjclPointAdd(P1,P2,curve) 42
6.20.12function pjclPointDouble(P,curve) 42
6.20.13function pjclScalarMult(P,k,curve) 42
6.20.14function pjclScalarMult2(

P1,P2,u1,u2,curve) 43
6.21 ECDSA . 43

6.21.1 function pjclECDSA128GenKeyPair(rbgStateStorage,curve)

. 43
6.21.2 function pjclECDSA192GenKeyPair(rbgStateStorage,curve)

. 44
6.21.3 function pjclECDSAValidatePublicKey(Q,curve) . 44
6.21.4 function pjclECDSASign(curve,d,h,k) 44
6.21.5 function pjclECDSA128Sign(rbgStateStorage,curve,d,msg) 44

c© Copyright 2018 Pomcor

PJCL Version 0.9 6

6.21.6 function pjclECDSA192Sign(rbgStateStorage,curve,d,msg) 45
6.21.7 function pjclECDSAVerify(curve,Q,msg,r,s) . . . 45
6.21.8 function pjclECDSA128Verify(curve,Q,msg,r,s) . 45
6.21.9 function pjclECDSA192Verify(curve,Q,msg,r,s) . 45

7 Estimation of the Karatsuba thresholds 46

8 Performance testing 47
8.1 Testing the performance of modular exponentiation 47
8.2 Testing the performance of DSA 47

1 Functionality provided in Version 0.9

The primary goal of this version of the library is to support the implementa-
tion of cryptographic authentication and remote identity proofing. To that
purpose it provides:

• Big integer arithmetic, including:

– Long multiplication and Karatsuba multiplication [1, § 15.1.2].

– Montgomery reduction [2, § 14.3.2].

– Sliding window exponentiation [2, Algorithm 14.85] in a generic
monoid, with specializations including modular exponentiation
with Montgomery reduction and scalar multiplication of a point
of an elliptic curve. (The latter may be implemented differently in
a future version.) Our implementation of modular exponentiation
with Montgomery reduction is several times faster than the one
in the Stanford JavaScript Cryptographic Library (SJCL) [3] ac-
cording to the performance testing described below in Section 8.1.

• Elliptic curve group operations, in the NIST curves P-256 [4, § D.2.3]
and P-384 [4, § D.2.4]. Other curves may be supported in the future.

• The following hash functions and message authentication codes:

– SHA-256 and SHA-384 [5].

– HMAC-SHA256 and HMAC-SHA384 [6, 7].

c© Copyright 2018 Pomcor

PJCL Version 0.9 7

• Pseudo-random number generation based on the NIST Hash-Based De-
terministic Random Bit Generator (Hash DRBG) [8] with hash func-
tions SHA-256 and SHA-384.

• Prime number generation using the Miller-Rabin algorithm.

• DSA [4] with 128 bits of security strength, which requires a 256-bit
private key and a 3072-bit public key [9, Table 2], including:

– Generation of domain parameters.

– Key pair generation.

– Signature generation.

– Signature verification.

• ECDSA [10], [11, § 2.6.2] with NIST curves P-256 and P-384, which
provide 128 and 196 bits of security strength respectively [9, Table 2],
including:

– Key pair generation.

– Public key validation [10, § 6.2].

– Signature generation.

– Signature verification.

Future versions of the PJCL may support secure messaging and data protec-
tion at rest, and to that purpose may provide encryption and key agreement
functionality.

2 Requirements

PJCL does not require any recent features of JavaScript, nor any particular
JavaScript engine, runtime environment or framework. The PJCL API is a
collection of global functions and variables whose names are all prefixed by
pjcl to avoid name conflicts. (The PJCL acronym and the pjcl prefix are
trademarks of Pomcor.) Therefore PJCL can be used wherever JavaScript is
used. It can be used in a browser, in a native app (e.g. using React Native
[12]), or in a server (e.g. using node.js [13]).

c© Copyright 2018 Pomcor

PJCL Version 0.9 8

The PJCL pseudo-random bit generator must be seeded with random
bits with sufficient entropy obtained from a true random source. It may
be reseeded before generating random bits for the sake of prediction resis-
tance [8, § 8.8]. You are responsible for providing the random bits used for
seeding or reseeding. Methods for obtaining entropy are discussed below in
Section 6.17.1. Math.random does not provide entropy.

3 License

The PJCL library can be used subject to the terms of the PJCL license,
which can be found at https://pomcor.com/pjcl/pjcl-license.txt.

4 Downloadable zip archive

The current version of the PJCL library can be downloaded as a zip archive
that can be found at https://pomcor.com/pjcl/pjcl-090.zip. The archive
contains a pjcl directory, which itself contains the following files:

• The file pjcl.js contains the PJCL library.

• The file pjcl-withArgChecking.js differs from pjcl.js in that most
of the API functions include code that checks the validity of their ar-
guments. This may be useful for debugging applications that use the
library, and as a precise specification of the properties of the arguments
expected by the functions.

• The directory KaratsubaThresholds contains files that let you esti-
mate optimal thresholds for Karatsuba multiplication and Karatsuba
squaring in a particular JavaScript environment, as described below in
Section 7.

• The file browserEntropy.js contains examples of how to generate ran-
dom bits in browsers that support the Web Crypto API.

• The directory ModExpPerfTesting contains files that allow you to test
the performance of modular exponentiation on a browser using long
multiplication or Karatsuba multiplication and compare it to the per-
formance of SJCL, as described below in Section 8.1.

c© Copyright 2018 Pomcor

https://pomcor.com/pjcl/pjcl-license.txt
https://pomcor.com/pjcl/pjcl-090.zip

PJCL Version 0.9 9

• The directory DSAPerfTesting contains files that allow you to test the
performance of DSA on a browser using long multiplication or Karat-
suba multiplication, as described below in Section 8.2. ECDSA perfor-
mance testing may be provided in the future.

5 Data encodings

5.1 Numbers in JavaScript

With some exceptions, JavaScript numbers are represented in IEEE 754
double-precision (64-bit) floating point format [14], which allows every non-
negative integer n in the range 0 ≤ n < 253 to be represented exactly.

5.2 Big integers in PJCL

PJCL represents nonnegative integers of arbitrary size in base B = 2β, with
β = 24. Following tradition, we refer to the digits of the base-B represen-
tation as limbs. A limb is thus a 24-bit quantity. It is unlikely but not
impossible that the number of bits per limb will change in the future. Your
own code should use the variables of Section 6.3.1 to avoid hardcoding the
number of bits per limb.

The limbs are stored in an array. For performance reasons, the least
significant limb is the first element of the array, i.e. the element with index
0. Thus, the index of each limb is its weight in the base-B representation:
limb λi of the nonnegative integer N =

∑
0≤i<n λiB

i is stored at position i
in the n-limb array that represents N .

The order in which the limbs are stored in the array only matters for
understanding the implementation of the library; it should not matter to
developers who use the API, and it does not affect the API-level metaphors.
For example, “shifting left by one limb” shall mean shifting by one limb
towards the most significant end of the array, i.e. multiplying by B, even
though the most significant limb is the array element with the highest index,
which is the rightmost element in an array literal; and the “leading limb”
shall mean the most significant limb.

JavaScript arrays are not objects, but can have properties like objects.
A negative integer is represented by encoding its absolute value as an array

c© Copyright 2018 Pomcor

PJCL Version 0.9 10

of limbs, and giving the array a property negative with value true. A
nonnegative integer does not have a negative property.

We use the term big integer to refer to an integer represented in base B
as an array of limbs with an optional negative property. A big integer has
a unique representation. Leading zero limbs are not allowed, i.e. the most
significant limb must not be zero. The big integer zero is represented as an
empty array without a negative property.

For the sake of performance and code footprint minimization, some func-
tions ignore the negative property of big integer arguments and thus oper-
ate on the absolute values of those arguments, while other functions take the
negative property into account and thus operate on their relative values.
The latter functions are distinguished by the suffix Rel in their names. For
example, pjclAdd(x,y) adds the absolute values of the parameters x and y,
while pjclAddRel adds their relative values.

5.3 Other data types

A bit array is a JavaScript array whose elements are JavaScript floating point
numbers with value 0 or 1. Bit arrays are used for encoding the inputs and
outputs of hash functions and random bit generators, and sometimes for
encoding a nonnegative integer or a sequence of fixed-length nonnegative
integers, each integer being mapped to a sequence of bits comprising the
binary representation of the integer, with the most significant bit being first,
i.e. having the lowest array index.

A hex string is a JavaScript string whose characters are hexadecimal dig-
its: 0. . . 9, A. . . F or a. . . f. Functions that take a hex string as input accept
both upper and lower case hexadecimal digits. Functions that produce a hex-
adecimal string as output use the JavaScript method toString(16), which
may produce upper or lower hexadecimal digits depending on the JavaScript
engine that interprets the function. JavaScript encodes strings in UTF-16,
so each hex digit in a hex string is encoded as a 16-bit UTF-16 character.

An ASCII string is a JavaScript string whose characters are ASCII char-
acters. Although ASCII characters can be encoded in 7 bits, they are stored
as 16-bit UTF-16 characters in a JavaScript ASCII string.

In a function name such as, for example, pjclUTF16toBitArray, the
substring UTF16 is used to refer to a JavaScript string where all 16 bits of the
UTF-16 encoding of each character matter, even if all the characters in the
string happen to be within the ASCII range of UTF-16 and have UTF-16

c© Copyright 2018 Pomcor

PJCL Version 0.9 11

encodings whose most significant 9 bits are 0.
An unsigned 32-bit integer is a nonnegative integer n in the range 0 ≤

n < 232, represented in JavaScript as an IEEE double precision floating point
number. In function names the substring UI32 refers to an unsigned 32-bit
integer and the substring UI32Array to an array of unsigned 32-bit inte-
gers. Notice that UI32Array refers to an ordinary JavaScript array, not to
the typed array UInt32Array. Typed arrays are not used in PJCL. How-
ever, an application that uses typed arrays may pass an argument of type
UInt32Array to a PJCL function that expects an ordinary JavaScript array
of 32-bit unsigned integers.

6 API

This section describes the global variables and functions that comprise the
API in the order in which they are declared in pjcl.js.

6.1 Argument expectations

When a description of a function states that a parameter is expected to have
some property, it is an error if the expectation is not met. In pjcl-withArgChecking.js,
most of the API functions have argument checking code that throws an ex-
ception if such expectations are not met.

6.2 Side effects

Functions have no side effects unless otherwise indicated in their documen-
tation. The following functions have side effects in the current version of the
library: pjclShortShiftLeft, pjclShiftLeft, pjclShortShiftRight,

pjclShiftRight, pjclPreExp and pjclPreExp2.

c© Copyright 2018 Pomcor

PJCL Version 0.9 12

6.3 Global variables and functions related to the rep-
resentation of big integers

6.3.1 var pjclBaseBitLength

var pjclBase

var pjclBaseMask

var pjclBaseMaskMinusOne

var pjclBaseInv

var pjclBaseAsBigInt

var pjclHalfBase

These global variables encapsulate most of the dependencies on the fact that
a limb has 24 bits. Your code should not hardcode the fact that a limb has
24 bits.

• The value of pjclBaseBitLength is β, i.e. 24.

• The value of pjclBase is B, i.e. 224, encoded as a JavaScript number.

• The value of pjclBaseMask if B − 1, encoded as a JavaScript number,
which is viewed as

00000000︸ ︷︷ ︸
8

111111111111111111111111︸ ︷︷ ︸
24

by JavaScript bitwise operators.

• The value of pjclBaseMaskMinusOne is B−2, encoded as a JavaScript
number, which is viewed as

00000000︸ ︷︷ ︸
8

111111111111111111111110︸ ︷︷ ︸
24

by JavaScript bitwise operators.

• The value of pjclBaseInv is 1/B encoded as a JavaScript (floating
point) number.

• The value of pjclBaseAsBigInt is B, encoded as a big integer.

c© Copyright 2018 Pomcor

PJCL Version 0.9 13

• The value of pjclHalfBase is B/2, encoded as a JavaScript number,
which is viewed as

00000000︸ ︷︷ ︸
8

100000000000000000000000︸ ︷︷ ︸
24

by JavaScript bitwise operators.

6.3.2 function pjclWellFormed(x)

Returns true if the parameter x is a well-formed big integer, or false oth-
erwise. It is used for argument checking.

6.4 Conversion functions

6.4.1 function pjclHex2BitArray(s)

The parameter s is expected to be a hex string, which the function converts
to a bit array by mapping each hex digit in s to the four bits comprising the
binary representation of the digit.

6.4.2 function pjclASCII2BitArray(s)

The parameter s is expected to be an ASCII string, which the function
converts to a bit array by mapping each ASCII character in s to the eight
bits that comprise the 8-bit binary representation of the ASCII code of the
character. Since an ASCII code is an integer in the range 0. . . 127, the first
of the 8 bits is 0. Note that although each character is encoded as a 16-bit
UTF character in the JavaScript string s, it is mapped to only 8 bits in the
resulting bit array.

6.4.3 function pjclUTF16toBitArray(s)

The parameter s is expected to be a JavaScript string, which the function
converts to a bit array by mapping each character to the 16-bit binary rep-
resentation of its UTF-16 code.

c© Copyright 2018 Pomcor

PJCL Version 0.9 14

6.4.4 function pjclByte2BitArray(byte)

The parameter byte is expected to be a JavaScript floating point number
whose value is an integer n in the range 0 ≤ n < 28, which is converted to a
bit array whose elements are the 8 bits of the binary representation of n.

6.4.5 function pjclUI32toBitArray(ui32)

The parameter ui32 is expected to be an unsigned 32-bit integer, i.e. an
integer n in the range 0 ≤ n < 232, which is converted to a bit array whose
elements are the 32 bits of the binary representation of n.

6.4.6 function pjclUI32Array2BitArray(x)

The parameter x is expected to be an array where each element is a JavaScript
number whose value is an integer n in the range 0 ≤ n < 232. The function
converts x to a bit array by mapping each integer n to the 32 bits of its
binary representation. As discussed above in Section 5, PJCL does not use
typed arrays, but an application may pass a UInt32Array as an argument
to the function instead of an ordinary JavaScript array.

6.4.7 function pjclBigInt2BitArray(x)

The parameter x is expected to be a big integer with mathematical value x.
The negative property of x, if present, is ignored. The function returns a
bit array representing the binary encoding of |x| without leading zeros. If
x = 0 the bit array is empty.

6.4.8 function pjclBigInt2SizedBitArray(x,size)

The parameter x is expected to be a big integer with value x. The negative

property of x, if present, is ignored. The parameter size is expected to be
a JavaScript number whose value is a nonnegative integer n. The function
returns a bit array of length n. If |x| < 2n, the bit array is the n-bit binary
representation of |x| (with leading zero bits as needed). If |x| >= 2n, the bit
array is the n-bit binary representation of |x| mod 2n.

c© Copyright 2018 Pomcor

PJCL Version 0.9 15

6.4.9 function pjclBitLengthOfBigInt(x)

The parameter x is expected to be a big integer with value x. The negative

property of x, if present, is ignored. The function returns the length of the
binary representation of |x|, i.e. the length of the bit array that would be
returned by pjclBigInt2BitArray(x).

6.4.10 function pjclBitArray2UI32Array(bitArray)

The parameter bitArray is expected to be a bit array of length 32n. The
function returns an array of n 32-bit unsigned integers obtained by partition-
ing the bit array into groups of 32 bits and viewing each group as the binary
representation of a nonnegative integer.

6.4.11 function pjclBitArray2BigInt(bitArray)

The parameter bitArray is expected to be a bit array of any length. The
function returns the nonnegative big integer whose binary representation is
the bit array.

6.4.12 function pjclBitArray2Hex(bitArray)

The parameter bitArray is expected to be a bit array of any length. The
function returns a hex string obtained by: (i) prepending leading zero bits
to the bit array as needed to make the length of the array a multiple of
4 (notice the difference with pjclBitArray2UI32Array, which expects the
length of its argument to be a multiple of 32 and does not prepend any leading
zeros); and (ii) partitioning the resulting bit array into groups of four bits
and viewing each group as the binary representation of a hexadecimal digit; if
the hexadecimal digit is greater than nine, whether it is encoded as an upper
or lower case letter depends on the implementation of the toString(16)

method by the JavaScript engine.

6.4.13 function pjclHex2BigInt(s)

The parameter s is expected to be a hex string. The function returns the
big integer having s as its hexadecimal representation.

c© Copyright 2018 Pomcor

PJCL Version 0.9 16

6.4.14 function pjclBigInt2Hex(x)

function pjclBigInt2Hex(x,minHexLength)

The parameter x is expected to be a big integer, and the parameter minHexLength,
if the function is called with two arguments, a JavaScript number whose value
is a nonnegative integer. The function returns a hex string consisting of the
hexadecimal representation of the big integer, prepended with hexadecimal
zero digits as needed to bring its length to the value of minHexLength.

6.4.15 function pjclUI32toHex(x)

The parameter x is expected to be an unsigned 32-bit integer, which is con-
verted to its hexadecimal representation encoded as a hex string.

6.4.16 function pjclUI32Array2Hex(x)

The parameter x is expected to be an array of unsigned 32-bit integers. The
function converts x to a hex string by mapping each integer to its hexadecimal
representation.

6.5 Basic arithmetic functions

6.5.1 function pjclGreaterThan(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. Their negative properties, if present, are ignored. The
function returns true if |x| > |y|, false otherwise.

6.5.2 function pjclGreaterThanRel(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. The function returns true if x > y, false otherwise.

6.5.3 function pjclGreaterThanOrEqual(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. Their negative properties, if present, are ignored. The
function returns true if |x| ≥ |y|, false otherwise.

c© Copyright 2018 Pomcor

PJCL Version 0.9 17

6.5.4 function pjclGreaterThanOrEqualRel(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. The function returns true if x ≥ y, false otherwise.

6.5.5 function pjclEqual(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. Their negative properties, if present, are ignored. The
function returns true if |x| = |y|, false otherwise.

6.5.6 function pjclEqualRel(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. The function returns true if x = y, false otherwise.

6.5.7 function pjclAdd(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. Their negative properties, if present, are ignored. The
function returns the nonnegative big integer representing |x| + |y|. Thus if
x, y ≥ 0, it simply returns the big integer representing x+ y.

6.5.8 function pjclAddRel(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. The function returns the big integer representing x+y, which
may be negative.

6.5.9 function pjclSub(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. Their negative properties, if present, are ignored. The
function expects that |x| ≥ |y|, and returns the nonnegative big integer rep-
resenting |x| − |y|.

6.5.10 function pjclSubRel(x,y)

The parameters x and y are expected to be big integers with mathematical
values x and y. The function returns the big integer representing x−y, which

c© Copyright 2018 Pomcor

PJCL Version 0.9 18

may be negative.

6.5.11 var pjclMult

function pjclMult Long(x,y)

function pjclMult Karatsuba(x,y)

Big integer multiplication is performed by calling the function pjclMult(x,y).
However, there is no definition of that function. Instead, pjclMult is a
global variable which must be assigned either the function pjclMult Long,
which implements long multiplication, or the function pjclMult Karatsuba,
which implements Karatsuba multiplication. Both implementations may be
used within the same application by assigning different implementations to
pjclMult at different times.

Both implementations expect the parameters x and y to be big integers
with mathematical values x and y, ignore the negative properties of the
parameters if present, and return the big integer representing the product of
the absolute values of x and y, |x| · |y|.

Long multiplication uses an optimized version of the same algorithm that
is used for multiplication by hand. Karatsuba multiplication uses the re-
cursive algorithm described in [1, § 15.1.2], carefully implemented for good
performance on JavaScript.

The Karatsuba algorithm is asymptotically faster than long multipli-
cation, so it is faster for larger operands but slower for smaller operands.
During an execution of the algorithm, recursive calls fall back on long mul-
tiplication when the size of the operands becomes less than a Karatsuba
multiplication threshold. The optimal threshold depends on the platform
(machine and JavaScript engine) being used, and can be estimated for a par-
ticular machine and engine combination using the tool described below in
Section 7. The estimated threshold, expressed as a number of limbs, should
be assigned to the global variable pjclKaratsubaThresholdMult before us-
ing pjclMult Karatsuba. An exception is thrown if pjclMult Karatsuba

is called when pjclKaratsubaThresholdMult is undefined, but a default is
provided to avoid the exception.

6.5.12 function MultRel(x,y)

The parameters x and y are expected to be big integers, with mathematical
values x and y. Returns a big integer whose mathematial value is the product

c© Copyright 2018 Pomcor

PJCL Version 0.9 19

xy.

6.5.13 function pjclShortMult(x,y)

The parameter x is expected to be a big integer, with mathematical value x,
whose negative property, if present, is ignored. The parameter y is expected
to be a JavaScript number whose mathematical value y is an integer in the
range 0 ≤ y < B = 224. The function returns the big integer representing
the product |x| · y.

6.5.14 var pjclSqr

function pjclSqr Long(x,y)

function pjclSqr Karatsuba(x,y)

Big integer squaring is performed by calling the function pjclSqr(x). Com-
puting pjclSqr(x) is faster than computing pjclMult(x,x).

As is the case for big integer multiplication, two implementations of the al-
gorithm are available, which can be selected by assigning either pjclSqr Long

or pjclSqr Karatsuba to the global variable pjclSqr.
Both implementations expect the parameter x to be a big integer with

mathematical value x and return the big integer representing x2. There is
a Karatsuba squaring threshold analogous to the Karatsuba multiplication
threshold. An optimal value of this threshold should be estimated using the
tool described below in Section 7 and assigned to pjclKaratsubaThresholdSqr,
replacing the default, before using pjclSqr Karatsuba.

6.5.15 function pjclShortShiftLeft(x,k)

As discussed above in Section 5.2, “shifting left” a big integer means shifting
it towards its most significant end, i.e. multiplying it by a power of 2. For
performance reasons, pjclShortShiftLeft operates by side-effect, modify-
ing its first argument and returning no result; see pjclMultByPowerOf2 for
an alternative without side-effect.

The parameter x is expected to be a big integer, possibly negative, with
mathematical value x. The parameter k is expected to be a JavaScript
number whose mathematical value k is a nonnegative integer in the range
0 ≤ k < β = 24. The function operates by side-effect, computing the big
integer representing x · 2k and assigning it to x.

c© Copyright 2018 Pomcor

PJCL Version 0.9 20

Although at the API level the parameter x is expected to be a big in-
teger, which must not have leading zero limbs, internally, in pjclDiv, the
function pjclShortShiftLeft is used with a first argument that may have
leading zero limbs. In pjcl-withArgChecking the argument checking code
of pjclShortShiftLeft throws an exception if x has leading zero limbs,
which pjclDiv catches and cancels.

6.5.16 function pjclShiftLeft(x,k)

function pjclMultByPowerOf2(x,k)

As discussed above in Section 5.2, “shifting left” a big integer means shifting
it towards its most significant end, i.e. multiplying it by a power of 2. For per-
formance reasons, pjclShiftLeft operates by side-effect, modifying its first
argument and returning no result; on the other hand pjclMultByPowerOf2

is a wrapper that avoids the side-effect, at the cost of a small performance
penalty, by making a copy of its first argument before modifying it and re-
turning the result.

The parameter x is expected to be a big integer, possibly negative. The
parameter k is expected to be a JavaScript number whose mathematical
value k is a nonnegative integer. The function returns the big integer rep-
resenting x · 2k. The functions compute the big integer representing x · 2k;
pjclShiftLeft assigns this big integer to its first argument, while
pjclMultByPowerOf2 returns the result without modifying its arguments.

6.5.17 function pjclShortShiftRight(x,k)

This function is analogous to pjclShortShiftLeft, shifting towards the least
significant rather than the most significant end. It differs from pjclShortShiftLeft

in that x is expected to be nonnegative. Without argument checking, the
negative property is ignored and x may become ill-formed if its negative
property is set and it becomes the empty array as a result of the shift.

6.5.18 function pjclShiftRight(x,k)

function pjclDivByPowerOf2(x,k)

These functions are analogous to pjclShiftLeft and pjclMultByPowerOf2,
but like pjclShortShiftRight they expect x to be nonnegative. They shift
towards the least significant end, thus dividing by a power of 2, i.e. computing
bx/2kc.

c© Copyright 2018 Pomcor

PJCL Version 0.9 21

6.5.19 function pjclDiv(x,y)

The parameter x and y are expected to be big integers, with mathematical
values x and y, whose negative properties, if present, are ignored; y must
not be zero. The function divides |x| by |y| using Algorithm 14.20 of [2] and
returns an object with properties quotient and remainder whose values are
big integer representations of the quotient and the remainder.

6.5.20 function pjclDivRel(x,y)

The parameter x is expected to be a (relative) big integer with mathematical
value x, the parameter y a positive big integer with mathematical value y.
The function returns an object with properties quotient and remainder

whose values are big integer representations of the quotient and remainder
of the division of x by y. The mathematical values q and r of the quotient

and remainder properties are defined as follows: q is the largest (relative)
integer such that qy <= x, and r = x− qy.

6.5.21 function pjclShortDiv(x,y)

The parameter x is expected to be a big integer, with mathematical value x,
whose negative property, if any, is ignored. The parameter y is expected to
be a nonzero limb, i.e. a JavaScript number whose mathematical value y is
an integer in the range 0 < y < B = 224. Returns an object with a property
quotient whose value is the big integer representation of the quotient of the
division of |x| by y, and a property remainder whose value is a JavaScript
number representing the remainder.

This function relies on the fact that the JavaScript floating-point % op-
erator is not the same as the “remainder” operation defined by IEEE 754, as
explained in [15, §11.5.3].

6.5.22 function pjclMod(x,m)

The parameter x is expected to be a big integer with mathematical value
x, the parameter m a positive big integer with mathematical value m. The
function returns the big integer representing x mod m.

c© Copyright 2018 Pomcor

PJCL Version 0.9 22

6.5.23 function pjclTruncate(x,t)

function pjclModPowerOf2(x,t)

The parameter x is expected to be a nonnegative big integer, with mathemat-
ical value x and the parameter t a JavaScript number whose mathematical
value t is a positive integer. Both functions compute the big integer rep-
resenting x mod 2t. For performance reasons, pjclTruncate operates by
side-effect, modifying its first argument and returning no result; on the other
hand pjclModPowerOf2 is a wrapper that avoids the side-effect, at the cost
of a small performance penalty, by making a copy of its first argument before
modifying it and returning the result.

Please note that pjclModPowerOf2 can only be used to reduce a nonneg-
ative integer. You may use pjclMod to reduce relative integers, at a much
higher computational cost.

6.5.24 function pjclModLimb(x,m)

The parameter x is expected to be a nonnegative big integer with mathemat-
ical value x, the parameter m a JavaScript number whose mathematical value
m is a positive integer less than B, i.e. less than 224. Returns a JavaScript
number whose mathematical value is x mod m.

6.5.25 function pjclEGCD(a,b)

function pjclEGCD(a,b,computeBothBezoutCoeffs)

The parameters a and b are expected to be nonnegative big integers with
mathematical values a and b. If the function is called with three arguments
and computeBothBezoutCoeffs is or type-converts to true, the function
implements the Extended Euclidean Algorithm and returns an object with
properties gcd, x and y whose mathematical values are d, x and y, where d
is the greatest common divisor of a and b, and (x, y) is a pair of integers,
called Bézout coefficients, that satisfy d = ax + by. If only two arguments
are passed to the function, y is not computed and the object returned by the
function does not have y property.

6.5.26 function pjclModInv(x,m)

The parameter x is expected to be a big integer with mathematical value
x, the parameter m a positive big integer with mathematical value m. The

c© Copyright 2018 Pomcor

PJCL Version 0.9 23

function returns undefined if x and m are not coprime. Otherwise it returns
a big integer whose mathematical value is the inverse of x modulo m.

6.6 Montgomery reduction

Our implementation of Montgomery reduction is based on Section 14.3.2 of
the Menezes et al. Handbook of Applied Cryptography [2]. More specifically,
it is based on the optimzed Algorithm 14.32, further optimized and adapted
for use with our big integer representation.

In this Section 6.6 we use the same mathematical variables as in algorithm
14.32, except that we write B instead of b, since B = 2β = 224 is the base of
our representation of big integers, as defined in Section 5.2.

Thus m is the modulus, which must be coprime with B, i.e. odd; n is the
number of limbs of the big integer representation (mn−1 . . .m1,m0)B of m;
R = Bn; m′ = −m−1 mod B; and T is the nonnegative integer to be reduced,
which must be less than mR and therefore have a big integer representation
with no more than 2n limbs.

In our implementation, the big integer representation of m must have at
least two limbs. This is not required by algorithm 14.32, but it it is required
by our further optimization of the algorithm. For one-limb moduli you may
use ordinary modular reduction as provided by pjclModLimb.

Montgomery reduction is much faster than ordinary modular reduction,
but instead of computing T mod m, it computes TR−1 mod m. It is intended
to be used in an algorithm that requires many multiplications (and/or squar-
ings), such as modular exponentiation. All quantities in the algorithm are
modified to incorporate the factor R. Instead of multiplying x by y to obtain
z = xy and then reducing z modulo m, the modified algorighm multiplies
xR by yR to obtain (xR)(yR), then uses Montgomery reduction to compute
(xR)(yR)R−1 = xyR = zR. zR can then be further multiplied by uR and
Montgomery-reduced to produce vR with v = zu, and so on.

Our implementation includes a function pjclPreMontRed that precom-
putes m′ and a function pjclMontRed that computes the Montgomery re-
duction of T modulo m using m′.

6.6.1 function pjclPreMontRed(m)

The parameter m is expected to be an odd positive big integer with at least
two limbs, whose mathematical value is the modulus m. The function returns

c© Copyright 2018 Pomcor

PJCL Version 0.9 24

a JavaScript number whose mathematical value is m′ = −m−1 mod B.

6.6.2 function pjclMontRed(t,m,m1)

The parameter t is expected to be a nonnegative big integer, the param-
eter m an odd big integer having at least two limbs, and m1 a JavaScript
number whose mathematical value is m′ = −m−1 mod B, as returned by
pjclPreMontRed(m). The mathematical values T of t and m of m must sat-
isfy T < mR with R = Bn, where n is the number of limbs of the modulus.
The function returns a big integer with mathematical value TR−1 mod m.

6.7 Generic sliding window exponentiation in a monoid

6.7.1 function pjclOptimalWindowSize(l)

function pjclPreExp(slidingWindowSize,context)

function pjclExp(exponent,context)

The function pjclExp(exponent,context) implements generic sliding win-
dow exponentiation in some monoid M using a slightly optimized version of
Algorithm 14.85 of [2]. In this section we refer to the monoid operation as
multiplication, but pjclExp can be used, and we do use it in this version of
the library, to implement scalar multiplication in monoids where the oper-
ation is usually written as addition;1 pjclExp is used by pjclPlainExp to
implement exponentiation in N, by pjclModExp to implement modular expo-
nentiation with ordinary reduction, by pjclMontExp to implement modular
exponentiation with Montgomery reduction, and, as desribed below in Sec-
tion 6.20.13, by pjclScalarMult to implement scalar multiplication in the
group of points of an en elliptic curve. (In a future version of the library
we plan to implement a sliding window exponentiation function further opti-
mized for groups by using nonadjacent form (NAF) to represent the exponent,
and use it to implement pjclScalarMult, taking adantage of the fact that
the points of an elliptic curve form a group and point subtraction can be
implemented efficiently.)

The parameter exponent of pcjlExp is expected to be a big integer
whose mathematical value is a positive integer e. (We exclude the case

1“Scalar multiplication” and “exponentiation” are alternative names given to the same
external operation in a monoid, the term “scalar multiplication” being used when the
operation is called “addition” while the term “exponentiation is used when the operation
is called “multiplication”.

c© Copyright 2018 Pomcor

PJCL Version 0.9 25

e = 0, where the function would return the unit of the monoid, but the func-
tions that call pjclExp, i.e. pjclPlainExp, pjclModExp, pjclMontExp and
pjclScalarMult, take care of this special case). The parameter context

is expected to be an object with a property context.g specifying the base
g ∈ M of the exponentiation, whose encoding depends on the nature of M .
The function returns an encoding of the element ge of M .

The parameter context must also have a method context.mult imple-
menting the monoid operation, a method context.sqr such that context.
sqr(x) produces the same result as context.mult(x,x), and a property
context.preComputed whose value must be an array providing the results of
the precomputation that takes place at step 1 of Algorithm 14.85. It may also
have additional properties specific to a particular monoid, such as context.m,
whose value is the modulus m, when pjclExp is called by �pjclModExp or
pjclMontExp, and context.m1, whose value is m′ = −m−1 mod B where
B = 2β = 224 when it is called by pjclMontExp.

The function pjclPreExp(slidingWindowSize,context) is a side-effect
function that performs the precomputation of step 1 of Algorithm 14.85.
The parameter slidingWindowSize is expected to be a Javascript number
whose mathematical value is a positive integer, called k in the algorithm,
to be used as the window size. The parameter context is expected to be
an object with the above-mentioned properties and methods context.g,
context.mult and context.sqr. The function creates and fills the array
context.preComputed. It does not return a result.

The function pjclOptimalWindowSize(l) gives the optimal window size
for a given exponent size. The parameter l is expected to be a JavaScript
number whose mathematical value is a positive integer that should be the
approximate bitlength of the exponent. The function retuns a JavaScript
number whose mathematical value is the optimal window size.

6.8 Exponentiation in N
6.8.1 function pjclPlainExp(g,x)

The function pjclPlainExp(g,x) performs exponentiation in the monoid
(N,+). The parameters g and x are expected to be nonnegative big integers
with mathematical values g and x. The function returns the big integer
representation of gx.

Notice that the result of this function will be unmanageable if the ex-

c© Copyright 2018 Pomcor

PJCL Version 0.9 26

ponent has more than one limb: if g and x have big integer representations
[2] and [0,1], with mathematical values g = 2 and x = 224, then the result
of the function should have the mathematical value 2224 , whose big integer
representation has 3,659,183 limbs.

6.9 Modular exponentiation with ordinary reduction

6.9.1 function pjclModExp(g,x,m)

The function pjclModExp(g,x,m) performs exponentiation in the monoid
(Zm,×), where m is the mathematical value of the parameter m, and Z is the
set of integers modulo m. The parameters g, x and m are expected to be big
integers with mathematical values g ≥ 0, x ≥ 0 and m ≥ 1. The function
returns the big integer representation of gx mod m.

Although pjclModExp does not produce unmanageable results like pjclModExp,
it is too slow to be used in most cryptographic applications.

6.10 Modular exponentiation with Montgomery reduc-
tion

6.10.1 function pjclMontExp(g,x,m)

The function pjclMontExp(g,x,m) produces the same result as pjclModExp(
g,x,m), but using Montgomery reduction rather than ordinary reduction,
which makes it fast enough to be used in cryptographic applications.

The parameters g and x are expected to be nonnegative big integers,
with mathematical values g and x. The parameter m is expected to be a
nonnegative big integer with n ≥ 2 limbs whose mathematical value m is
odd.

Recall that B = 2β = 224 was defined in Section 6.6 as the base of
the big integer representation. Let R = Bn. Using Montgomery reduction
amounts to performing the exponentiation in the isomorphic image of the
monoid (Zm,×) by the function φR that maps u ∈ Zm to uR. If we call ∗R
the operator of the image monoid, the product uR ∗R vR of two elements of
φR(Zm) is uvR mod m, which is computed in two steps by first multiplying
uR and vR to obtain uvR2 then performing a Montgomery reduction to
obtain (uvR2)R−1 mod m = uvR mod m.

c© Copyright 2018 Pomcor

PJCL Version 0.9 27

pjclMontExp assigns the big integer representation of gR to context.g

and uses pjclExp to raise gR to x in the image monoid by performing multi-
plications followed by Montgomery reduction using pjclContextualMontMult
and squarings followed by Montgomery reduction using pjclContextualMontSqr.
The result gxR mod m is converted to gx mod m by one final Montgomery
reduction.

6.11 Generic double exponentiation in a commutative
monoid

6.11.1 function pjclOptimalWindowSize2(l)

function pjclPreExp2(slidingWindowSize,context)

function pjclExp2(exponentG,exponentY,context)

These functions are like those of Section 6.7.1, with the difference that
pjclExp2 computes the product of two exponentials, with exponents exponentG
and exponentY and corresponding bases context.g and context.y, using
“Shamir’s trick” of combining the squarings of the two exponentiations. Ei-
ther exponent, but not both, may be (the big integer) zero. In this version of
the library, pjclExp2 is used by pjclMontExp2 and pjclScalarMult2. The
array context.preComputed computed by pjclPreExp2 as a side-effect is
doubly indexed, and pjclOptimalWindowSize2 computes the optimal win-
dow size for double exponentiation, taking as input the bit length of the
longest of the two exponents.

6.12 Double exponentiation with Montgomery reduc-
tion

6.12.1 function pjclMontExp2(g,y,exponentG,exponentY,m)

The function pjclMontExp2(g,y,exponentG,exponentY,m) produces the same
result as

pjclMod(pjclMult(pjclMontExp(g,exponentG,m),pjclMontExp(y,exponentY,m)),m)

but substantially faster, using pjclExp2.

c© Copyright 2018 Pomcor

PJCL Version 0.9 28

6.13 Hash functions and message authentication codes
(SHA, HMAC)

6.13.1 function pjclSHA256(bitArray)

The function pjclSHA256 takes as input a sequence of bits encoded as a bit
array and returns a bit array that encodes the result of applying the function
SHA-256 of [16] to the input.

6.13.2 function pjclSHA384(bitArray)

The function pjclSHA384 takes as input a sequence of bits encoded as a bit
array and returns a bit array that encodes the result of applying the function
SHA-384 of [16] to the input.

6.13.3 function pjclHMAC SHA256(key,text)

The function pjclHMAC SHA256 implements the HMAC algorithm of [7] in
conjunction with the hash function SHA-256 of [16]. The parameters key

and text are expected to be bit arrays, and the result is a bit array.

6.13.4 function pjclHMAC SHA384(key,text)

The function pjclHMAC SHA384 performs an HMAC computation using the
hash function SHA-384 instead of SHA-256.

6.13.5 function pjclHMAC SHA256PreComputeKeyHashes(key)

function pjclHMAC SHA256WithPreCompute(

iKeyHash,oKeyHash,text)

An HMAC computation consists of two hash computations, and the first
block of each computation does not depend on the text. When you need
to perform many HMAC computations with the same key, you can use
pjclHMAC SHA256PreComputeKeyHashes(key) to precompute the hashes of
those two blocks. The result is an object with properties iKeyHash and
oKeyHash, whose values you can pass as arguments to
pjclHMAC SHA256WithPreCompute(iKeyHash,oKeyHash,text) to obtain the
value of the HMAC computation for each text.

c© Copyright 2018 Pomcor

PJCL Version 0.9 29

6.13.6 function pjclHMAC SHA384PreComputeKeyHashes(key)

function pjclHMAC SHA384WithPreCompute(

iKeyHash,oKeyHash,text)

The functions pjclHMAC SHA384PreComputeKeyHashes and
pjclHMAC SHA384WithPreCompute perform a split HMAC precomputation
like pjclHMAC SHA256PreComputeKeyHashes and
pjclHMAC SHA256WithPreCompute using the hash function SHA-384 instead
of SHA-256.

6.14 Statistically random data vs. cryptographically
random data

We make a distinction between statistically random d[ata and cryptograph-
ically random data. We say that data produced by a data source is statis-
tically random if it is uniformly distributed over a given range but may be
predictable from data previously generated by the source. By contrast we
say that data produced by a data source is cryptographically random if it is
uniformly distributed and unpredictable from data previously generated by
the source.

We use the built-in JavaScript function Math.random to generate statisti-
cally random data, and a pseudo-random bit generator implemented as speci-
fied in [8, § 10.1.1] to generate cryptographically random data. Math.random
is well suited for generating statistically random data because its output is
specified as having an approximately uniform distribution [15, 15.8.2.14]. It
must not be used to generate cryptographically random data, or to seed or
reseed the random bit generator, because its output may be predictable.

6.15 Random bit generation (RBG) vs. random num-
ber generation (RNG)

We make a distinction between random bit generation and random number
generation. Generating l random bits is equivalent to generating a random
number n in the range 0 ≤ n < 2l. We use the term random bit generation
(RBG) to refer to the generation of random bits or to the generation of a
number in such a range. On the other hand we use the term random number
generation (RNG) to refer to the generation of a random number n in a range
a ≤ n < b, where a may not be zero and b− a may not be a power of two.

c© Copyright 2018 Pomcor

PJCL Version 0.9 30

6.16 Generation of statistically random data

6.16.1 function pjclStRndLimb()

The function pjclStRndLimb takes no arguments and returns a statistically
random JavaScript number that can serve as big integer limb, i.e. whose
mathematical value n is an integer in the range 0 ≤ n < B = 2β = 224.

6.16.2 function pjclStRndBigInt(n)

The parameter n is expected to be a JavaScript number whose mathematical
value is a nonnegative number n. The function returns a statistically random
big integer with up to n limbs, i.e. whose mathematical value x is uniformly
distributed in the range 0 ≤ x < Bn.

6.16.3 function pjclStRndHex(n)

The parameter n is expected to be a JavaScript number whose mathematical
value is a nonegative number n. The function returns a hex string consisting
of n statistically random hex digits. Whether hex digits greater than 9 are
in upper or lower case depends on the implementation of the toString(16)

method by the JavaScript engine.

6.16.4 function pjclStatisticalRNG(a,b)

The parameters a and b are expected to be big integers with mathematical
values a and b such that 0 ≤ a < b. The function returns a statistically
random big integer whose mathematical value x is uniformly distributed in
the range a ≤ x < b.

6.17 Cryptographic random number generation

The functions in this section implement a deterministic random bit generator
(DRBG) based on hash functions. More specifically, they implement the
Hash DRBG mechanism of of [8, § 10.1.1], using the hash functions SHA-
256 for 128 bits of security strength and SHA-384 for 192 bits of security
strength.

c© Copyright 2018 Pomcor

PJCL Version 0.9 31

6.17.1 function pjclRBG128Instantiate(

rbgStateStorage,entropy)

function pjclRBG128Instantiate(

rbgStateStorage,entropy,nonce)

This function instantiates the DRBG based on SHA-256 specified in Section
10.1.1.2 of [8]. No personalization string is used.

The parameter rbgStateStorage may be a JavaScript object or, in a
JavaScript runtime environment that implements the W3C Web Storage
specification [17], a storage object, i.e. either localStorage or sessionStorage.

The parameter entropy is expected to be an array of at least 128 bits.
An exception is thrown otherwise by both the argument checking and the
production versions of the library. However this is only a sanity check, since
there is no way for the function to know if the value of the parameter has
full entropy. (A bit string is said to have full entropy if its entropy is equal
to its length.)

Do not use Math.random to generate the value of the entropy parameter.
In a JavaScript runtime environment that implements the Web Cryptography
API you may use crypto.getRandomValues() to generate entropy; notice,
however, that the Web Cryptography API does not explicitly guarantee that
the output of crypto.getRandomValue() has full entropy. Examples of how
to do this are provided by two functions pjclBrowserEntropy128Bits and
pjclBrowserEntropy192Bits, which can be found in the file browserEntropy.js.
The first of them is used for DSA performance testing. Notice, however, that
the Web Cryptography API does not explicitly guarantee that the output
of crypto.getRandomValue() has full entropy. In a JavaScript runtime en-
vironment that provides access to an underlying Unix-like OS you may use
/dev/random, which is supposed to provide full entropy but may block if not
enough entropy is available, or /dev/urandom, which does not block but is
not guaranteed to provide full entropy. A web application may want to down-
load entropy from the back-end to the front-end if a source of full entropy is
available on the back-end.

The parameter nonce is also expected to be a bit array, but it is optional.
(The use of this input is motivated in Section 8.6.7 of [8].) If no value is
supplied, the function uses a value derived from Data.getTime().

The function instantiates the DRBG by storing its initial internal state
in three properties of rbgStateStorage, rbgStateStorage.pjclRBG128 v,
rbgStateStorage.pjclRBG128 c and

c© Copyright 2018 Pomcor

PJCL Version 0.9 32

rbgStateStorage.pjclRBG128 reseed counter. The function does not re-
turn a value.

6.17.2 function pjclRBG128Reseed(

rbgStateStorage, entropy)

This function reseeds a DRBG based on SHA-256 as specified in Section
10.1.1.3 of [8]. No additional input is used.

The parameter rbgStateStorage is expected to be a JavaScript object
or storage object (localStorage or sessionStorage) containing the inter-
nal state of a DRBG in three properties rbgStateStorage.pjclRBG128 v,
rbgStateStorage.pjclRBG128 c and
rbgStateStorage.pjclRBG128 reseed counter.

As in pjclRBG128Instantiate, the parameter entropy is expected to
be an array of at least 128 bits, and an exception is thrown otherwise by
both the argument checking and the production versions of the library. The
function updates the internal state of the DRBG at rbgStateStorage and
returns no value.

6.17.3 function pjclRBG128InstantiateOrReseed(

rbgStateStorage,entropy,nonce)

This is a convenience function that uses entropy and nonce to initialize a
DRBG at rbgStateStorage unless one already exists there, in which case
the existing DRBG is reseeded using both entropy and nonce as entropy
inputs. The parameters entropy and nonce are expected to be bit arrays.

6.17.4 function pjclRBG128Gen(rbgStateStorage, bitLength)

This function generates bits from a DRBG based on SHA-256 as specicified
in Section 10.1.1.4 of [8].

The parameter rbgStateStorage is expected to be a JavaScript object
or storage object (localStorage or sessionStorage) containing the inter-
nal state of a DRBG in three properties rbgStateStorage.pjclRBG128 v,
rbgStateStorage.pjclRBG128 c and
rbgStateStorage.pjclRBG128 reseed counter.

The bitLength parameter is expected to be a JavaScript number speci-
fying the number of bits to be returned, whose mathematical value must be a

c© Copyright 2018 Pomcor

PJCL Version 0.9 33

positive integer no greater than 219 according to Table 2 of [8]. The function
throws an exception otherwise.

The function returns a bit array with the specified number of bits.

6.17.5 function pjclCryptoRNG128(rbgStateStorage,a,b)

The parameter rbgStateStorage is expected to be a JavaScript object or
storage object (localStorage or sessionStorage) containing the inter-
nal state of a DRBG in three properties rbgStateStorage.pjclRBG128 v,
rbgStateStorage.pjclRBG128 c and
rbgStateStorage.pjclRBG128 reseed counter. The parameters a and b

are expected to be big integers with mathematical values a and b such that
0 ≤ a < b. The function returns a cryptographically random big integer
whose mathematical value x is uniformly distributed in the range a ≤ x < b.
To ensure a quasi-uniform distribution, the function uses the “extra ran-
dom bits” method used in Section B.1.1 of [4] for key pair generation and in
Section B.2.1 for per-message secret number generation.

6.17.6 function pjclRBG192Instantiate(

rbgStateStorage,entropy,nonce)

function pjclRBG192Reseed(

rbgStateStorage,entropy)

function pjclRBG192InstantiateOrReseed(

rbgStateStorage,entropy,nonce)

function pjclRBG192Gen(

rbgStateStorage,bitLength)

function pjclCryptoRNG192(rbgStateStorage,a,b)

The functions pjclRBG192* and pjclCryptoRNG192 are like the correspond-
ing functions pjclRBG128* and pjclCryptoRNG128 except that they use
SHA-384 as the hash function and accordingly provide 192 bits of security
strength. The value of the entropy parameter in pjclRBG192Instantiate,
pjclRBG192Reseed and pjclRBG192InstantiateOrReseed must be a bit ar-
ray of length at least 192.

c© Copyright 2018 Pomcor

PJCL Version 0.9 34

6.18 Primality testing

6.18.1 function pjclIsPrime(n,t)

function pjclMillerRabin(n,t)

The function pjclIsPrime performs a probabilistic primality test on a big
integer n, using the Miller-Rabin test if the big integer has more than one
limb, and checking for divisibility by a 12-bit prime if it has only one limb.
This is one place in the library where the number of bits per limb is hardwired.

The function pjclMillerRabin, which is called by pjclIsPrime, im-
plements the Miller-Rabin probabilistic primality test as described in Algo-
rithm 4.42 of [2] with a number of repetitions specified by the parameter
t. In cryptographic applications the number to be tested is usually crypto-
graphically random, but the potential witnesses to compositness only need
to be statistically random, so the function pjclIsPrime uses the function
pjclStatisticalRNG to generate witnesses.

In both functions the parameter n is expected to be a nonnegative integer
and the parameter t a JavaScript number whose mathematical value is a
positive integer. In pjclMillerRabin the parameter n must have two limbs
and be odd.

6.19 DSA

This version of the library provides an implementation of DSA [4] with only
one security strength, 128 bits, which requires a 256-bit private key and a
3072-bit public key according to Table 2 of [9]. Higher security strengths are
deemed impractical by NIST according to Table 2.

6.19.1 function pjclDSAGenPQ(domainParameterSeed)

function pjclDSAGenPQ()

The function pjclDSAGenPQ generates probable primes p and q of bit lengths
L = 3072 and N = 256 respectively, with q dividing p − 1, as specified in
Section A.1.1.2 of [4] using SHA-256 as the hash function, Miller-Rabin with
64 repetitions as the probabilistic primality test, and a seed length of 256
bits.

The algorithm of A.1.1.2 is non-deterministic: a domain parameter seed
with the specified seed length is chosen at step 5, then a deterministic attempt
at generating a probable prime q is made, going back to step 5 if the attempt

c© Copyright 2018 Pomcor

PJCL Version 0.9 35

fails. Once an attempt at generating q succeeds, a deterministic attempt at
generating a probable prime p such that q divides p− 1 is made, going back
to step 5 if the attempt fails. The algorithm returns p, q, the last domain
parameter seed chosen at step 5 and a counter. The returned values can be
used in algorithm A.1.1.3 to validate prime numbers p and q if generated by a
non-trusted party. We may provide an implementation of algorithm A.1.1.3
in a future verion of the library.

The optional parameter domainParameterSeed is expected to be a bit
array, which can be chosen arbitrarily and is used as the initial domain
parameter seed of step 5 of the NIST algorithm. If not supplied, a bit array
with 256 statistically random bits is used.

The function returns an object with properties p, q, domainParameterSeed
and counter corresponding to the values returned by Algorithm A.1.1.2,
p and q being big integers, domainParameterSeed being a bit array, and
counter being a JavaScript number.

6.19.2 function pjclDSAGenG(

p,q,domainParameterSeed,index)

The function pjclDSAGenG produces a big integer whose value is the genera-
tor g as specified in Section A.2.3 of [4] using SHA-256 as the hash function.
The values of the parameters p, q, domainParameterSeed must be the cor-
responding properties of the object returned by pjclDSAGenPQ, and index

must be a bit array of length 8, which may be chosen arbitrarily. With argu-
ment checking, the function verifies that p and q are well-formed nonnegative
big integers with bit lengths are 3072 and 256 and domainParameterSeed

and index are bit arrays of lengths 256 and 8 respectively.

6.19.3 function pjclDSAGenPQG(

domainParameterSeed,index)

Calls pjclDSAGenPQ then pjclDSAGenG. Returns an object with the proper-
ties p, q, domainParameterSeed and counter returned by pjclDSAGenPQ,
and a property g whose value is the big integer returned by pjclDSAGenG.

c© Copyright 2018 Pomcor

PJCL Version 0.9 36

6.19.4 function pjclDSAGenKeyPair(rbgStateStorage,p,q,g)

function pjclDSAGenKeyPair(rbgStateStorage)

Generates a DSA key pair (x, y) with 128 bits of security strength, i.e. with
a 256-bit private key x and a 3072-bit public key y, as specified in Section
B.1.1 of [4].

The parameter rbgStateStorage is expected to be a JavaScript object
or storage object (localStorage or sessionStorage) containing the inter-
nal state of a DRBG in three properties rbgStateStorage.pjclRBG128 v,
rbgStateStorage.pjclRBG128 c and
rbgStateStorage.pjclRBG128 reseed counter.

The optional parameters p, q and g are expected to be domain parameters
such as returned by pjclDSAGenPQG. With argument checking, besides veri-
fying that p, q and g are well-formed nonnegative big integers, the function
verifies that the bit lengths of p and q are 3072 and 256 respectively.

The function returns an object with properties x and y, whose values are
the big integer representations of x and y.

6.19.5 function pjclDSASign(rbgStateStorage,p,q,g,x,msg)

The function pjclDSASign computes a DSA signature with 128 bits of secu-
rity strength on the parameter msg as described in Section 4.6 of [4].

The internal variable k is the per-message secret, or nonce, whose value
k is generated cryptographically at random using pjclCryptoRNG128, which
provides 128-bits of security strength assuming that it is seeded with 128 bits
of entropy. The function should not be modified to take k as an argument;
k should not be precomputed, because that may facilitate a timing attack,
as discusssed in Section ??; and k must be treated as a secret, because the
private key can be computed from k and the signature.

The parameter rbgStateStorage is expected to be a JavaScript object
or storage object (localStorage or sessionStorage) containing the inter-
nal state of a DRBG in three properties rbgStateStorage.pjclRBG128 v,
rbgStateStorage.pjclRBG128 c and
rbgStateStorage.pjclRBG128 reseed counter. The parameters p, q and g

are expected to be nonnegative big integers, representing the domain parame-
ters as generated by pjclDSAGenPQG. The parameter x is expected to be a big
integer, representing the private key, as generated by pjclDSAGenKeyPair.
The parameter msg is expected to be a bit array, which is hashed using

c© Copyright 2018 Pomcor

PJCL Version 0.9 37

SHA-256.
The function returns an object with properties r and s whose values are

big integer representations of the components of the signature (r, s).

6.19.6 function pjclDSAVerify(p,q,g,y,msg,r,s)

The function pjclDSAVerify verifies a signature as described in Section 4.7
of [4]. The parameters p, q and g are expected to be big integers, representing
the domain parameters. The parameter y is expected to be a big integer,
representing the public key. The parameter msg is expected to be a bit array
representing the message. The parameters r and s are expected to be big
integers, representing the components of the signature. The function returns
true if verification succeeds, false otherwise.

6.20 Elliptic curves

6.20.1 NIST curves

The Digital Signature Standard of NIST specifies five elliptic curves over
prime fields [4, § D.2]: P-192, P-224, P-256, P-384 and P-521. Descriptions
of these curves can also be found in [10, §10.2], [18] and [19]. This version
of the library implements ECDSA on curves P-256 and P-384. Other NIST
and non-NIST curves may be supported in future versions.

The term “Weierstrass equation” is defined with various degrees of gen-
erality. Here we shall use the term to refer to an equation of the form
y2 = x3 + ax + b over a field F , where a, b ∈ F are constants such that
4a3 + 27b2 6= 0. We shall refer to a curve with a Weierstrass equation as a
Weierstrass curve. Here we shall only be concerned with Weierstrass curves
over a prime field F = Fp.

NIST curves over prime fields have Weierstrass equations where the co-
efficient a is −3. An explanation of the motivation for choosing a = −3 can
be found in [11, § 2.6.2]. This version of the library hardcodes the fact that
a = −3.

The domain parameters for ECDSA on a Weierstrass curve over a prime
field Fp include, in addition to p, a, and b, the choice of a base point G. The
base point is a point of prime order n, i.e. a point that generates a subgroup of
order n of the group E(Fp) of points of the curve. By Lagrange’s theorem, n
divides the order #E(Fp) of (the group of points of) the curve. The quotient

c© Copyright 2018 Pomcor

PJCL Version 0.9 38

h = #E(Fp)/n, called the cofactor, is another domain parameter. In all the
NIST curves over prime fields the order of the curve is a prime number, and
therefore the cofactor is 1.

NIST [4, § D.2] suggests taking advantage of the fact that the primes p in
the five curves over prime fields are Generalized Mersenne Primes whose ex-
ponents are multiples of 32 in order to improve the performance of reduction
modulo p. However the suggested method is only suitable for big integer rep-
resentations with 32-bit limbs. But those primes are also Pseudo-Mersenne
Primes (see Section 6.20.7) and reduction modulo a Pseudo-Mersenne prime
can be performed using Algorithm 14.47 of [2] with about the same perfor-
mance improvement [20]. This is what the library does.

6.20.2 Affine vs. projective vs. Jacobian coordinates

(This section can be skipped without loss of continuity.)
An elliptic curve has a “point at infinity” that cannot be represented

in affine coordinates, but can be represented in projective coordinates or,
preferably for performance reasons, in Jacobian coordinates.

A point with affine coordinates (X, Y) in a two-dimensional space over
a field F has projective coordinates (x, y, z) such that z 6= 0, x = Xz and
y = Y z, which are the coordinates in the three-dimensional space of the
points of the line containing the origin and the point (X, Y, 1), excluding the
origin. On the other hand the projective coordinates of a point at infinity
are the coordinates of the points of a line that goes through the origin and
lies in the plane z = 0, again not including the origin itself, i.e. there are the
triples (x, y, z) such that z 6= 0 and ax + by = 0 for some a, b ∈ F not both
equal to zero.

A line with equation aX + bY + c = 0 in affine coordinates has equation
ax
z
+by

z
+c = 0, z 6= 0 in projective coordinates, which becomes ax+by+cz = 0

when the point at infinity of the line is included. The projective coordinates
of the point at infinity are obtained by making z = 0 but x, y 6= 0 in the
equation, i.e. they are the triples (x, y, 0) other than the origin (0, 0, 0) such
that ax+ by = 0.

An elliptic curve with affine equation Y 2 = X3 + aX + b has a projective
equation y2

z2
= x3

z3
+ax

z
+ b, z 6= 0, which becomes y2z = x3 +axz2 + bz3 when

completed with the point at infinity. The projective coordinates of the point
at infinity of the ellipical curve are obtained by making z = 0 but x, y 6= 0 in
the equation, i.e. they are the triples (x, y, 0) other than (0, 0, 0) such that

c© Copyright 2018 Pomcor

PJCL Version 0.9 39

x3 = 0, which implies x = 0.
A point with affine coordinates (X, Y) has Jacobian coordinates (x, y, z)

such that z 6= 0, x = Xz2 and y = Y z3, while a point at infinity in Jacobian
space has the set of coordinates (x, y, z) such that z 6= 0 and ax3 + by2 = 0
for some a, b ∈ F not both equal to zero.

An elliptic curve with affine equation Y 2 = X3 + aX + b has a projective
equation y2

z6
= x3

z6
+ a x

z2
+ b, z 6= 0, which becomes y2 = x3 + axz4 + bz6 when

completed with the point at infinity. The Jacobian coordinates of the point
at infinity of the elliptical curve are obtained by making z = 0 but x, y 6= 0
in the equation, i.e. they are the triples (x, y, 0) other than (0, 0, 0) such that
y2 = x3.

6.20.3 Jacobian representation of a point

In the library, a point of an elliptic curve is represented in Jacobian coordi-
nates, as a JavaScript object with three properties x, y and z whose values
are big integers representing the Jacobian coordinates x, y and z of the point.
We shall refer to such an object as a Jacobian representation of the point.

6.20.4 Affine representation as a special case of Jacobian repre-
sentation

If (x, y, 1) are Jacobian coordinates of a point P , then (x, y) are its affine co-
ordinates. In the library, the affine representation of a finite point is a special
case of a Jacobian representation where the value of the z property is the
big integer representation of 1, i.e. [1]. The function pjclJacobian2Affine

produces that affine representation.

6.20.5 Jacobian-affine optimization of point addition

The function pjclPointAdd takes as arguments two Jacobian representa-
tions, but checks if the second one is an affine representation and optimizes
that special case.

6.20.6 function pjclModSpecial(x,t,xc,m)

The function pjclModSpecial computes x mod m, where m = 2t − c, using
Algorithm 14.47 of [2], which is applicable when 0 < c < 2t−1 and efficient
when c is “small” compared to 2t−1, which we shall write c� 2t−1.

c© Copyright 2018 Pomcor

PJCL Version 0.9 40

The parameter x is expected to be a nonnegative big integer representing
the integer x to be reduced. The parameter t is expected to be a JavaScript
number representing the exponent t, which must be a positive integer. The
parameter xc, read “times c”, is expected to be a function that takes as its
only argument a positive big integer and returns a big integer representing
its product by c; different such functions can be written and optimized for
different values of c. The parameter m is expected to be a positive big integer
representing the modulus m = 2t − c. The function returns a big integer
representing x mod m.

In this version of the library, the function pjclModSpecial is used to
compute reductions modulo Pseudo-Mersenne primes. Note, however, that
pjclModSpecial can also be used in cases where m is not a prime.

6.20.7 Pseudo-Mersenne representation of a prime

A Pseudo-Mersenne Prime is a prime of the form p = 2t − c with 0 < c �
2t−1. Modular reduction by such a prime p can thus be sped up by using
pjclModSpecial instead of pjclMod. A Pseudo-Mersenne representation
of p is a triple of JavaScript values consisting of the JavaScript number
representing t, a function that multiplies a big integer by c, and the big
integer representation of p suitable to be passed as second, third and fourth
arguments to pjclModSpecial.

6.20.8 var pjclCurve P256

The value of the global variable pjclCurve P256 is an object whose proper-
ties describe the ECDSA domain parameters for NIST curve P-256, which is
the curve with equation

y2 = x3 − 3x2 + b

over prime field Fp, where2

p = 2256 − 2224 + 2192 + 296 − 1

and b has the big integer representation shown in the code as the value of
the property b. The prime p can be written p = 2t − c with

c = 2224 − 2192 − 296 + 1

2A typo in the value of p has been fixed after release. The error was only in the
documentation. The code was correct.

c© Copyright 2018 Pomcor

PJCL Version 0.9 41

The object has the following properties and methods:

• Three properties t, xc and p comprising the Pseudo-Mersenne repre-
sentation of the prime p.

• A property b whose value is a big integer representing the coefficient b
of the curve.

• A property n whose value is a big integer representing the order n of
the curve, which is also the order of the base point, since the cofactor
is 1.

• A property G whose value is the affine representation of the base point of
the curve. (Recall that, in the library, an affine representation is a spe-
cial case of a Jacobian representation, as explained in Section 6.20.4.)

6.20.9 var pjclCurve P384

The value of the global variable pjclCurve P384 is an object whose proper-
ties describe the ECDSA domain parameters for NIST curve P-384, which is
the curve with equation

y2 = x3 − 3x2 + b

over prime field Fp, where

p = 2384 − 2128 − 296 + 232 − 1

and b has the big integer presentation shown in the code as the value of the
property b. The prime p can be written p = 2t − c with

c = 2128 + 296 − 232 + 1

The object has properties and methods like those of pjclCurve P256.

6.20.10 function pjclJacobian2Affine(P,curve)

The parameter P is expected to be a Jacobian representation of a finite point
P over a prime field Fp. The parameter curve is expected to be an object
with properties t, xc and p that comprise a Pseudo-Mersenne representation
of the prime number p, such as one of the curve objects pjclCurve P256

or pjclCurve P384. The function returns the affine representation of P .
(Recall that, in the library, an affine representation is a special case of a
Jacobian representation, as explained in Section 6.20.4.)

c© Copyright 2018 Pomcor

PJCL Version 0.9 42

6.20.11 function pjclPointAdd(P1,P2,curve)

The parameters P1 and P2 are expected to be Jacobian representations of
two points P1 and P2 of a Weierstrass curve over a prime field Fp, and the
parameter curve is expected to be an object representing the curve. There
are two objects representing curves in the current version of the library:
pjclCurve P256 and pjclCurve P384.

If one of the points P1, P2 is the point at infinity of the curve, the function
represents the value of the parameter representing the other point. Other-
wise, if P1 6= P2, the function returns a Jacobian representation of the sum
P1 + P2 and if P1 = P2 the function calls pjclPointDouble(P1,curve) and
returns the result.

The function optimizes the case where P2 is given by an affine represen-
tation. (Recall that, in the library, an affine representation is a special case
of a Jacobian representation, as explained in Section 6.20.4.) This is useful
for scalar multiplication, as explained below.

6.20.12 function pjclPointDouble(P,curve)

The parameter P is expected to be the Jacobian representation of a point
P of a Weierstrass curve with coefficient a = −3, and the parameter curve

is expected to be an object representing the curve. There are two objects
representing curves in the current version of the library, pjclCurve P256 and
pjclCurve P384, both representing Weierstrass curves with coefficient a =
−3. The function returns a Jacobian representation of the point 2P = P+P .

6.20.13 function pjclScalarMult(P,k,curve)

The parameter P is expected to be a Jacobian representation of a point P
of a Weierstrass curve with coefficient a = −3, the parameter k is expected
to be a big integer whose mathematical value is a nonnegative integer k,
and the parameter curve is expected to be an object representing the curve.
There are two objects representing curves in the current version of the library,
pjclCurve P256 and pjclCurve P384, both representing Weierstrass curves
with coefficient a = −3.

The function returns a Jacobian representation of the point kP = P + · · ·+ P︸ ︷︷ ︸
k

,

c© Copyright 2018 Pomcor

PJCL Version 0.9 43

calculated using the sliding window algorithm implemented by pjclExp,3 af-
ter calling pjclPreExp to perform the precomputation. The call to pjclPreExp
is followed by a loop that calls pjclJacobian2Affine on all the precomputed
values, so that pjclPointAdd can take advantage of the Jacobian-affine op-
timization mentioned above in Section 6.20.5 when used in pjclExp.

In a future version of the library we plan to use NAF to further optimize
scalar multiplication. Different code will then be used for modular exponen-
tiation and scalar multiplication.

6.20.14 function pjclScalarMult2(P1,P2,u1,u2,curve)

The function pjclScalarMult2(P1,P2,u1,u2,curve) produces the same result
as

pjclPointAdd(pjclScalarMult(P1,u1,curve),pjclScalarMult(P2,u2,curve))

but substantially faster, by combining the point doublings of the two expo-
nentiations. It calls pjclPreExp2 and pjclExp2, and, like pjclScalarMult,
calls pjclJacobian2Affine on the values precomputed by pjclPreExp2 be-
fore using them in pjclExp2.

6.21 ECDSA

6.21.1 function pjclECDSA128GenKeyPair(rbgStateStorage,curve)

This function generates an ECDSA key pair with 128 bits of security strength.
It uses the DRBG based on SHA-256 described at the beginning of Section
6.17, which provides that strength. The parameter rbgStateStorage is ex-
pected to be an object containing the state of the DRBG. The parameter
curve is expected to be an object representing a Weierstrass curve with co-
efficient a = 3 providing that security strength, i.e., in this version of the
library, pjclCurve P256. The function returns an object containing two
properties d and Q representing the private and public keys respectively. The
value of the property d is a big integer whose mathematical value d is in the
range 1 ≤ d < n, where n is the order of the curve, i.e. the mathematical

3Recall that “scalar multiplication” and “exponentiation” are alternative names given
to the same external operation in a monoid, the term “scalar multiplication” being used
when the operation is called “addition” while the term “exponentiation is used when the
operation is called “multiplication”.

c© Copyright 2018 Pomcor

PJCL Version 0.9 44

value of curve.n. The value of the property Q is a Jacobian representation
of the point Q = dG where G is the base point of the curve, i.e. the value of
curve.G.

6.21.2 function pjclECDSA192GenKeyPair(rbgStateStorage,curve)

This function generates an ECDSA key pair with 192 bits of security strength,
using the DRBG based on SHA-384 described at the beginning of Section
6.17. It should be passed a curve that provides the same security strength,
i.e., pjclCurve P384. It is otherwise like pjclECDSA128GenKeyPair.

6.21.3 function pjclECDSAValidatePublicKey(Q,curve)

The function pjclECDSAValidatePublicKey(Q,curve) implements Algo-
rithm 6 of [10] for ECDSA public key validation after verifying that Q is
finite and converting it to its affine representation, except that it omits the
last step of the algorithm, which is unnecessary if the cofactor is 1, since in
that case (with the notations of Algorithm 6) n = #E(Fp), and therefore
nQ = O. This hardcodes the fact that the cofactor is 1 in NIST curves, and
will change in the future if the library supports curves with other cofactors.

6.21.4 function pjclECDSASign(curve,d,h,k)

THIS IS NOT AN API FUNCTION. DO NOT USE IT IN YOUR CODE.
This function computes an ECDSA signature on the hash h of a message,

using a nonce k passed as an argument. It is used by pjclECDSA128Sign and
pjclECDSA192Sign. Use one of those functions instead. Using this function
with a value of h that is not a cryptographic hash of a message would not be
secure, because an ECDSA signature is not secure against existential forgery
if the message is not hashed. Using this function with a precomputed value
of k might facilitate a timing attack: see Section ??.

6.21.5 function pjclECDSA128Sign(rbgStateStorage,curve,d,msg)

This function computes an ECDSA signature with 128 bits of security strength,
using a DRBG of that strength to generate the nonce. The parameter
rbgStateStorage is expected to be an object containing the internal state of
the DRBG. The parameter curve is expected to be an object representing a
Weiesrstrass curve with coefficient a = −3 that provides 128 bits of security

c© Copyright 2018 Pomcor

PJCL Version 0.9 45

strength, i.e., in this version of the library, pjclCurve P256. The parameter
d is expected to be a nonnegative big integer whose value is the private key.
The parameter msg is the message to be signed encoded as a bit array. The
function returns the signature as an object with two properties r and s whose
values are big integers.

6.21.6 function pjclECDSA192Sign(rbgStateStorage,curve,d,msg)

This function computes an ECDSA signature with 192 bits of security strength.
It must be passed a curve of that strength. The other parameters and the
result are as in pjclECDSA128Sign.

6.21.7 function pjclECDSAVerify(curve,Q,msg,r,s)

THIS IS NOT AN API FUNCTION. DO NOT USE IN YOUR OWN CODE.
Use pjclECDSA128Verify or pjclECDSA192Verify instead.

6.21.8 function pjclECDSA128Verify(curve,Q,msg,r,s)

This function verifies an ECDSA signature with 128 bits of security strength
computed using the curve referenced by the first parameter, returning true

if successful or false otherwise. In the current version of the library there is
one object representing a curve with 128 bits of security strength, pjclCurve P256,
which you may use as the first argument. The parameter Q is the public key.
The parameter msg is the signed message, encoded as a bit array. The pa-
rameters r and s are the properties of the signature object, as returned by
pjclECDSA128Sign or pjclECDSA192Sign.

6.21.9 function pjclECDSA192Verify(curve,Q,msg,r,s)

This function verifies an ECDSA signature with 192 bits of security strength
computed using the curve referenced by the first parameter, returning true

if successful or false otherwise. In the current version of the library there is
one object representing a curve with 192 bits of security strength, pjclCurve P384,
which you may use as the first argument. The parameter Q is the public key.
The parameter msg is the signed message, encoded as a bit array. The pa-
rameters r and s are the properties of the signature object, as returned by
pjclECDSA192Sign or pjclECDSA192Sign.

c© Copyright 2018 Pomcor

PJCL Version 0.9 46

7 Estimation of the Karatsuba thresholds

The directory KaratsubaThresholds contains a facility for estimating the
optimal Karatsuba thresholds for multiplication and squaring on a target
browser in a particular machine. JavaScript does not provide a means of mea-
suring the number of clock cycles used in a computation, so the estimates are
computed by measuring elapsed time, using the performance.now() method
of the User Timing API. Results may be highly inaccurate if there is other
activity on the machine where the browser is running.

To compute the optimal thresholds, simply visit the file
KaratsubaThresholds.html found in the KaratsubaThresholds directory
with the target browser. You may place the KaratsubaThresholds directory
in a server and access the file using an http or https URL, or in the same
machine where the browser is running and access the file using a file URL
or open the file with the browser. However the facility cannot be used with
Chrome if the file is local, and it cannot be used at all with Safari or Internet
Explorer because those browsers do not support the User Timing API in
web workers. There are no problems with Firefox or Edge. You must place
the file pjcl.js containing the PJCL library in the parent directory of the
KaratsubaThresholds directory.

The computation of the optimal thresholds is performed in the back-
ground by a web worker, which is launched automatically as soon as you
visit the file, It takes a couple of minutes and may be monitored on the
browser console. You may want to repeat the computation several times,
discard outliers that might be caused by other activity on the machine, and
average the retained results.

Once computed, the optimal thresholds should be assigned to the global
variables pjclKaratsubaThresholdMult and pjclKaratsubaThresholdSqr,
overriding the defaults. The default thresholds should be adequate for ordi-
nary laptops. They may be too high for some smartphones, and too low for
machines with very fast floating-point multiplication. Karatsuba is unlikely
to be useful for elliptic curve computations.

c© Copyright 2018 Pomcor

PJCL Version 0.9 47

8 Performance testing

8.1 Testing the performance of modular exponentia-
tion

The directory ModExpPerfTesting contains files that allow you to test the
performance of modular exponentiation on a browser using long multiplica-
tion or Karatsuba multiplication, and to compare it to the performance of
SJCL.

For the performance test, simply visit the file ModExpPerfTest.html

found in the pjcl/ModExpPerfTesting directory with a browser, and fol-
low the instructions in the file. As when measuring the optimal Karatsuba
thresholds, you may place the directory in a server and access the file using
an http or https URL, or in the same machine where the browser is running
and access the file using a file URL or open the file with the browser; but
the facility cannot be used with Chrome if the file is local, and it cannot
be used at all with Safari or Internet Explorer because those browsers do
not support the User Timing API in web workers. There are no problems
with Firefox or Edge. You must place the file pjcl.js containing the PJCL
library in the parent directory of the ModExpPerfTesting directory.

For the performance comparison, place in the same directory the pjcl

directory found in the PJCL zip archive downloaded from https://pomcor.

com/pjcl/pjcl-090.zip and the sjcl directory found in the SJCL zip
archive downloaded from https://github.com/bitwiseshiftleft/sjcl. (If
you are using Windows, be sure to move the pjcl and sjcl directories out of
the wrapping directories that Windows creates when unzipping the archives.)
The SJCL code used in the comparison is in the files sjcl/sjcl.js and
sjcl/bn/core.js.

Tables 1, 2 and 3 provide some measurements that we have made our-
selves, using the default Karatsuba thresholds, 150 limbs = 3600 bits for
multiplication and 175 limbs = 4200 for squaring. The SJCL performance
figures have been obtained with a version of the SJCL library downloaded
on November 15, 2017.

8.2 Testing the performance of DSA

The directory DSAPerfTesting contains files that allow you to test the per-
formance of DSA key pair generation, signature and verification.

c© Copyright 2018 Pomcor

https://pomcor.com/pjcl/pjcl-090.zip
https://pomcor.com/pjcl/pjcl-090.zip
https://github.com/bitwiseshiftleft/sjcl

PJCL Version 0.9 48

Machine: Surface with Intel Core i5-6300U CPU @ 2.40 GHz 2.50 GHz
Browser: Firefox 56.0.2 (64-bit)

Modulus Exponent Long Karatsuba SJCL
and base multiplication multiplication

and squaring and squaring
3072 bits 256 bits 22 ms 22 ms 186 ms

15360 bits 512 bits 819 ms 845 ms 7559 ms

Table 1: Modular exponentiation performance in Firefox

Machine: Surface with Intel Core i5-6300U CPU @ 2.40 GHz 2.50 GHz
Browser: Chrome 62.0.3202.89 (64-bit)

Modulus Exponent Long Karatsuba SJCL
and base multiplication multiplication

and squaring and squaring
3072 bits 256 bits 25 ms 27 ms 170 ms

15360 bits 512 bits 1098 ms 1005 ms 6756 ms

Table 2: Modular exponentiation performance in Chrome

Machine: Surface with Intel Core i5-6300U CPU @ 2.40 GHz 2.50 GHz
Browser: Edge 41.16299.15.0, EdgeHTML 16.16299

Modulus Exponent Long Karatsuba SJCL
and base multiplication multiplication

and squaring and squaring
3072 bits 256 bits 21 ms 22 ms 233 ms

15360 bits 512 bits 811 ms 763 ms 7009 ms

Table 3: Modular exponentiation performance in Edge

Key pair generation Signature Verification
Firefox 21 ms 21 ms 26 ms
Chrome 22 ms 26 ms 38 ms

Table 4: DSA performance

c© Copyright 2018 Pomcor

PJCL Version 0.9 49

To use this facility, visit the file DSAPerfTest.html found in the
DSAPerfTesting directory with a browser, and follow the instructions in the
file. As when measuring the optimal Karatsuba thresholds or the perfor-
mance of modular exponentiation, you may place the directory in a server
and access the file using an http or https URL, or in the same machine
where the browser is running and access the file using a file URL or open
the file with the browser. You must place the file pjcl.js containing the
PJCL library in the parent directory of the DSAPerfTesting directory.

The facility can be used in Firefox, and in Chrome if the directory
DSAPerfTesting is installed on a remote server. It cannot be used in Chrome
if the directory is local because Chrome does not assign a common web origin
to local files. It cannot be used in Edge because crypto.getRandomValues()
is not available in worker context. It cannot be used in Safari or Internet
Explorer because those browsers do not support the User Timing API in web
workers.

Table 4 shows some measurements that we have made ourselves using
Firefox and Chrome on a Windows machine with a processor identified as
Intel Core i5-6300U CPU @ 2.40 GHz 2.50 GHz. The version of Firefox is
56.0.2 (64-bit) and the version of Chrome is 62.0.3202.89 (64-bit).

c© Copyright 2018 Pomcor

PJCL Version 0.9 50

References

[1] Torbjörn Granlund and the GMP development Team. The GNU
Multiple Precision Arithmetic Library. Edition 6.1.2. 16 December
2016. https://gmplib.org/gmp-man-6.1.2.pdf.

[2] Alfred J. Menezes and Paul C. Van Oorschot and Scott A. Vanstone
and R. L. Rivest. Handbook of Applied Cryptography, 1997. Chapters
available online at http://cacr.uwaterloo.ca/hac/.

[3] Emily Stark, Mike Hamburg, and Dan Boneh. Stanford JavaScript
Crypto Library. https://github.com/bitwiseshiftleft/sjcl.

[4] NIST. Digital Signature Standard (DSS), July 2013. FIPS PUB 186-4,
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[5] NIST. Secure Hash Standard (SHS), August 2015. FIPS PUB 180-4,
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.

[6] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication, February 1997.
http://tools.ietf.org/html/rfc2104.

[7] NIST. The Keyed-Hash Message Authentication Code (HMAC), July
2008. FIPS PUB 198-1,
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-

1_final.pdf.

[8] Elaine Barker and John Kelsey. Recommendation for Random Number
Generation Using Deterministic Random Bit Generators, June 2015.
NIST Special Publication 800-90A Revision 1. http://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf.

[9] Elaine Barker. Recommendation for Key Management. NIST Special
Publication 800-57 Part 1 Revision 4. http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf.

[10] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ecdsa). Int. J. Inf. Secur., 1(1):36–63,
August 2001.

c© Copyright 2018 Pomcor

https://gmplib.org/gmp-man-6.1.2.pdf
http://cacr.uwaterloo.ca/hac/
https://github.com/bitwiseshiftleft/sjcl
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://tools.ietf.org/html/rfc2104
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

PJCL Version 0.9 51

[11] Lawrence C. Washington. Elliptic Curves: Number Theory and
Cryptography. CRC Press, 2003.

[12] Facebook. React Native.
https://facebook.github.io/react-native/.

[13] Node.js Foundation. node.js. https://node.js.

[14] Wikipedia. Double precision floating point format.
https://en.wikipedia.org/wiki/Double-precision_floating-

point_format.

[15] ECMA. ECMAScript Language Specification. ECMA-262 5.1 Edition,
June 2011. http://www.ecma-international.org/ecma-
262/5.1/Ecma-262.pdf.

[16] NIST. Secure Hash Standard (SHS), March 2012. FIPS PUB 180-4,
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-

4.pdf.

[17] W3C. Web Storage (Second Edition)—W3C Recommendation 19
April 2016. https://www.w3.org/TR/webstorage/.

[18] NIST. Recommended Elliptic Curves for Federal Government Use.
July 1999. http:
//csrc.nist.gov/groups/ST/toolkit/documents/NISTReCur.doc.

[19] Accredited Standards Committee X9. American National Standard
X9.62-2005, Public Key Cryptography for the Financial Services
Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA),
November 16, 2005.

[20] Mario Taschwer. Modular multiplication using special prime moduli.
In Patrick Horster, editor, Kommunikationssicherheit im Zeichen des
Internet: Grundlagen, Strategien, Realisierungen, Anwendungen, pages
346–371. Vieweg+Teubner Verlag, Wiesbaden, 2001.

c© Copyright 2018 Pomcor

https://facebook.github.io/react-native/
https://node.js
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf
http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://www.w3.org/TR/webstorage/
http://csrc.nist.gov/groups/ST/toolkit/documents/NISTReCur.doc
http://csrc.nist.gov/groups/ST/toolkit/documents/NISTReCur.doc

	Functionality provided in Version 0.9
	Requirements
	License
	Downloadable zip archive
	Data encodings
	Numbers in JavaScript
	Big integers in PJCL
	Other data types

	API
	Argument expectations
	Side effects
	Global variables and functions related to the representation of big integers
	var pjclBaseBitLengthvar pjclBasevar pjclBaseMaskvar pjclBaseMaskMinusOnevar pjclBaseInvvar pjclBaseAsBigIntvar pjclHalfBase
	function pjclWellFormed(x)

	Conversion functions
	function pjclHex2BitArray(s)
	function pjclASCII2BitArray(s)
	function pjclUTF16toBitArray(s)
	function pjclByte2BitArray(byte)
	function pjclUI32toBitArray(ui32)
	function pjclUI32Array2BitArray(x)
	function pjclBigInt2BitArray(x)
	function pjclBigInt2SizedBitArray(x,size)
	function pjclBitLengthOfBigInt(x)
	function pjclBitArray2UI32Array(bitArray)
	function pjclBitArray2BigInt(bitArray)
	function pjclBitArray2Hex(bitArray)
	function pjclHex2BigInt(s)
	function pjclBigInt2Hex(x)function pjclBigInt2Hex(x,minHexLength)
	function pjclUI32toHex(x)
	function pjclUI32Array2Hex(x)

	Basic arithmetic functions
	function pjclGreaterThan(x,y)
	function pjclGreaterThanRel(x,y)
	function pjclGreaterThanOrEqual(x,y)
	function pjclGreaterThanOrEqualRel(x,y)
	function pjclEqual(x,y)
	function pjclEqualRel(x,y)
	function pjclAdd(x,y)
	function pjclAddRel(x,y)
	function pjclSub(x,y)
	function pjclSubRel(x,y)
	var pjclMultfunction pjclMult_Long(x,y)function pjclMult_Karatsuba(x,y)
	function MultRel(x,y)
	function pjclShortMult(x,y)
	var pjclSqrfunction pjclSqr_Long(x,y)function pjclSqr_Karatsuba(x,y)
	function pjclShortShiftLeft(x,k)
	function pjclShiftLeft(x,k)function pjclMultByPowerOf2(x,k)
	function pjclShortShiftRight(x,k)
	function pjclShiftRight(x,k)function pjclDivByPowerOf2(x,k)
	function pjclDiv(x,y)
	function pjclDivRel(x,y)
	function pjclShortDiv(x,y)
	function pjclMod(x,m)
	function pjclTruncate(x,t)function pjclModPowerOf2(x,t)
	function pjclModLimb(x,m)
	function pjclEGCD(a,b)function pjclEGCD(a,b,computeBothBezoutCoeffs)
	function pjclModInv(x,m)

	Montgomery reduction
	function pjclPreMontRed(m)
	function pjclMontRed(t,m,m1)

	Generic sliding window exponentiation in a monoid
	function pjclOptimalWindowSize(l)function pjclPreExp(slidingWindowSize,context)function pjclExp(exponent,context)

	Exponentiation in N
	function pjclPlainExp(g,x)

	Modular exponentiation with ordinary reduction
	function pjclModExp(g,x,m)

	Modular exponentiation with Montgomery reduction
	function pjclMontExp(g,x,m)

	Generic double exponentiation in a commutative monoid
	function pjclOptimalWindowSize2(l)function pjclPreExp2(slidingWindowSize,context)function pjclExp2(exponentG,exponentY,context)

	Double exponentiation with Montgomery reduction
	function pjclMontExp2(g,y,exponentG,exponentY,m)

	Hash functions and message authentication codes (SHA, HMAC)
	function pjclSHA256(bitArray)
	function pjclSHA384(bitArray)
	function pjclHMAC_SHA256(key,text)
	function pjclHMAC_SHA384(key,text)
	function pjclHMAC_SHA256PreComputeKeyHashes(key)function pjclHMAC_SHA256WithPreCompute(iKeyHash,oKeyHash,text)
	function pjclHMAC_SHA384PreComputeKeyHashes(key)function pjclHMAC_SHA384WithPreCompute(iKeyHash,oKeyHash,text)

	Statistically random data vs. cryptographically random data
	Random bit generation (RBG) vs. random number generation (RNG)
	Generation of statistically random data
	function pjclStRndLimb()
	function pjclStRndBigInt(n)
	function pjclStRndHex(n)
	function pjclStatisticalRNG(a,b)

	Cryptographic random number generation
	function pjclRBG128Instantiate(rbgStateStorage,entropy)function pjclRBG128Instantiate(rbgStateStorage,entropy,nonce)
	function pjclRBG128Reseed(rbgStateStorage, entropy)
	function pjclRBG128InstantiateOrReseed(rbgStateStorage,entropy,nonce)
	function pjclRBG128Gen(rbgStateStorage, bitLength)
	function pjclCryptoRNG128(rbgStateStorage,a,b)
	function pjclRBG192Instantiate(rbgStateStorage,entropy,nonce)function pjclRBG192Reseed(rbgStateStorage,entropy)function pjclRBG192InstantiateOrReseed(rbgStateStorage,entropy,nonce)function pjclRBG192Gen(rbgStateStorage,bitLength)function pjclCryptoRNG192(rbgStateStorage,a,b)

	Primality testing
	function pjclIsPrime(n,t)function pjclMillerRabin(n,t)

	DSA
	function pjclDSAGenPQ(domainParameterSeed)function pjclDSAGenPQ()
	function pjclDSAGenG(p,q,domainParameterSeed,index)
	function pjclDSAGenPQG(domainParameterSeed,index)
	function pjclDSAGenKeyPair(rbgStateStorage,p,q,g)function pjclDSAGenKeyPair(rbgStateStorage)
	function pjclDSASign(rbgStateStorage,p,q,g,x,msg)
	function pjclDSAVerify(p,q,g,y,msg,r,s)

	Elliptic curves
	NIST curves
	Affine vs. projective vs. Jacobian coordinates
	Jacobian representation of a point
	Affine representation as a special case of Jacobian representation
	Jacobian-affine optimization of point addition
	function pjclModSpecial(x,t,xc,m)
	Pseudo-Mersenne representation of a prime
	var pjclCurve_P256
	var pjclCurve_P384
	function pjclJacobian2Affine(P,curve)
	function pjclPointAdd(P1,P2,curve)
	function pjclPointDouble(P,curve)
	function pjclScalarMult(P,k,curve)
	function pjclScalarMult2(P1,P2,u1,u2,curve)

	ECDSA
	function pjclECDSA128GenKeyPair(rbgStateStorage,curve)
	function pjclECDSA192GenKeyPair(rbgStateStorage,curve)
	function pjclECDSAValidatePublicKey(Q,curve)
	function pjclECDSASign(curve,d,h,k)
	function pjclECDSA128Sign(rbgStateStorage,curve,d,msg)
	function pjclECDSA192Sign(rbgStateStorage,curve,d,msg)
	function pjclECDSAVerify(curve,Q,msg,r,s)
	function pjclECDSA128Verify(curve,Q,msg,r,s)
	function pjclECDSA192Verify(curve,Q,msg,r,s)

	Estimation of the Karatsuba thresholds
	Performance testing
	Testing the performance of modular exponentiation
	Testing the performance of DSA

