
Identity-Based Protocol Design Patterns for
Machine-to-Machine Secure Channels

Francisco Corella
Pomcor

Email: fcorella@pomcor.com

Karen P. Lewison
Pomcor

Email: kplewison@pomcor.com

Abstract—In the classical design pattern for secure channel
protocols, there is a first phase where the endpoints establish
a shared secret and one or both endpoints authenticate by
presenting a certificate and demonstrating knowledge of the
associated private key; and a second phase where application
data traffic between the endpoints is protected using symmetric
keys for encryption and authentication derived from the shared
secret. This classical pattern emerged in the nineties, when
most secure channels were intended for human-to-machine
(H2M) communications and the latency caused by roundtrips
and transmission of bulky certificate chains resulted in no
more than inconvenience to the human. In machine-to-machine
(M2M) communication, on the other hand, excessive latency may
be unacceptable for safety-critical and other applications. We
describe a range of alternative protocol design patterns that use
identity-based encryption to eliminate roundtrips and certificate
transmission. These patterns can be used in the design of new
secure channel protocols or retrofitted into existing protocols.

I. INTRODUCTION

A. The Classical Pattern for Secure Channel Protocol Design

A secure channel transmits data securely between two
endpoints over a potentially compromised network, providing
security services that typically include authentication of one
or both endpoints, data confidentiality, and data authentica-
tion.

The most widely used secure channel protocols make use
of the same protocol design pattern in at least some of their
variants. We shall refer to this pattern as the classical pattern.
In the classical pattern, a protocol includes two phases. In
the first phase, the endpoints establish a shared secret and
one or both endpoints authenticate by presenting a certificate
issued by a certificate authority (CA) and demonstrating
knowledge of the associated private key. In the second phase,
application data traffic between the endpoints is protected
using symmetric keys for data encryption and authentication
derived from the shared secret. This design pattern is notably
used by TLS [1] and IPsec [2]. It is also an option in SSH
[3].

B. Drawbacks of the Classical Pattern

The classical pattern has two usability drawbacks.

First, the first phase requires one or more roundtrips
between the endpoints before protected traffic starts flowing,

and those roundtrips add latency to the process of establishing
a secure channel. In TLS, for example, where the first phase
is known as the handshake, a full handshake requires two
roundtrips, while an abbreviated handshake for resuming a
previously established “session” requires one roundtrip. IPsec
is a suite of protocols. The first phase is specified by the
Internet Key Exchange (IKE) protocol [4] and compromises
two or more roundtrips. An extension [5] provides a session
resumption mechanism that reduces the number of roundtrips,
similar to the abbreviated handshake of TLS.

Second, the first phase also requires transmission of
certificates between the endpoints. Certificates are bulky:
for example, as of this writing Bank of America uses a
2244B TLS certificate, backed by an 2136B intermediate CA
certificate, for a total certificate chain size of 4380 bytes. If
both endpoints authenticate with certificate chains the total
bandwidth taken up by certificate transmission could exceed
8KB.

This second drawback compounds the first, because cer-
tificate transmission on a bandwidth-constrained network can
result in congestion, which in turn results in increased latency.

The classical design pattern emerged during the nineties,
at a time when most secure channels supported human-to-
machine (H2M) interactions. In such channels, the above
drawbacks result in an inconvenience to the human. In some
cases that inconvenience may be severe, e.g. when a user tries
to access the web over a geostationary satellite, in which case
the speed of light imposes a roundtrip delay of more than
half a second, and bandwidth is scarce; or when bandwidth-
constrained radio links are used. (Presumably, military appli-
cations that rely heavily on radio and satellite links make little
use of TLS or IPsec.) But in most cases, the inconvenience
to the human is negligible or tolerable.

The impact of the drawbacks, however, is very different
in the case of machine-to-machine (M2M) communications.
First, some M2M networks are highly bandwidth-constrained.
For example, ZigBee transmission rates vary from 20 to 250
kilobits/second [6]. Second, in M2M communications latency
is not a matter of inconvenience. Some M2M applications,
including safety-critical ones, are latency-intolerant. For ex-
ample, at a speed of 70mph, a car travels 10 feet in 100ms; a
100ms increase in reaction time to the latency of establishing
a secure channel may make it impossible to avoid a collision
that could otherwise have been avoided.To appear in Proceedings of M2Msec’14 c©2014 IEEE



C. Mitigations of the Drawbacks

The drawbacks of the classical pattern are well known and
many techniques have been used to mitigate them within the
framework of different protocols. Some protocols provide the
option of using preshared keys to avoid the transmission of
certificates, at the cost of introducing a shared key distribution
problem. Some protocols allow the use of an uncertified key
pair instead of a certificate and its associated private key
for authentication of one or both endpoints. Uncertified key
pairs are often used, for example, in SSH [3]. A bare public
key is then transmitted instead of a certificate chain, saving
much bandwidth. Uncertified key pairs are practical and may
be preferable to certificates when the two end-points have a
longstanding relationship, as is the case for SSH; but they are
impractical otherwise.

Several techniques have been implemented or proposed
specifically to reduce the number of roundtrips and the
transmission of certificates during the TLS handshake.

The above-mentioned abbreviated handshake, which is
part of the core TLS protocol [1, §7.3] eliminates the trans-
mission of certificates and reduces the number of roundtrips
from two to one. It can be used when the TLS client and
server have cached parameters of a previous connection. A
protocol extension [7] allows the server to save the parameters
in the client (encrypted) to save space in the server cache and
thus increase the chances that a session resumption request
by the TLS client can be satisfied. It has been reported that
“the observed attempted resume rate at Google is only about
50%” [8].

The Fast-track mechanism [9] relies on the client caching
server parameters of an initial connection without requiring
the server to remember client parameters. It eliminates the
transmission of the server certificate in subsequent connec-
tions, and saves one roundtrip by letting the client send
application data with the third handshake flow. Fast-track was
implemented but not deployed.

The False Start mechanism [10] saves one roundtrip by
letting the client send protected application data before receiv-
ing the Finished message from the server that concludes the
handshake and authenticates the server to the client. This is
secure because the data can only be decrypted by the authentic
server. False Start was implemented by Google on the Chrome
browser without specifying a TLS extension, taking advantage
of the fact that most server implementations accept early data;
but it had be discontinued as no reliable way could be found
of detecting servers that did not accept early data in order to
fall back on standard protocol behavior for those servers [11].

The Snap Start mechanism [12] saves both roundtrips and
transmission of the server certificate when the client is able to
predict the server’s messages based on previous interactions.
It has not been deployed.

D. Alternative Patterns

The above mitigations alleviate the usability drawbacks of
the classical pattern, but at the cost of increased complexity

and without fully eliminating them. It is obviously desirable
to find alternative patterns that do not suffer from the same
drawbacks and do not require mitigations.

The previously mentioned idea of using uncertified key
pairs as credentials instead of certificates and their associated
private keys, besides being used as an option in some proto-
cols, has been used as a stand-alone pattern in the context of
the Simple Public Key Infrastructure (SPKI) [13], the Host
Identity Protocol (HIP) [14], and the Privilege Management
Protocol [15]. But this pattern still requires one or more
roundtrips, and transmission of a public key. A public key is
less bulky than a certificate chain but it may still contribute
to congestion in bandwidth-constrained networks.

On the other hand, a powerful but little used cryptographic
technique, identity-based (ID-based) encryption, can fully
eliminate the usability drawbacks. A step in that direction
was recently made by Mulkey and Kar [16], who proposed
a design of a wireless security protocol using ID-based
encryption for authentication and key exchange in order to
eliminate the transmission of certificates. However their de-
sign requires three roundtrips for key exchange and unilateral
authentication. In this paper we describe a range of ID-
based protocol design patterns that are generally applicable
to a broad range of secure channel protocols and eliminate
roundtrips as well as certificate transmission. In the rest of the
paper we briefly explain the concept of ID-based encryption,
describe the ID-based design patterns, and discuss techniques
that enable the large scale deployment of ID-based secure
channels.

II. ID-BASED ENCRYPTION

ID-based cryptography was pioneered in 1984 by Adi
Shamir, who described an ID-based cryptosystem for digital
signature [17]. Many other ID-based cryptosystems have been
proposed for digital signature, encryption, and key agreement;
a survey of a large number of ID-based cryptosystems for
encryption can be found in [18].

In an ID-based cryptosystem the public key of an entity
is computed from (or, equivalently, consists of) an identifier
of the entity and the public key of a trusted party, while
the private key is computed from the same identifier and the
private key of the trusted party. The trusted party computes the
private key and conveys it to the entity through a secure out-
of-band channel; for that reason the trusted party is called the
private key generator (PKG). The PKG plays a role equivalent
to that of a CA in a public key infrastructure (PKI).

Generally speaking, having the private key generated by
the PKG and sent to the entity is less secure than having
the key pair generated by the entity as is the case in a
traditional PKI, because of the risk of misuse of the private
key by the PKG, or by an adversary who captures it by
breaching the security of the out-of-band channel. However,
when the private key is used for authentication rather than
non-repudiation, the risk to be considered is impersonation
rather than repudiation, and in a traditional PKI there are
equivalent risks of impersonation of an entity by a CA (which



may issue itself a certificate) or by an adversary who modifies
a certificate signing request to substitute the adversary’s own
public key for the entity’s.

An ID-based key pair can be made to expire by aug-
menting the identity from which the public key is computed
with an expiration time. This requires a means of securely
delivering a new private key to the entity before the old
one expires. We further propose a means of revoking an ID-
based key pair, by augmenting the identity with a revocation
count and making the augmented identity retrievable from a
secure repository or service (not necessarily the PKG) such
as DNSSEC. Expiration and revocation can be combined.

III. ID-BASED PROTOCOL DESIGN PATTERNS FOR
SECURE CHANNELS

We now describe four ID-based protocol design patterns
for secure channel protocols between an initiator and a
responder: a basic pattern where only the responder authenti-
cates; a mutual authentication pattern where both the initiator
and the responder authenticate; a pattern that provides forward
secrecy with mutual authentication; and a pattern that provides
forward secrecy with responder-only authentication. We leave
to the reader the details of patterns where only the initiator is
authenticated. For simplicity, in all of the following patterns
it is assumed that protocol parameters are fixed and need not
be negotiated between the initiator and the responder.

A. Secure Channel with Responder Authentication

The first pattern, shown in Figure 1, comprises the fol-
lowing steps.

Step 1: The initiator computes the responder’s public key
(resp-pubkey) from the responder’s identity and the public key
of the PKG, generates a a random high-entropy nonce (init-
nonce), and derives traffic protection keys (keys1-i2r) from
the nonce using a key derivation function such as HKDF
[19]. In general, a complete set of traffic protection keys
comprises a subset of keys for protecting application data sent
from the initiator to the responder and a subset for protecting
data traveling from the responder to the initiator; each subset
comprises an encryption key and an authentication key, or a
single key for authenticated encryption. However in the case
of the first set of traffic protection keys (keys1), only the
initiator-to-responder subset (keys1-i2r) is needed.

Step 2: The initiator sends its nonce to the responder,
encrypted under the responder’s public key. It also starts
sending application data in the same flow, protected by, or,
synonymously, wrapped under keys1-i2r. Since the responder
does not contribute randomness to the generation of those
protection keys, an adversary can replay this flow. However
the initiator should be allowed to repeat the first flow if a
response is not received promptly, hence the responder should
tolerate replay of the first flow.

Step 3: The responder decrypts the initiator’s nonce, derives
keys1-i2r from the nonce, and decrypts the application data
sent by the initiator. Then it generates its own nonce (resp-
nonce) and derives a second set of traffic protection keys

(keys2) using the same key derivation function, with the two
nonces and the identity of the responder as input keying mate-
rial. The purpose of including the identity of the responder is
to avoid an unknown key share (UKS) flaw like the one used
in the recently discovered Triple Handshake Attack against
TLS [20].

Step 4: The responder sends its nonce to the initiator in the
clear. After that, all messages from the responder to the ini-
tiator are protected by the responder-to-initiator subset of the
second set of traffic protection keys (keys2-r2i). In particular,
in the same flow, the responder returns the initiator’s nonce
and sends application data (data2), both wrapped under keys-
r2i.

Step 5: The initiator derives the second set of traffic protection
keys from the two nonces and the responder’s identity. Then
it decrypts and checks its nonce, returned by the responder;
a successful check authenticates the responder and verifies
agreement on keys2-r2i. Then it decrypts the application data
sent by the responder.

Step 6: From now on all messages from the initiator to the
responder are protected by the second set of traffic protection
keys. In step 6, the initiator returns the responder’s nonce and
sends application data (data3), both wrapped under keys2-i2r.

Step 7: The responder decrypts and checks its nonce, returned
by the initiator; a successful check verifies agreement on
keys2-i2r. Then it decrypts the application data sent by the
initiator.

After step 7, the initiator and the responder can continue
to exchange application data protected by the second set of
traffic protection keys.

B. Secure Channel with Mutual Authentication

The second pattern, which adds initiator authentication to
security services provided by the secure channel protocol, is
shown in Figure 2. It differs from the basic pattern as follows.
At step 3 the responder further computes the initiator’s public
key (init-pubkey) from the initiator’s identity and the public
key of the PKG. At step 4 it uses it to encrypt its nonce, which
the initiator decrypts at step 5. At step 7 a successful check of
the responder’s nonce returned by the initiator authenticates
the initiator, in addition to verifying agreement on keys2-i2r.

C. Mutual Authentication plus Forward Secrecy

Forward secrecy cannot be provided for application data
sent in the first flow, but it can be provided for subsequent
flows.1 To that purpose we use ephemeral Diffie-Hellman
(EDH) key agreement, either traditional or based on an elliptic
curve [22]. The EDH domain parameters [22, §5.5] may be
generated by a trusted party and may be common to all entities
or to a subset of the entities, or they may be generated by the
client. When generated by the initiator we consider them to

1The idea of upgrading a connection that does not provide forward secrecy
for the initial flow so that it does provide it for subsequent flows has been
independently suggested in the design document of QUIC [21], a Google
protocol that multiplexes data streams over UDP.



Compute resp-pubkey
Generate init-nonce
Derive keys1-i2r from init-nonce

Initiator Responder

init-nonce under resp-pubkey
data1 under keys1-i2r

Decrypt init-nonce
Derive keys1-i2r from init-nonce
Decrypt data1
Generate resp-nonce
Derive keys2 from both nonces
and responder's identity

resp-nonce
init-nonce under keys2-r2i

data2 under keys2-r2i

Derive keys2 from both nonces 
and responder's identity
Decrypt and check init-nonce
Decrypt data2

resp-nonce under keys2-i2r
data3 under keys2-i2r

Decrypt and check resp-nonce
Decrypt data3

Fig. 1. Secure channel with responder authentication

be part of the EDH public key. Domain parameters generated
by the initiator must be validated by the responder.

The third pattern, which provides forward secrecy from
the second flow in addition to mutual authentication, is shown
in Figure 3. It differs from the second pattern as follows.
At step 1, the initiator generates its EDH key pair (init-edh-
keypair). At step 2, the initiator sends its EDH public key
(init-edh-pubkey) in the clear. (The EDH public key init-
edh-pubkey should not be confused with the initiator’s ID-
based public key, which is called init-pubkey.) At step 3,
the responder generates its EDH key pair (resp-edh-keypair),
computes the EDH shared secret (edh-secret), and derives the
second set of traffic protection keys (keys2) from the the
EDH shared secret instead of deriving it from the nonces
and the responder’s identity. (It is not necessary to include
the responders’s identity in the derivation of keys2 provided
that valid EDH domain parameters are used.) At step 5, the
initiator derives the second set of traffic protection keys from
the the EDH shared secret instead of deriving it from the
nonces and the responder’s identity.

D. Forward Secrecy with Responder-only Authentication

The fourth pattern, shown in Figure 4, is a simplification
of the third one. At step 4 the responder sends its nonce in
the clear instead of sending it encrypted under the initiator’s

Compute resp-pubkey
Generate init-nonce
Derive keys1-i2r from init-nonce

Initiator Responder

init-nonce under resp-pubkey
data1 under keys1-i2r

Decrypt init-nonce
Derive keys1-i2r from init-nonce
Decrypt data1
Generate resp-nonce
Derive keys2 from both nonces 
and responder's identity
Compute init-pubkey

resp-nonce under init-pubkey
init-nonce under keys2-r2i

data2 under keys2-r2i

Decrypt resp-nonce
Derive keys2 from both nonces 
and responder's identity
Decrypt and check init-nonce
Decrypt data2

resp-nonce under keys2-i2r
data3 under keys2-i2r

Decrypt and check resp-nonce
Decrypt data3

Fig. 2. Secure channel with mutual authentication

ID-based public key, and at step 5 the initiator does not need
to decrypt the responder’s nonce.

IV. LARGE SCALE DEPLOYMENTS WITH MULTIPLE
PKGS

Since each communicating entity in a deployment of an
ID-based secure channel protocol receives its private key from
a PKG, multiple PKGs are needed for a large deployment;
this is especially necessary if entity identities include short
term expiration times, so that private keys have to be renewed
frequently. But then each entity must know which PKGs have
issued the private keys of the entities it communicates with,
and the public keys of those PKGs.

A hierarchical ID-based encryption (HIBE) cryptosystem
such as the one described in [23] (see [18] for references
to others) can be used to address this problem. In a HIBE
cryptosystem there is a tree of PKGs. Each node in the tree
issues private keys to its children, and leaf nodes (as well as,
possibly, other nodes) issue private keys to communicating
entities. Each PKG other than the root has an identity. Each
communicating entity has an extended identity comprising:
a base identity, which uniquely identifies the entity within



Compute resp-pubkey
Generate init-nonce
Derive keys1-i2r from init-nonce
Generate init-edh-keypair

Initiator Responder

init-nonce under resp-pubkey
init-edh-pubkey

data1 under keys1-i2r

Decrypt init-nonce
Derive keys1-i2r from init-nonce
Decrypt data1
Generate resp-nonce
Generate resp-edh-keypair
Compute edh-secret
Derive keys2 from edh-secret
Compute init-pubkey

resp-nonce under init-pubkey
resp-edh-pubkey

init-nonce under keys2-r2i
data2 under keys2-r2i

Decrypt resp-nonce
Compute edh-secret
Derive keys2 from edh-secret
Decrypt and check init-nonce
Decrypt data2

resp-nonce under keys2-i2r
data3 under keys2-i2r

Decrypt and check resp-nonce
Decrypt data3

Fig. 3. Secure channel with mutual authentication and forward secrecy

the cryptosystem; and a PKG identity chain that lists the
identities of the PKGs along the path within the tree from
the PKG that issues the private key of the entity up to, but
not including, the root of the PKG tree. The public key of
an entity is computed from (or, equivalently, consists of) the
public key of the root of the tree and the extended identity
of the entity. Thus each entity only needs to know the public
key of the root PKG and the extended identities of the entities
with which it communicates.

While a HIBE cryptosystem may solve the problem for
a large deployment, more may be needed for a global de-
ployment. Just as multiple root CAs are needed for the global
PKI that provides certificates to web servers, multiple root
PKGs may be needed for a global deployment of an ID-based
secure channel protocol. To enable such global deployments
we introduce the concept of a Multi-Root HIBE (MR-HIBE)
cryptosystem. A MR-HIBE cryptosystem is an extension of
an ordinary HIBE cryptosystem to accommodate a forest of
PKGs. Each root of the forest has its own public key. Every

Compute resp-pubkey
Generate init-nonce
Derive keys1-i2r from init-nonce
Generate init-edh-keypair

Initiator Responder

init-nonce under resp-pubkey
init-edh-pubkey

data1 under keys1-i2r

Decrypt init-nonce
Derive keys1-i2r from init-nonce
Decrypt data1
Generate resp-nonce
Generate resp-edh-keypair
Compute edh-secret
Derive keys2 from edh-secret
Compute init-pubkey

resp-nonce
resp-edh-pubkey

init-nonce under keys2-r2i
data2 under keys2-r2i

Compute edh-secret
Derive keys2 from edh-secret
Decrypt and check init-nonce
Decrypt data2

resp-nonce under keys2-i2r
data3 under keys2-i2r

Decrypt and check resp-nonce
Decrypt data3

Fig. 4. Responder-only authentication with forward secrecy

PKG in the forest, including the roots, has an identity. Each
entity has an extended identity that comprises a base identity
and a PKG identity chain. The PKG identity chain lists the
identities of the PKGs along the path within the forest from
the PKG that issues its private key to the entity up to, and
including, a root of the PKG forest. The public key of an
entity is computed from (or, equivalently, consists of) the
extended identity of the entity and the public key of the root
PKG whose identity appears at the end of the PKG identity
chain. Each entity stores the public keys of the root PKGs
that it trusts, just as a web browser stores the certificates of
the root CAs that it trusts.

A difficulty remains. An entity that needs to establish a
secure channel to communicate with a target entity may know
the base identity of the target entity but not its extended
identity. It must therefore retrieve the PKG identity chain of
the target entity. Retrieving a PKG identity chain is akin to
retrieving a certificate chain in a PKI, but each certificate in
a certificate chain is hundreds or thousands of bytes long,



whereas each identity in a PKG identity chain is only a
few bytes long. This makes a difference: in an Internet
deployment, the initiator of a secure channel could obtain
the PKG identity chain of the responder from the Domain
Name System (DNS) with the same query that it uses to
look up the responder’s IP address, avoiding a roundtrip.
By contrast, a web browser could not reliably retrieve the
certificate chain of a web server from the DNS because
DNS responses are traditionally carried by 512 byte UDP
datagrams, and buggy implementations of DNS resolvers may
fail on large responses.

Obtaining the PKG identity chain of a target entity from
a third party service such as the DNS rather than from the
target party itself mitigates the risk of impersonation of the
target by an attacker who uses a compromised PKG different
than the PKG used by the target to obtain a private key for the
target’s identity. (The corresponding risk in a PKI setting is
well known; it was the topic of a recent NIST workshop [24].)
If the third party service is trusted and secure, e.g. if DNSSEC
is available, the risk is eliminated. (In the PKI setting, the
DANE protocol [25] eliminates the risk by obtaining a hash of
a server certificate from DNSSEC, if DNSSEC is available.)

In a HIBE or MR-HIBE cryptosystem, the base identity of
an entity may not be atomic. It may be an augmented identity
derived from an atomic identity by appending an expiration
time and/or a revocation count, as described above at the end
of Section II. The expiration time may be known to other
entities (e.g. it may be the end of the current day, or the
current year, in UTC time), but the revocation count may not.
If a trusted and secure third party service such as DNSSEC
is available for providing the PKG identity chain, it may also
provide the base identity including the revocation count, upon
being queried with an atomic identity.

V. CONCLUSION

We have described protocol design patterns that take ad-
vantage of ID-based encryption to implement secure channels
without requiring additional roundtrips for key establishment
or transmission of certificate chains, including patterns that
provide responder-only and mutual authentication, and pat-
terns that provide forward secrecy starting with the second
flow. These patterns can be used in the design of new
secure channel protocols, or can be retrofitted into existing
protocols. They should be particularly useful for machine-to-
machine communication in safety-critical and other applica-
tions that do not tolerate excessive latency. Practical feasibil-
ity will depend on identifying ID-based cryptosystems with
good performance and low energy consumption. Performance
benchmarks of the Pairing-Based Cryptographic Library [26]
suggest that such cryptosystems can be found.

REFERENCES

[1] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” August 2008, http://tools.ietf.org/html/rfc5246.

[2] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
December 2005. http://tools.ietf.org/html/rfc4301.

[3] T. Ylonen, “The Secure Shell (SSH) Protocol Architecture,” Jan. 2006,
http://tools.ietf.org/html/rfc4251.

[4] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, “Internet Key
Exchange Protocol Version 2 (IKEv2),” September 2010. http://tools.
ietf.org/html/rfc5996.

[5] Y. Sheffer and H. Tschofenig, “Internet Key Exchange Protocol
Version 2 (IKEv2) Session Resumption,” January 2010. http://tools.
ietf.org/html/rfc5723.

[6] ZigBee Alliance, “ZigBee Specification FAQ,” Question 8: What are
the IEEE 802.15.4 technical attributes on which the ZigBee specifi-
cation is based? Retrieved June 5, 2014 from http://www.zigbee.org/
Specifications/ZigBee/FAQ.aspx.

[7] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, “Transport Layer
Security (TLS) Session Resumption without Server-Side State,” RFC
5077. http://tools.ietf.org/html/rfc5077.

[8] A. Langley, “Message 06624 on the TLS Working Group Mailing
List,” http://www.ietf.org/mail-archive/web/tls/current/msg06624.html.

[9] H. Shacham, D. Boneh, and E. Rescorla, “Client-Side Caching for
TLS,” ACM Transactions on Information and System Security, vol. 7,
no. 4, pp. 553–575, November 2004.

[10] A. Langley, N. Modadugu, and B. Moeller, “Transport Layer Security
(TLS) False Start,” draft-bmoeller-tls-falsestart-00, June 2, 2010. https:
//tools.ietf.org/html/draft-bmoeller-tls-falsestart-00.

[11] A. Langley, “False Start’s Failure (11 Apr 2012),” https://www.
imperialviolet.org/2012/04/11/falsestart.html.

[12] ——, “Transport Layer Security (TLS) Snap Start,” May 2010. https:
//www.imperialviolet.org/binary/draft-agl-tls-snapstart-00.html.

[13] Internet Engineering Task Force, “Simple Public Key Infrastructure
(spki),” Concluded WG. http://datatracker.ietf.org/wg/spki/.

[14] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP) Archi-
tecture,” May 2006. http://tools.ietf.org/html/rfc4423.

[15] P. A. Lambert, “Key Centric Identity and Privilege Management,”
Presentation at the 2012 NIST Cryptographic Key Management Work-
shop. http://csrc.nist.gov/groups/ST/key mgmt/documents/Sept2012
Presentations/LAMBERT CKMW2012.pdf.

[16] C. Mulkey and D. C. Kar, “Identity-based encryption protocol for
privacy and authentication in wireless networks,” in Network Security
Technologies: Design and Applications, A. Amine, O. A. Mohamed,
and B. Benatallah, Eds. IGI Global, Nov. 2014, pp. 129–155.

[17] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,”
in International Cryptology Conference, 1984, pp. 47–53, http://link.
springer.com/content/pdf/10.1007%2F3-540-39568-7 5.pdf.

[18] X. Boyen, “A tapestry of identity-based encryption: practical frame-
works compared,” International Journal of Applied Cryptography,
vol. 1, pp. 3–21, 2008.

[19] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key
Derivation Function (HKDF),” May 2010, http://tools.ietf.org/html/
rfc5869.

[20] K. Bhargavan, A. Delignat-Lavaud, C. Fournety, A. Pironti, and P.-Y.
Strub, “Triple Handshakes and Cookie Cutters: Breaking and Fixing
Authentication over TLS,” March 2014. https://secure-resumption.
com/tlsauth.pdf.

[21] The Chromium Projects, “QUIC, a multiplexed stream transport over
UDP,” http://www.chromium.org/quic.

[22] E. Barker, L. Chen, A. Roginsky, and M. Smid, “Recommendation
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography,” NIST SP 800-56A Rev. 2. http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf.

[23] D. Boneh and X. Boyen, “Efficient Selective-ID Secure Identity-Based
Encryption Without Random Oracles,” in EUROCRYPT, 2004, pp.
223–238, http://crypto.stanford.edu/∼xb//eurocrypt04b/bbibe.pdf.

[24] NIST, “Improving Trust in the Online Marketplace,” April 10–11,
2013. http://www.nist.gov/itl/csd/ct/ca workshop.cfm.

[25] P. Hoffman and J. Schlyter, “The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA,”
August 2012. http://tools.ietf.org/html/rfc6698.

[26] B. Lynn, “Pairing-Based Cryptographic Library Benchmarks,” Re-
trieved on June 7, 2014 from http://crypto.stanford.edu/pbc/times.html.


