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Abstract

This is the first of a series of papers describing the results of a
project whose goal was to identify five remote identity proofing solu-
tions that can be used as alternatives to knowledge-based verification.
This paper describes the first solution, which makes use of two new
concepts that are described in detail in the paper. The first new
concept is that of a typed hash tree, which can be used to represent a
collection of key-value pairs and whose root label provides an omission-
tolerant cryptographic checksum of the collection. The second concept
is that of a rich credential, which is issued by an identity source to
a subject and allows the subject to remotely present three verifica-
tion factors to a verifier with whom the subject may have no prior
relationship, including something that the user has (a private key),
something that the user knows (a password), and something that the
user “is” (one or more biometric features). A rich credential includes
a typed hash tree, whose omission tolerance is used in the rich cre-
dential to provide selective disclosure of attributes and selective pre-
sentation of verification factors. In the first solution, a DMV issues
a rich credential containing a facial image of the subject, which can
also serve as the digital source of the printed photograph on a phys-
ical driver’s license issued to the subject. The verifier performs face
recognition with presentation attack detection by matching the facial
image against the subject’s face shown in an audio-visual stream of the
subject reading prompted text, verifying the synchrony between the
audio and video channel of the stream by tracking the subject’s lips in
the video stream and matching distinguishable visemes to phonemes
in the audio stream.

∗Patent pending.
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Main changes since the original version

• In Section 5, a leaf node that was the root of a subtree that has been
pruned is now called a dangling node rather than a salt node, and salt
nodes now have undistinguished types. (This was one of the alterna-
tives discussed in Section 5.5 of the original version.)

• The informal conclusions drawn from the formal theorem of Section
5.4.3 have been greatly simplified.

• In the protocols of Section 6.12 for proving knowledge of a private
key, the verifier’s identity has been incorporated into the challenge to
prevent a man-in-the-middle attack by a malicious verifier.

• In Section 7, the option of using a push notification to launch the
native app that submits the audio-video stream has been removed as
a precaution against a potential attack where the adversary captures
the rich credential and causes the verifier to send a push notification
to the subject, who uploads an audio-video stream that becomes part
of a presentation of the stolen credential by the verifier.

1 Introduction

This is the first of a series of papers on the work that we have been doing in
our research project on Remote Identity Proofing [1].

The goal of the project was to identify five remote identity proofing so-
lutions that can be used as alternatives to knowledge-based verification. We
have now identified five solutions that we believe to be secure and practi-
cal. This paper describes Solution 1, which relies on the new concept of a
rich credential to provide up to three-factor verification of the identity of a
subject to a verifier who has no prior relationship with the subject. It specif-
ically proposes the use of a rich credential issued by a Department of Motor
Vehicles (DMV), since DMVs are the most commonly used identity sources
in the United States. It also includes materials generally relevant to remote
identity proofing that will be referenced in the papers describing the other
four solutions. The paper is organized as follows:

• Section 2 discusses the parties and types of evidence involved in remote
identity proofing.
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• Section 3 points out an essential difference between identity proofing
and authentication, viz. the absence of prior relationship between the
subject and the verifier in identity proofing, and discusses its techno-
logical implications.

• Section 4 discusses two privacy features supported by rich credentials,
selective disclosure of attributes and selective presentation of verifica-
tion factors.

• Section 5 defines the concept of a typed hash tree and proves that the
root label of a typed hash tree can be used as an omission-tolerant
cryptographic checksum. A rich credential is based on a typed hash
tree that represents a collection of key-value pairs, some encoding at-
tributes and some encoding verification data that supports the pre-
sentation of verification factors to a verifier with whom the subject
has no prior relationship. (The word key in the term key-value pair
has its database meaning rather than its cryptographic meaning.) The
omission-tolerant integrity protection provided by a typed hash tree
enables the selective disclosure of attributes and selective presentation
of verification factors.

• Section 6 defines the concept of a rich credential and shows how it can
be used to provide three-factor verification, based on something the
subject has, something the subject knows and something the subject
is, while protecting the subject’s privacy by allowing for selective dis-
closure of attributes and selective presentation of verification factors.

• Section 7 describes the methods used in Solution 1 for issuing and
presenting a rich credential.

• Section 8 provides a general threat model applicable to all five solutions,
and a security analysis of Solution 1.

• Section 9 recapitulates.
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2 Parties and kinds of evidence in remote

identity proofing

In an identity proofing event, a subject presents identity evidence originating
from an identity source to a verifier. As argued in [2], and consistently with
[3] and [4], the evidence should originate from multiple sources.

In-person proofing often relies on a primary piece of evidence, which is
often a picture ID, supplemented by secondary pieces of evidence that may
not include a photograph. In the United States the primary piece of evidence
may be, e.g., a driver’s license issued by the DMV of one of the US states or
territories or the District of Columbia, or a passport issued by the State De-
partment. The secondary evidence may include a street address confirmation
code and/or a proof of possession of a utility, financial or telecommunication
account.

Remote identity proofing should also include multiple sources of evidence.
Our five solutions are concerned with the remote presentation of primary
evidence, to be combined with one or more additional pieces of secondary
evidence. In Solution 1, described here, the primary evidence consists of a
rich credential issued by the primary identity source, together with a pass-
word and one or more biometric samples that are submitted to the verifier
along with the rich credential and verified against the rich credential.

3 Verification without prior relationship

An essential requirement of identity proofing, which sharply differentiates it
from authentication, is that a verifier must be able to verify the identity of
a subject with whom it has no prior relationship.

3.1 Biometric verification without prior relationship

There are four architectural configurations for biometric verification, but only
one of them is suitable for our purposes, being able to provide a biometric
verification factor usable for remote identity proofing in the United States:

1. In the biometric configuration most commonly used today, a user of a
smart phone or other computing device presents a fingerprint or some
other biometric sample to a sensor located on the device in order to
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unlock the device or otherwise enable the use of a credential such as
a certificate and its associated private key stored in the device. That
credential could then be used in a remote identity proofing event where
the user of the device is the subject. However this only provides one
verification factor: possession of the device that contains the credential.
The purpose of the biometric verification is to protect the credential
stored in the device by requiring biometric authentication of the sub-
ject to the device before the credential can be used, not to provide
an additional verification factor. The verifier may not be able to tell
whether the subject has set biometric authentication and been careful
to lock the device or the credential in the device when not in use.

2. In another configuration, the subject sends a biometric sample to the
verifier, which matches it against biometric verification data derived
from a biometric enrollment sample that the verifier has previously
obtained from the subject. The biometric verification data may be a
template derived from the enrollment sample, or the enrollment sam-
ple itself, or a randomized helper datum used in revocable biometric
technology as described below in Section 6.7.1. To have obtained the
enrollment sample the verifier must have had a prior relationship with
the subject.

3. In yet another configuration, the subject sends a sample to the verifier,
which performs a one-to-many match against a database of biometric
verification data. In some countries there are databases containing
biometric verification for all or most of the population, and a verifier
may be able to match the sample presented by the subject against the
database without having a prior relationship with the subject. In the
United States, however, there is no nationwide biometric database that
can be accessed for identity verification purposes. In each state, the
Department of Motor Vehicles (DMV) has facial images of most of the
state residents, but very few states make their facial image databases
available for the purpose of identity verification.

4. In the one configuration that is suitable for our purposes, signed bio-
metrics, an identity source performs biometric enrollment and provides
the subject with signed biometric verification data. Signed biomet-
rics are used in PIV cards, but only for controlling physical access to
buildings. We use signed biometrics for remote identity proofing in
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solutions 1, 2, 4 and 5. In Solution 1, described in this paper, the iden-
tity source acquires an enrollment sample from the subject (or multiple
samples pertaining to multiple biometric modalities) and includes bio-
metric verification data derived from the enrollment sample in a signed
rich credential. The subject submits the credential and a biometric
sample to the verifier, which verifies the signature, matches the sample
against the verification data, and performs presentation attack detec-
tion on the submission of the sample.

3.2 Password Verification without Prior Relationship

When a password is used for authentication of a subject to a verifier, the
verifier compares the password submitted by the user to a salted hash of
the password stored in a database kept by the verifier. This requires a prior
relationship between the subject and the verifier, in the course of which the
subject has registered the password with the verifier and the verifier has
generated a salt, computed the salted hash of the password, and stored the
salt and the salted hash in the database.

A password can also be used to unlock a device or enable the use of a
traditional cryptographic credential stored in the device. But, just as when a
biometric sample is used to unlock a device or enable the use of a credential
as discussed above, this does not provide an additional verification factor
besides possession of the device.

In remote identity proofing we use a password differently. The subject
chooses a password, generates a salt, hashes the password with the salt, and
sends the salted hash to the identity source. A subject-controlled device
retains the salt and never discloses it. The identity source issues a signed
credential, where the signature covers the salted hash, with neither the salted
hash nor the password being included in the credential as it is stored in the
subject-controlled device. At proofing time, the device prompts the subject
for the password, computes the hash of salt and the password, and sends the
salted hash to the verifier, which embeds it into the credential and implicitly
checks the password by verifying the signature on the credential with the
embedded salted hash. (Equivalently, the salted hash may be embedded into
the credential by the subject’s device.)

We shall refer to the salted hash of the subject’s password by the acronym
SHoSP.

This method of using a password has strong security features:
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• The verifier does not keep a password database.

• The verifier does not see the password.

• The verifier cannot use the salted hash to mount a dictionary attack
against the password, because the verifier does not see the salt. By
contrast, in a password database the salt and the salted hash are stored
together, enabling an attacker who breaches the security of the database
to test guesses of the password by hashing each guess with the salt and
comparing the result to the salted hash.

• If the password is reused for multiple identity proofing credentials and
for authentication at web sites, a verifier who sees a salted hash of
the password used with one credential cannot use it in an attempt to
impersonate the subject using a different credential, nor to authenticate
as the subject at a web site. And a malicious web site operator who
receives the password cannot use it in an attempt to impersonate the
subject in a remote identity proofing event.

3.3 Three-factor verification in remote identity proof-
ing

In authentication, the combination of three authentication factors including
a password, a biometric, and a device containing a private key is often touted
as the gold standard (“something you know, something you are, something
you have”). This gold standard has not yet been achieved in remote identity
proofing because the traditional ways of verifying a password and verifying a
biometric sample require a prior relationship of the subject with the verifier.
By obviating the need for a prior relationship, the rich credential of Solution
1 (and, similarly, the rich blockchain certificate of Solution 2 to be described
in another paper) achieve the same gold standard in remote identity proofing.

4 Privacy features of rich credentials

Physical credentials are monolithic. When a physical credential such as a
driver’s license or a passport is presented as identity evidence to a verifier,
the verifier sees and may record all the data in the credential, even though it
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may only need some of the data and may be required by law to only collect
the data that it needs.

Some cryptographic credentials provide enhanced privacy by allowing the
subject to select what attributes are presented to the verifier. This feature is
known as selective disclosure of attributes. Anonymous credential cryptosys-
tems, such as IBM’s Idemix [5, 6] or Microsoft’s U-Prove [7] provide selective
disclosure, and furthermore provide unlinkability. Unlinkability refers to the
inability of credential issuers and verifiers to use clues other than disclosed
attributes to link the presentation of a credential to its issuance or to link
different presentations of a credential to each other. (A discussion of different
forms of unlinkability featured by different kinds of anonymous credentials
can be found in [8].) But unlinkability does not matter for a credential that
is used for remote identity proofing, since presentation of the credential is
intended to identify the subject, and therefore the presentations of the cre-
dential can be linked to each other and to the issuance of the credential by
the attributes that are intentionally disclosed by the subject.

A rich credential does not provide unlinkability, but it provides the pri-
vacy feature that matters in remote identity proofing: selective disclosure
of attributes. At each identity proofing event that makes use of a rich cre-
dential, the subject and the verifier may negotiate which of the attributes
asserted by the credentials are to be disclosed. And the cryptographic imple-
mentation of selective disclosure in a rich credential is very simple, the only
cryptographic primitives used in a rich credential being digital signature,
cryptographic hashing, and random-bit generation. By contrast, anonymous
credentials use complex cryptographic primitives and, perhaps for that rea-
son, are still in the experimental stage after more than 15 years of research
and development.

A rich credential also provides another privacy feature: selective presen-
tation of verification factors. A single rich credential issued by an identity
source allows the subject to present to a verifier three kinds of verification
factors: “something that the user has” (a device containing the credential),
“something that the user knows” (a password, hashed with a secret salt), and
“something that the user is” (one or more biometric samples, to be matched
against biometric verification data for one or more biometric modalities in
the credential). However, some identity proofing use cases may not warrant
presentation of all the verification factors made available by a rich creden-
tial. For example, biometric verification may only be required in cases with
high security requirements. Furthermore, when biometric verification is re-

10



quired and biometric verification data for multiple modalities is included in
a credential, different verifiers may be equipped to verify different modali-
ties. A rich credential allows the subject and the verifier to negotiate which
verification factors will be used in each particular presentation. Allowing
the subject to omit biometric verification when not required is an important
privacy feature.

5 Typed hash trees for omission-tolerant in-

tegrity protection

This section defines a variation on the concept of a hash tree, which we call
a typed hash tree, and proves that the root label of a typed hash tree can
be used as an omission-tolerant cryptographic checksum. A rich credential,
described below in Section 6, is based on a typed hash tree that has key-
value pairs encoding attributes and verification data. The selective disclosure
of attributes and selective presentation of verification factors featured by a
rich credential are derived from the omission-tolerant integrity protection
provided by a typed hash tree.

5.1 Overview

Consider a data structure that is used as a representation of a collection of
key-value pairs. A cryptographic hash of an encoding of the data structure
can be used as a checksum to ensure that the data structure has not been
modified by an adversary. The checksum can be verified by comparing it to
an original checksum supplied by the originator of the data structure, or by
verifying a signature on the checksum.

A typed hash tree is a data structure that can be used to represent a
collection of key-value pairs, and its root label can be used as a checksum of
the key-value pairs present in the tree by comparing it to an original checksum
or verifying a signature on the checksum. However, unlike a traditional
cryptographic hash, the root label of a typed hash tree is an omission-tolerant
checksum, in the sense that key-value pairs can be legitimately omitted from
the tree without invalidating the checksum, but an adversary cannot add a
key-value pair without invalidating the checksum.

The concept of a typed hash tree is illustrated in Figure 1. Informally,
a typed hash tree is an ordered tree where each node has both a type and a
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Figure 1: A typed hash tree. Each node has a type and a label. Each box in
the figure illustrates a node, the number in the box being the type, the text
in the box describing the kind of label. Type 0 is the distinguished type.
Each internal node with type 0 is labeled by the hash of the types and labels
of its children. Nodes with undistinguished types represent key-value pairs,
the type being the key and the label being the value. SHoSP refers to the
salted hash of the subject’s password described in Section 3.2.
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label, and the label of each internal node is a hash of the types and labels
of its children. One distinguished type d, e.g. d = 0 if types are numeric, is
shared by all the internal nodes and possibly some of the leaf nodes. Leaf
nodes labeled by the distinguished type are called dangling nodes ; a dangling
node is shown below in Figure 2. Leaf nodes labeled by other types repre-
sent key-value pairs, the type and label of such a node playing the roles of
key and value respectively. We shall view the collection of key-value pairs
represented by the hash tree as a multiset because the same key-value pair
may be represented by multiple nodes. Also, the same key may be paired
with different values in different nodes.

The privacy features of a rich credential are implemented by pruning the
typed hash tree of the credential. Given a typed hash tree X and subtree
X ′ rooted at a node N of X, the subtree X ′ can be pruned from X without
invalidating the root-label checksum by removing from X the nodes of X ′

other than N , causing N to become a dangling node. Pruning X ′ from X
omits the key-value pairs represented by X ′ from the collection of key-value
pairs represented by X.

A dangling node does not necessarily result from pruning a subtree; a
dangling node with a random or pseudo-random label may be used to prevent
a rich credential verifier from knowing whether a subtree has been pruned
before credential presentation. For example, a rich credential profile for a
particular use case may specify a collection of subtrees that may be included
in the typed hash tree, but some of those subtrees may be optional and may
be omitted if they are not applicable to a particular subject. A dangling
node may be used in lieu of a subtree to hide the fact that the subtree is not
applicable to a subject rather than being applicable but having been pruned.

Figure 1 shows several salt nodes. A salt node is labeled by a random or
pseudo-random value. Salt nodes do not have a distinguished type, and need
not all have the same type. In the figure they have type 1, as an example.
The purpose of salt nodes is to protect key-value pairs omitted by pruning
from a guessing attack by an adversary who has access to the pruned tree
but not the original tree. Suppose the subtree X ′ pruned from the typed
hash tree X includes a leaf node N ′ with type t 6= d and label l, representing
the key-value pair (t, l). The root N of the X ′ remains in the pruned tree,
and the label of N can be computed from the types and labels of the leaf
nodes of X ′, including t and l. Therefore the adversary may attempt to test
guesses of the omitted key-value pair (t, l) (or guesses of l if t is known)
against the known label of N . But if N ′ has a sibling labeled by a random
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salt, the adversary has to make simultaneous guesses of (t, l) and the random
salt, and will have a negligible probability of finding the correct guess if the
random salt has high entropy.

While it is possible to remove key-value pairs from a typed hash tree X
without changing its root label by pruning one or more subtrees, we shall
see below that, if the dangling nodes of X are have random labels, it is
deemed infeasible to add key-value pairs to X without updating its root
label. This justifies the statement that the root label of a typed hash tree
is an omission-tolerant cryptographic checksum of the collection of key-value
pairs represented by the tree.

5.2 Formal definitions

5.2.1 Typed hash trees

Formally, a kind of typed hash tree is a tuple K = (T, d, L, h, f), where:

• T is a set of elements called types.

• d ∈ T is a distinguished type.

• L is a family of sets (L(t))t∈T .

• h is a cryptographic hash function whose codomain is L(d).

• f is an injective function that maps sequences of pairs (t, l), where
t ∈ T and l ∈ L(t), to elements of the domain of h.

Given such a kind K = (T, d, L, h, f), a typed hash tree of kind K is a tuple
X = (K,N , T ,L,F) where:

• N is a finite set whose elements are called the nodes of the tree.

• T is a function from N to T that maps each N ∈ N to an element
t ∈ T called the type of N .

• L is a function from N to
⋃

t∈T L(t) that maps each N ∈ N to an
element of L(T (N)) called the label of N .

• F is a function that maps each node N ∈ N to a sequence without
repetitions, the nodes in the sequence being called the children of N ,
nodes without children being called leaf nodes and nodes with children
being called internal nodes, such that:
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– Every node N is a child of at most one other node, which is called
the parent of N .

– The parent-child relation forms a directed acyclic graph.

– Exactly one node, called the root of the tree, has no parent.

• Every internal node has type d. A leaf node may have type d, in which
case it is called a dangling node.

• The type of the root node is d. The root node may be either an internal
node or a dangling node.

• Every internal node N has as its label

l = h(f(s)),

where s is the sequence of type-label pairs of the children of s; i.e., if
F(N) = (N ′i)0≤i<n, n > 0, s is the sequence

s = ((T (N ′i),L(N ′i)))0≤i<n .

Typically, h maps bit strings of arbitrary length to bit strings of some fixed
length k such as 256, 384 or 512. Then, according to the above definitions,
the label of an internal node N is a k-bit string that is computed in two
steps:

1. First, the function f , which performs the role of a one-to-one encoding,
is applied to the sequence s of type-label pairs of the children of N ,
producing a bit string that we shall call the prelabel of N .

2. Then the hash function h is applied to that prelabel to compute the
label of N .

For example, if N has three children with types t1, t2, t3 and labels l1, l2, l3,
then the sequence of type-label pairs is

s = [(t1, l1), (t2, l2), (t3, l3)],

the prelabel of N is

f(s) = f([(t1, l1), (t2, l2), (t3, l3)]),

and the label of N is

h(f(s)) = h(f([(t1, l1), (t2, l2), (t3, l3)]).
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Note. We use square brackets to denote sequences, e.g. [ ] denotes ∅, [a] de-
notes {(0, a)}, [a, b] denotes {(0, a), (1, b)}, [a, b, c] denotes {(0, a), (1, b), (2, c)},
etc.

5.2.2 Isomorphism of typed hash trees of the same kind

We say that two trees of the same kind are isomorphic if there exists a
bijection between their sets of nodes such that corresponding nodes have
same type, same label, and sequences of corresponding children.

5.2.3 Subtrees, pruning and grafting

Given a typed hash tree X = (K,N , T ,L,F) and a node N of X, the set
of descendents of N in X (N not being considered a descendent of itself),
is the smallest set S that contains the children of N and, for every N ′ ∈ S,
also contains the children of N ′. The subtree of X rooted at N is the typed
hash tree X ′ = (K,N ′, T ′,L′,F ′) where N ′ is the union of {N} and the
set of descendents of N in X, and T ′, L′ and F ′ are the restrictions of the
functions T , L and F to the domain N ′.

Given a type hash tree X = (K,N , T ,L,F) and a subtree X ′ of X
rooted at node N , the result of pruning X ′ from X is the typed hash tree
X ′′ = (K,N ′′, T ′′,L′′,F ′′), where N ′′ is the set of nodes of X that are not
descendents of N , T ′′ and L′′ are the restrictions of T and L to N ′′, and
F ′′ is the function that maps N to ∅ and every node N ′ of X that is not a
node of X ′ to F(N ′). Figure 2 illustrates the result of pruning the leftmost
three-node subtree from the typed hash tree of Figure 1.

A pruned derivative of X is a tree derived from X by pruning zero or
more subtrees. (X is a pruned derivative of itself.)

Given a typed hash tree X = (K,N , T ,L,F) with a dangling node S, and
a typed hash tree X ′ = (K,N ′, T ′,L′,F ′) of same kind K as X, with root S,
such thatN∩N ′ = {S} and L(S) = L′(S), the typed hash tree X ′′ derived by
grafting X ′ onto X is defined as the typed hash tree X ′′ = (K,N ′′, T ′′,L′′,F ′′)
where N ′′ = N ∪N ′, T ′′ = T ∪T ′, L′′ = L∪L′, and F ′′ is the function with
domain N ′′ that maps every node N of X other than S to F(N) and every
node N ′ of X ′ to F ′(N ′).
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Figure 2: Result of pruning the leftmost three-node subtree from the typed
hash tree of Figure 1. Dashed-lines are used to illustrate the nodes that have
been removed. The root of the subtree becomes a dangling node, but its type
and its label do not change.
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5.2.4 Representation of a multiset of key-value pairs

A typed hash tree X = (K,N , T ,L,F) of kind K = (T, d, L, h, f) is a repre-
sentation of a multiset M of key-value pairs defined as follows:

• A leaf node N of type t 6= d with label l ∈ L(t) represents the key-value
pair (t, l), where t is the key and l is the value.

• The elements of M are the key-value pairs that are thus represented
by the non-dangling leaf nodes of X, the multiplicity of each such pair
in M being the number of nodes of X that represent the pair.

5.3 Omission tolerance

The following facts follow directly from the above definitions and show that it
is possible to omit key-value pairs from a typed hash tree without invalidating
the root label of the tree.

Fact 1. The multiset of key-value pairs represented by a pruned derivative
X ′ of a typed hash tree X is a submultiset of the multiset of key-value pairs
represented by X; it is a strict submultiset if X ′ 6= X.

Fact 2. A pruned derivative of a typed hash tree X has the same root label
as X.

Fact 2 can be viewed as stating that the root label of a typed hash tree,
if used as a checksum of the key-value pairs represented by the tree, has
omission tolerance.

5.4 Addition intolerance

The concepts of linear description and stack-based label computation (SBLC)
of a typed hash tree, defined below in sections 5.4.1 and 5.4.2, are needed in
Section 5.4.3 for the proof of Theorem 1.

5.4.1 Linear description of a typed hash tree

The linear description of a typed hash tree of kind (T, d, L, h, f) is a sequence
whose entries correspond to the nodes of the tree arranged in depth-first post
order, the entry corresponding to a node N being itself a sequence consisting
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of the type of N , followed by number of children of N and, if N is a leaf
node, by the label of N . Thus if N is a leaf node with type t and label l, the
corresponding entry of the linear description is [t, 0, l], and if N is an internal
node with n children, the corresponding entry is [d, n].

The linear description of a typed hash tree X of kind (T, d, L, h, f) can
be used to define another typed hash tree Y of same kind as X whose nodes
are the indices of entries in the description, as follows. If i is the index of an
entry [t, 0, l], i is a leaf node of Y with type t and label l. If i is the index
of an entry [d, n], i is an internal node of Y with type d, the sequence of its
children is [i− n, i− n− 1, . . . , i− 1], and its label is recursively defined as
h(f(s)), where s is the sequence of the type-label pairs of its children. The
bijection between the nodes of X and their positions in the depth-first post
order traversal of X, which are the positions of their corresponding entries
in the linear description X, is then an isomorphism between X and Y .

Hence we can say that two trees of same kind that have the same linear
description are isomorphic, and, since the converse is trivially true, that two
trees of same kind are isomorphic iff they have the same linear description.

5.4.2 Stack-based label computation

The labels of the internal nodes of a typed hash tree, up to the root label,
can be computed from the types and labels of the leaf nodes. One particular
method for performing this computation traverses the nodes of the tree in
depth-first post order and keeps track of intermediate results in a stack. We
refer to a computation performed by this method as a stack-based label com-
putation (SBLC). The proof of Theorem 1 makes use of a formal specification
of the SBLC of a typed hash tree, which we provide in this section.

For our purposes, a stack is a just a mathematical sequence; the top of the
stack is the last entry in the sequence; pushing to the stack means appending
to the sequence; popping from the stack means removing from the end of the
sequence.

The SBLC of a typed hash tree X of kind (T, d, L, h, f) consists of a
sequence of steps triggered by the nodes of X arranged in depth-first post
order. Each step takes the computation from one stage to a next stage. Each
stage is a pair (S,R), where S is a stack consisting of pairs (t, l) where t ∈ T
and l ∈ L(t), and R is a suffix of the linear description of X (R is mnemonic
for “the Rest of the description”).

In the initial stage (S0, R0), S0 is the empty stack and R0 is the entire
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linear description.
Each node N of X triggers a step that takes the computation from stage

(S,R) to stage (S ′, R′) as follows:

• R′ is derived from R by removing the first entry of R.

• If N is a leaf node with type t and label l, S ′ is derived from S by
pushing (t, l) to S. We refer to a step where this is the case as a push
step.

• If N is an internal node with n children (n > 0), S ′ is derived from S
by popping n entries and pushing the entry (d, h(f(s))), where s is the
sequence of entries popped. We refer to a step where this is the case
as a hash step.

In the final stage of the computation, the stack contains a single entry (d, r),
where r is the root label of X, and the suffix of the linear description is
empty.

Since each step removes the first entry from R, the step triggered by
node N applies to a stage where the first entry of R is the entry of the linear
description that corresponds to N . The computation is entirely defined by
its initial stage, and could be specified by referring to entries of the linear
description rather than nodes of X. However, it will be convenient for the
proof of Theorem 1 to refer to nodes of X triggering steps of the computation.

5.4.3 Typed hash trees with same root label

Theorem 1. Let X and Y be two typed hash trees of the same kind. If X
and Y have the same root label, then either (i) Y is isomorphic to a pruned
derivative of X (which may be X itself), or (ii) the label of an internal node
of Y is equal to the label of a dangling node of X, or (iii) an internal node
of Y has the same label as an internal node of X but a different prelabel.

Proof. Let X and Y be two typed hash trees of same kind (T, d, L, h, f) that
have the same root label.

Let C be the SBLC of Y . In the last stage of C the stack consists of one
pair (d, r), where r is the root label of Y , and the linear description is empty.
Since r is also the root label of X, the last stage of C is the same as the last
stage in the SBLC of X. Hence, since X is a pruned derivative of itself, the
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set of stages of C that are also stages of the SBLC of a pruned derivative of
X is not empty.

Let E = (S,R) be the earliest stage of C that is also a stage of the SBLC
of a pruned derivative of X, let X ′ be a minimally pruned such derivative,
and let C ′ be the SBLC of X ′. (By X ′ being a “minimally pruned such
derivative” we mean that X ′ is a pruned derivative of X having E as a stage
of its SBLC, and is not a pruned derivative of another pruned derivative of
X having E as a stage of its SBLC.)

In an SBLC, the stack is only empty in the initial stage of the computa-
tion. Therefore if S is empty, E is the initial stage in both C and C ′, and
R is the entire linear description of both Y and X ′. Having the same linear
description, Y and X ′ are isomorphic, and Y satisfies condition (i) of the
theorem.

If S is not empty, let (t, l) be the entry at the top of S, and consider the
steps leading to stage E in C and C ′, which we shall call “the C step” and
“the C ′ step” respectively. Let N be the node of Y that triggers the C step,
and N ′ the node of X ′ that triggers the C ′ step. Both N and N ′ have type
t and label l, but may differ in the number of their children when their type
is d.

The C step and the C ′ step cannot both be push steps, because then E
would be preceded in both C and C ′ by the same stage E ′ = (S ′, R′), with
S ′ being derived from S by popping one entry, and R′ from R by prepending
the entry [t, 0, l]. This would contradict the definition of E as the earliest
stage of C that is also a stage of the SBLC of a pruned derivative of X, E ′

being an earlier stage of C that is also a stage of C ′.
Only a push step can put an entry (t, l) with t different from d at the top

of the stack. Hence, since either the C step or the C ′ step is not a push step,
we must have t = d.

The C ′ step cannot be a hash step if the C step is a push step. If that
were the case, let X ′′ be the tree obtained by pruning the subtree of X ′

rooted at N ′, and let C ′′ be the SBLC of X ′′. The SBLCs of X ′ and X ′′

would be identical following the step triggered by N ′ (which is a node of
X ′′ as well as X ′, and triggers a hash step in X ′ and a push step in X ′′).
Therefore E would also be a stage of the SBLC C ′′ of X ′′, and it would be
preceded in C and C ′′ by the same stage E ′ = (S ′, R′), S ′ being derived from
S by popping one entry, and R′ from R by prepending the entry [t, 0, l]. This
would contradict the definition of E as the earliest stage of C that is also a
stage of the SBLC of a pruned derivative of X, E ′ being an earlier stage of
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C that is also a stage of C ′′.
This leaves two possibilities. The C ′ step may be a push step while the

C step is a hash step, or the C ′ step and the C step may both be hash steps.
Consider first the case where the C ′ step is a push step while the C step

is a hash step. Then N is an internal node of C, t = d, and N ′ is a leaf node
with type d, i.e. a dangling node, of X ′. But N ′ must also be a dangling node
of X, for otherwise the tree X ′′′ derived from X ′ by grafting the subtree of
X rooted at N ′ would be a pruned derivative of X having E as a stage of
its SBLC, and X ′ would be a pruned derivative of X ′′′, contradicting the
minimality of X ′. Therefore N ′ is a dangling node of X having the same
label l as the internal node N of Y , hence Y satisfies condition (ii) of the
theorem.

Now consider the case where the C step and the C ′ step are both hash
steps. Then N and N ′ are internal nodes of Y and X ′ with same label l. If
s and s′ are the sequences of the type-label pairs of the children of N in Y
and N ′ in X ′ respectively, we have l = h(f(s)) = h(f(s′)). Let S ′ by the
result of popping the top entry of S. In the stage of C that precedes E, the
stack consists of the entries of S ′ followed by those of s, and the suffix of
the linear description has [d, n] as its first entry, where n is the length of s,
followed by the entries of R. Similarly, in the stage of C ′ that precedes E,
the stack consists of the entries of S ′ followed by those of s′, and the suffix
of the linear description consists of [d, n′] followed by the entries of R, where
n′ is the length of s′. The sequences s and s′ cannot be identical, because
then the stages of C and C ′ preceding E would be identical, contradicting
the definition of E as the earliest stage of C that is also a stage of the SBLC
of a pruned derivative of X (such as X ′). Therefore, since f is one-to-one,
the prelabels f(s) and f(s′) of the internal node N of Y and the internal
node N ′ of X ′ are not the same. Hence N is an internal node of Y having
the same label l as the internal node N ′ of X ′ but a different prelabel. But
it follows from the fact that X ′ is a pruned derivative of X that N ′ is also a
node of X and has the same prelabel in X as in X ′. Thus an internal node
of Y has the same label as an internal node of X but a different prelabel,
and Y satisfies condition (iii) of the theorem.

Cryptographic hash functions are deemed to have certain security prop-
erties, including collision resistance and preimage resistance. Informally, a
hash function h is said to have collision resistance if it is infeasible to find a
collision, i.e. a pair (x, x′) such that h(x) = h(x′), and to have preimage re-
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sistance if, given y chosen at random with a uniform probability distribution
over the codomain of h, it is infeasible to find x such that y = h(x). The
term “infeasible” is informal in these definitions, and is difficult to formalize
when defining the security of unkeyed hash functions [9, end of Section 5.1.1].

Since the hash function h of a typed hash tree X is a cryptographic hash
function and is therefore deemed to have collision and preimage resistance,
it follows from Theorem 1 that, if the labels of the dangling nodes of X, if
any, are chosen uniformly at random from the codomain of h, it is infeasible
for an adversary to construct a typed hash tree Y of same kind as X that
has the same root label as X but whose key-value pairs are not a submultiset
of those of X. Indeed, if X and Y have the same root label, then X and
Y have to satisfy one of conditions (i), (ii) or (iii) of Theorem 1. But by
Fact 1, if the key-value pairs of Y are not a submultiset of those of X, Y is
not a pruned derivative of X and condition (i) is not satisfied. And, since the
label of an internal node is the hash of its prelabel, if conditions (ii) or (iii)
were satisfied, the adversary would have breached the preimage resistance or
collision resistance of h, respectively, which is deemed infeasible.

Thus Theorem 1 implies that the root label of a typed hash tree has ad-
dition intolerance with respect to the key-value pairs represented by the tree,
provided that the labels of the dangling nodes, if any, are chosen uniformly
at random from the codomain of the hash function of the tree.

5.4.4 Protection against attacks on a pseudo-random bit genera-
tor

The proviso of the above addition-intolerance result can be satisfied by using
a pseudo-random bit generator to generate the labels of the dangling nodes,
seeded with at least k bits of entropy if the codomain of h is the interval
[0, 2k).

In practice it may be difficult to be sure that the entropy requirement
is satisfied. In particular it may not be satisfied if the generator has been
compromised by an adversary. To mitigate the risk that the generator has
been compromised or may not have enough entropy for some other reason,
it may be prudent to apply a hash function h′ other then h to the output of
the generator.

Doing so is a mitigation because different members of a family of hash
functions, such as, e.g. SHA-256, SHA-386 and SHA-512, are designed to
avoid cross-collisions between them, i.e. pairs (x, x′) such that h(x) = h′(x′)
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where h and h′ are different members of the family. It should also be reason-
able to assume that it is infeasible to find cross-collisions between members
of different families of hash functions. Therefore if the label y of a dangling
node of X is the output of a hash function h′, it should be infeasible for the
adversary constructing Y to create an internal node of Y whose label is the
output of the hash function h of the typed hash trees X and Y .

5.5 An omission-tolerant cryptographic checksum

The omission-tolerance result of section 5.3 and the addition-intolerance re-
sult of section 5.4.3 can be combined to state that the root label of a typed
hash tree whose dangling nodes (if any) have random labels is an omission-
tolerant cryptographic checksum of the collection of key-value pairs repre-
sented by the tree.

6 Rich credentials

A rich credential is based on a typed hash tree, which is pruned as desired
when the credential is presented, to allow for selective disclosure of attributes
and selective presentation of verification factors. State transitions are de-
scribed in sections 6.5–6.8.

6.1 Components of a rich credential

A rich credential comprises the following components, as illustrated in Fig-
ure 3:

1. A private key, which is a component of a key pair. The key pair is
generated in the device that carries the credential and the private key
never leaves the device. We shall refer to the device that carries the cre-
dential as the subject’s device or, simply, the device. Possession of the
subject’s device that contains the private key is one of the verification
factors provided by the rich credential. The key pair may pertain to
any kind of public key cryptosystem, such as a signature cryptosystem,
an encryption cryptosystem or a key exchange cryptosystem.

2. A secret salt that is used to compute the salted hash of the subject’s
password (SHoSP) of Section 3.2. This secret salt and the hashing used
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to compute the SHoSP are unrelated to the salts and the hashing used
in a typed hash tree as described in Section 5. Like the private key,
the secret salt is generated in the subject’s device and never leaves the
device.

3. A rich certificate comprising:

(a) The public key component of the key pair.

(b) Metadata like the metadata found in an ordinary public key cer-
tificate, including:

i. A version number, which references a specification of a par-
ticular format of a rich credential, thus allowing the details of
the format to evolve over time.

ii. A validity period.

iii. A serial number.

iv. A URL of a service that provides revocation information, such
as a signed or unsigned list of serial numbers of revoked cer-
tificates, or the revocation status of a particular certificate
identified by its serial number.

v. A signature cryptosystem identifier that identifies the algo-
rithm used to compute the signature included in the certifi-
cate, and the corresponding algorithm to be used for verifying
it.

vi. An organization identifier that identifies the issuer of the rich
credential.

(c) A description of the typed hash tree of the credential, comprising
a node array and a label array, which mutate as the credential
transitions from one state to another.

(d) A signature by the credential issuer on the public key, the meta-
data, and the root label of the typed hash tree. Crucially, the
signature covers the root label of the tree, rather than the node
array and the label array included as components of the certificate.
This allows the node array and the label array to change without
invalidating the signature as the credential transitions from one
state to another.

26



The rich certificate is a mutable data structure that goes through four
states:

1. The issuance state, which is the state of the certificate after the issuer
has computed the signature but before the certificate has been modified
for transmission to the subject.

2. The storage state, i.e. the state in which it is transmitted by the issuer
to the subject and stored in the subject’s device. The salted hash of
the password (SHoSP), and any biometric keys (see Section 6.7.1), are
not present in the storage state.

3. The presentation state, i.e. the state in which the credential is trans-
mitted by the subject to the verifier. Attributes that are not disclosed
and verification data for verification factors that are not presented are
omitted from the presentation state.

4. The verification state, i.e. the state in which the credential signature
is verified. The verifier may add data such as the SHoSP or a bio-
metric key to the presentation state before verifying the verifying the
credential.

6.2 Typed hash tree of a rich credential

An example of a typed hash tree of a rich credential was shown above in
Figure 1. The same example is shown again in Figure 4, with added node
numbers indicating the position of each node in the depth-first post order
traversal of the tree. Each box illustrates a node and the lines between boxes
represent the parent-child relation. In each box the first line is the type of
the node and the second line informally describes the label, while the number
next to the box is the node number.

For example, node no. 1 has type 301 and its label is the name of the
subject (e.g. represented as an UTF8 string); it represents the name attribute
of the subject, encoded as a key-value pair, where 301 is a numeric code for
the subject-name attribute. Such codes are defined by a specification of the
credential, referenced by the version number in the metadata component of
the rich certificate.

Recall that internal nodes and salt nodes are labeled by the distinguished
type. In the example, the distinguished type of the typed hash tree if d = 0.
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Figure 4: Depth-first post order traversal of a typed hash tree

Node no. 6 is an internal node, with type 0, labeled by a hash of the types
and labels of its children, which are the nodes numbered 2 and 5. Recall also
that salt nodes are leaf nodes with random labels and undistinguished types.
In the example of Figure 4 they all have type 1.

6.3 Node and label arrays

The node array and label array components of the rich certificate provide a
description of the typed hash tree of the credential.

The node array has entries for the nodes of the tree, listed in depth-first
post order. Each entry is itself a two-entry array containing the type of
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the node and the number of children of the node, but not the label. As an
example, here is the node array of the typed hash tree of Figure 4:

[ [1,0], [301,0], [0,2], [1,0], [302,0], [0,2], [0,2], [1,0], [303,0],

[0,2], [1,0], [400,0], [0,2], [0,2], [0,2], [1,0], [501,0], [502,0],

[0,3], [1,0], [503,0], [504,0], [0,3], [1,0], [601,0], [0,2], [0,3],

[0,2] ]

The label array is a sparse array containing the labels of some of the
nodes of the trees, each at the same position as the entry for the node in
the node array, i.e. at the position of the node in the first-order depth first
traversal. Different labels are included in different states of the certificate.
All the labels are included in the issuance state, and all the labels of the
possibly pruned tree are included in the verification state, but the labels of
most internal nodes are excluded in the storage and presentation states, as
discussed in Section 6.9 and specified in sections 6.10 and 6.11.

6.4 Peripheral subtrees

In the typed hash tree of a rich credential, every internal node is either a
peripheral node, all of whose children are leaf nodes, or a central node, all of
whose children are internal nodes. A peripheral subtree is a subtree rooted
at a peripheral node. For example, the typed hash tree shown in figures 1
and 4 has seven peripheral subtrees, shown in Figure 5.

The typed hash tree of a rich credential may include four categories of
peripheral subtrees:

• Attribute subtrees, one for each attribute of the subject asserted by
the issuer.

• A password subtree, enabling the use of a password as a verification
factor.

• Revocable biometric subtrees, one for each revocable biometric modal-
ity for which the credential asserts verification data.

• Non-revocable biometric subtrees, one for each non-revocable biometric
modality for which the credential asserts verification data.
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6.5 Attribute subtrees

Figure 6 shows an example of an attribute subtree in the issuance state. It
has a peripheral node and two leaf nodes: a salt node and an attribute node.
The label of the salt node is a random salt generated by the issuer, which we
call the sibling salt. The attribute node represents an attribute encoded as a
key-value pair. In the example it represents the subject-name attribute, as
discussed above in Section 6.2.

In the storage state the label array includes the labels of the leaf nodes,
but there is no need to store the label of the peripheral node.

If the attribute is omitted in a credential presentation, the label of the
peripheral node is computed from the types and labels of the two leaf nodes
and added to the label array. Then the attribute subtree is pruned from the
typed hash tree in the presentation state, by removing the entries for the leaf
nodes from the node array, and adjusting the indices of the entries in the
label array accordingly. The peripheral node becomes a dangling node.

If the attribute is not omitted, the attribute subtree is not altered in the
transitions from the storage state to the presentation and verification states.

The purpose of the sibling salt is to prevent the attribute from being
guessed by the verifier when it is not intentionally disclosed in a presentation
of the credential. Without the sibling salt, the verifier could test guesses of
the attribute against the label of the dangling node, which would be a hash
of the attribute, and would have no difficulty in guessing it, as the values of
attributes such as name or birthdate have little entropy.

6.6 Password subtree

Figure 7 shows an example of a password subtree in the issuance state. It has
a peripheral node and two leaf nodes: a salt node and a password node. The
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salt node has the undistinguished type 1, and its label is a sibling random
salt generated by the issuer. In the example, the type of the password node
is 400. The password node is labeled by the SHoSP. Recall that the SHoSP
is the hash of the password with the secret salt, which is a component of the
rich credential that is generated by the subject’s device and never leaves the
device. We stress that the secret salt is not one of the salts that label nodes
of the typed hash tree.

At issuance time, the subject’s device asks the subject to choose the
credential password, generates the secret salt and computes the SHoSP, which
it sends to the issuer. The issuer uses the SHoSP in the computation of
the root label of the typed hash tree and the signature that is included
in the certificate. But the issuer removes the SHoSP from the label array
as it transitions the certificate to the storage state before delivering it to
the subject’s device. Thus in the storage state the label array includes the
random salt but not the SHoSP. It also includes the label of the peripheral
node, except as discussed below in Section 6.9 and specified in section 6.10.

A rich credential features selective presentation of verification factors,
and knowledge of the password is one of the verification factors that may
be omitted from a presentation. If it is omitted, the password subtree is
pruned from the typed hash tree in the presentation state, by removing the
entries for the leaf nodes from the node array, and adjusting the indices of
the entries in the label array accordingly. The peripheral node becomes a
dangling node.

If the password verification factor is not omitted, the subject’s device
removes the label of the peripheral node from the label array in the transition
from the storage state to the presentation state; this preempts a possible
bug in the verifier code, which might otherwise fail to verify that the label
of the peripheral node is the hash of the types and labels of its children.
The subject’s device prompts the subject for the password, computes the
SHoSP, and sends the SHoSP to the verifier along with the certificate in
the presentation state. The verifier adds the SHoSP to the label array as it
transitions the certificate from the presentation state to the verification state.
(Equivalently, the SHoSP may be added to the label array by the subject’s
device as part of the transition to the presentation state.)

As in an attribute subtree, the purpose of the sibling salt in the password
subtree is to prevent a guessing attack by the verifier when the subtree has
been pruned. In the password subtree, the sibling salt protects the SHoSP
and the password from which the SHoSP is derived. However, the password is
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also protected by the secret salt component of the rich credential. Therefore
the role of the sibling salt is less important in the password tree; it is only
included as a matter of defense-in-depth: the sibling salt of the password
subtree is not entirely redundant because it is generated by the issuer rather
than the subject’s device; if the random or pseudo-random bit generator used
by the subject’s device is compromised, the salt generated by the issuer still
provides protection against guessing attacks by the verifier.

6.7 Revocable biometric subtrees

6.7.1 Revocable biometrics

Biometric identification entails privacy risks that can be mitigated by the
use of privacy preserving biometric techniques. Such techniques are known
by many different names, including revocable biometrics, cancelable biomet-
rics, biometric key generation, biometric cryptosystems, biometric encryp-
tion, and biometric template protection. A survey of such techniques can be
found in [10]. A brief introduction can be found in a Pomcor blog post [11].

In ordinary, non-revocable, one-to-one biometric verification, a verifica-
tion sample is matched against a biometric template derived earlier from an
enrollment sample. Usually, both the enrollment sample and the verifica-
tion sample are processed to extract features to be used in the comparison.
The result of processing a sample is called a feature vector or a biometric
code. The biometric template may be the biometric code derived from the
enrollment sample, or may result from further processing of the enrollment
biometric code to facilitate matching. In some modalities the verification
sample may be directly compared to the enrollment sample with no prior
feature extraction; in that case the biometric template is simply the enroll-
ment sample.

In revocable biometrics, a biometric helper datum is used instead of a bio-
metric template. A biometric code derived from a biometric sample submit-
ted by the subject is combined with the helper datum to produce a biometric
key, in such a way that different but genuine samples (i.e. samples submitted
by the legitimate subject rather than by an impostor) consistently produce
the same key. The helper datum is such that it is deemed infeasible to derive
from it any useful biometric data. Furthermore, the helper datum and the
biometric key are randomized, which makes it possible to revoke and replace
them if compromised.
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Figure 8: A revocable biometric subtree

One particular methodology for implementing revocable biometrics makes
use of an error correction system. The biometric key is randomly generated, a
codeword of the error correction system is obtained by adding redundancy to
the biometric key, and the helper datum is obtained by x-oring the codeword
with an enrollment biometric code derived from an enrollment sample. When
a verification biometric code derived from a verification sample is submitted
later, it is xored with the helper datum, producing a bit string that differs
from the codeword only at those bit positions where the verification biometric
code differs from the enrollment biometric code. If the verification sample is
genuine, the error correction algorithm is able to correct those bit differences
to recover the codeword, and remove the redundancy from the codeword to
obtain the biometric key.

The error-correction based methodology was used in [12] for iris recogni-
tion.

A rich credential supports the use of both revocable and non-revocable
biometric modalities as verification factors.

6.7.2 Revocable biometrics in a rich credential

Figure 8 shows an example of a revocable biometric subtree that supports
the use of a revocable biometric modality, in the issuance state. It has a
peripheral node and three leaf nodes: a salt node, a helper-datum node, and
a biometric-key node. The salt node has the undistinguished type 1, and its
label is a sibling random salt generated by the issuer.

In the example, the helper-datum node and the biometric-key node have
types 501 and 502 and are labeled by a left iris helper datum and biometric
key respectively. The issuer obtains an image of the left iris of the subject
taken with an infrared camera and uses the image to generate the randomized
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helper datum and biometric keys. The issuer places the helper datum and
the biometric key as the labels of the helper-datum node and the biometric-
key node, and uses them to compute the label of the peripheral node, the
root label of the tree, and the signature.

The issuer includes the sibling salt and the helper datum in the label
array that it delivers to the subject and becomes a component of the rich
certificate in the storage state. It also includes the label of the peripheral
node, except as discussed below in Section 6.9 and specified in section 6.10.

A revocable biometric subtree supports a biometric verification factor,
which may be selected or omitted in a particular presentation of the rich
credential to a verifier.

If the biometric factor is omitted, the revocable biometric subtree is
pruned from the typed hash tree in the presentation state, by removing the
entries for the leaf nodes from the node array, and adjusting the indices of
the entries in the label array accordingly. The peripheral node becomes a
dangling node.

If the biometric factor is selected for presentation, the subject’s device
removes the label of the peripheral node from the label array in the transition
from the storage state to the presentation state; this preempts a possible
bug in the verifier code, which might otherwise fail to verify that the label
of the peripheral node is the hash of the types and labels of its children.
After receiving the certificate in its presentation state, the verifier obtains
a biometric sample from the subject, combines it with the helper datum to
compute the biometric key, and adds the biometric key to the label array in
the transition from the presentation state to the verification state of the rich
certificate.

Use of the sibling salt is a redundant precaution aimed at preventing any
leakage of information to the verifier when the biometric factor is omitted.

6.8 Non-revocable biometric subtrees

Figure 9 shows an example of a non-revocable biometric subtree that supports
the use of a non-revocable biometric modality, in the issuance state. It has
a peripheral node and two leaf nodes: a salt node and a biometric-template
node. The salt node has the undistinguished type 1, and its label is a sibling
random salt generated by the issuer. In the example, the biometric-template
node has type 601 and is labeled by a facial image template. The facial image
template could be a vector of facial features extracted by the issuer from a
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Figure 9: A non-revocable biometric subtree

facial image of the subject, or simply the facial image itself.
The issuer includes the sibling salt and the biometric template in the

label array that it delivers to the subject and becomes a component of the
rich certificate in the storage state.

A non-revocable biometric subtree supports a biometric verification fac-
tor that may be selected or omitted in a particular presentation of the rich
credential to a verifier. If the biometric factor is omitted, the subject’s de-
vice computes the label of the peripheral node and adds it to the label array
before pruning the subtree from by removing the entries for the leaf nodes
from the node array, and adjusting the indices of the entries in the label
array accordingly. The peripheral node becomes a dangling node. If the
biometric factor is selected for presentation, the subtree is not modified in
the transition from the storage state to the transition state.

The sibling salt prevents the verifier from mounting a guessing attack
against the template when the biometric factor is omitted.

6.9 Joint protection of the password and a biometric
key against physical capture

The labels of most internal nodes are omitted from the label array in the
storage and presentation states to save storage space and communication
bandwidth, because they can be recomputed. However the label of the pass-
word node is not included in the storage state, hence the root label of the
password subtree cannot be recomputed from the labels of leaf nodes when
the certificate is transitioned from the storage state to the presentation state.
This is a problem if the password subtree is pruned in the transition to the
presentation state, in which case the root node of the password subtree be-
comes a dangling node, and the subject’s device has no way of computing its
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label, short of asking the user for the password even though knowledge of the
password is not one of the selected verification factors. This problem can be
solved by keeping the root label of the password subtree in the storage state.

The same problem occurs in connection with any revocable biometric
modalities supported by the rich credential because the biometric keys are
omitted from the storage state, and the same solution is available.

However, if the rich credential includes a revocable biometric modality
and it is known at issuance time that both the the password and the revocable
biometric will be used as verification factors in every presentation of the
credential, it is best to not keep the root labels of the password subtree
and the revocable biometric subtree in the storage state. Omitting those
two labels prevents an adversary who physically captures the credential from
mounting separate guessing attacks against the password and the biometric
key using the root labels of the subtrees. The adversary can only mount a
joint guessing attack against the password and the biometric key by testing
guesses against the signature in the certificate, and that attack will fail if the
combined entropy of the password and the biometric key is sufficiently high.

6.10 Rich credential issuance protocol

The issuance protocol for a rich credential has two stages. Stage 1 takes
place only once. Stage 2 may be repeated for each computing device where
the subject wants to install a credential, as described below in Section 6.13.

6.10.1 Stage 1

In Stage 1, the issuer creates a record for the subject containing attributes
and biometric verification data, retrievable by a security code. The subject’s
record contains biometric templates for the non-revocable biometric modal-
ities only. Verification data for revocable biometric modalities is obtained
in Stage 2 and is not stored in the subject’s record, for reasons discussed in
Section 6.13.

Stage 1 may involve in-person and/or remote interactions between the
subject and the issuer. Remote interactions may include one or more remote-
identity proofing events with credentials provided by upstream identity sources.

After the subject’s record has been assembled, the issuer provides the
security code to the subject. For stronger security, the code may be split
into two or more portions delivered through different channels. For example,
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if Stage 1 takes place during an in-person visit of the subject to the issuer,
the issuer may provide a portion to the subject in the course of the visit and
send another portion to the subject’s address of record.

6.10.2 Stage 2

Stage 2 takes place remotely between the subject’s device and the issuer. It
comprises the following steps:

1. The subject’s device generates a key pair for a public key cryptosystem
and a random high entropy bit string to be used as the secret salt.

2. The subject’s device prompts the subject for the password and com-
putes the hash of the password and the secret salt, i.e. the SHoSP.

3. If the credential is to include a revocable biometric modality, the sub-
ject’s device obtains a biometric sample for the modality (e.g. an iris
image). This step is repeated if the credential is to include multiple
revocable modalities.

4. The subject’s device establishes a TLS connection (or some other secure
connection) to the issuer with authentication of the issuer during the
handshake, and sends the following data over the connection:

• The security code.

• The public key component of the key pair.

• The SHoSP.

• Biometric samples for revocable biometric modalities to be in-
cluded in the credential, if any.

5. The subject’s device proves knowledge of the private key component
of the key pair to the issuer over the TLS connection in a manner
dependent on the kind of public key cryptosystem of the key pair, as
described below in Section 6.12.

6. The issuer generates the randomized helper datum and biometric key
for each revocable biometric data from the samples received from the
subject’s device.
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7. The issuer constructs the node array of the typed hash tree of the rich
credential, with attribute subtrees for the attributes in the subject’s
record, a password subtree, a non-revocable biometric subtree for each
template in the subject’s record (if any), and a revocable biometric
subtree for each revocable biometric sample received from the subject’s
device. The issuer may also include entries for dangling nodes in the
node array, to hide the fact that certain subtrees have been omitted,
e.g. because they are not applicable to the subject of the rich credential.

8. The issuer fills in the labels of the leaf nodes in the label array, which
include:

• The sibling salts, which it generates using a random or pseudo-
random bit generator.

• The attribute values found in the subject’s record (if any).

• The SHoSP received from the subject’s device.

• The biometric templates found in the subject’s record.

• The randomized helper datum and biometric key for each revo-
cable biometric modality (if any) generated from the samples re-
ceived from the subject’s device.

9. The issuer computes the root label of the typed hash tree, filling in all
the entries for the internal nodes in the label array in the process.

10. The issuer assembles the metadata of the rich certificate, and computes
the signature on the public key, the metadata and the root label of the
typed hash tree.

11. The issuer removes the following labels from the label array, to put the
array in the storage state before transmitting it to the subject’s device:

• The labels of the central nodes. (Recall that the central nodes are
the internal nodes other than the roots of the peripheral subtrees.)

• The root labels of the attribute subtrees.

• The root labels of the non-revocable biometric subtrees.

• The SHoSP that labels the password node.

• The biometric keys that label nodes of the revocable biometric
subtrees, if any.
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12. As discussed above in Section 6.9, if the rich credential includes a re-
vocable biometric modality and it is known that both the password
and the revocable biometric will be used as verification factors in every
presentation of the credential, the issuer also removes the root labels
of the password subtree and the modality.

13. The issuer assembles the rich certificate, comprising the public key, the
metadata, the node and label arrays, and the signature, and sends it
to the subject’s device over the TLS connection.

14. If the public key of the issuer is not generally known, the issuer also
sends to the subject’s device over the TLS connection a certificate chain
comprising the issuer’s certificate and zero or more CA certificates.

15. The subject’s device assembles the rich credential, comprising the pri-
vate key, the secret salt and the rich certificate and stores it, together
with the issuer’s certificate chain, if received from the issuer. The rich
certificate is received from the issuer in the storage state, and is stored
without modification.

6.11 Rich credential presentation and verification pro-
tocol

The presentation and verification protocol comprises the following steps:

1. The subject’s device establishes a TLS connection (or some other secure
connection) to the verifier with authentication of the verifier during the
handshake. All protocol communications between the subject’s device
and the verifier take place over the TLS connection, which is resumed
or reestablished as needed if lost during the protocol.

2. After the TLS connection has been established, the subject and the
verifier negotiate the attributes to be disclosed, the biometric modali-
ties to the presented as verification factors, and whether knowledge of
the password is to be included as a verification factor.

For example, a simple negotiation process could be as follows: the ver-
ifier specifies the attributes and verification factors that it requires;
the subjects’s device determines if corresponding attribute and verifi-
cation factor subtrees are present in the typed hash tree and cancels
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the presentation if they are not; the subject’s device asks the sub-
ject for consent to disclose the requested attributes and present the
requested verification factors and cancels the presentation if consent is
not granted; the negotiated attributes and factors are those requested
by the verifier if the subject’s device has not canceled the presentation.

3. If knowledge of the password has been negotiated to be included as
a verification factor, the subject’s device prompts the subject for the
password and computes the SHoSP.

4. The subject’s device transitions a copy of the rich certificate from the
storage to the presentation state as explained above in sections 6.5–6.8,
according to the result of the negotiation, and sends the presentation
state copy to the verifier, together with the SHoSP if knowledge of the
password has been negotiated to be included as a verification factor.
(Equivalently, the SHoSP may be included in the presentation state
copy as the label of the password node instead of being sent separately.)

5. The subject’s device proves knowledge of the private key component
of the key pair to the verifier over the TLS connection in a manner
dependent of the kind of public key cryptosystem of the key pair, as
described below in Section 6.12.

6. For each revocable biometric modality whose inclusion in the presen-
tation has been negotiated:

• The subject’s device arranges for transmission of a modality sam-
ple from the subject to the verifier in a manner that allows the
verifier to perform presentation attack (spoofing) detection.

• The verifier verifies that no presentation attack is taking place and
computes the biometric key from the helper datum found in the
label array and the transmitted sample.

7. The verifier transitions the rich certificate from the presentation state
to the verification state by:

• Adding the SHoSP to the label array, if knowledge of the pass-
word is a negotiated verification factor and the SHoSP was sent
separately at step 4.
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• Adding to the label array the biometric key of any revocable bio-
metric modality that has been negotiated to be included as a ver-
ification factor.

8. The verifier computes the root label of the typed hash tree from the
labels of the leaf nodes (including the labels of any dangling nodes re-
sulting from the pruning of subtrees or originally present in the issuance
state).

9. The verifier validates the rich certificate, checking that it has not ex-
pired or been revoked, verifying the signature on the public key, the
metadata and the root label of the typed hash tree, and validating the
issuer’s certificate chain, if received from the subject’s device.

10. (This step is postponed until this point to save the subject the trou-
ble of providing a sample for a non-revocable biometric modality if
something else goes wrong, e.g. if the subject mistypes the password.
Providing a sample for a revocable modality cannot be similarly post-
poned because the biometric key is used in the computation of the
root label of the hash tree and the certificate signature.) For each
non-revocable biometric modality whose inclusion in the presentation
has been negotiated, the subject’s device arranges for transmission of a
biometric sample from the subject to the verifier in a manner that al-
lows the verifier to perform presentation attack detection. The verifier
verifies that no presentation attack is taking place and the transmitted
sample matches the biometric template for the modality found in the
label array.

11. The verifier examines the attributes asserted by the issuer in the typed
hash tree (represented by key-value pairs with keys in the node ar-
ray and values in the label array) and relies on them to authorize a
transaction or register the subject as a subscriber to a service.

6.12 Proving knowledge of a private key over a secure
connection in different kinds of cryptosystems

A rich credential includes a key pair pertaining to a public key cryptosystem.
The subject’s device proves knowledge of the private key component of the
key pair to the issuer at step 5 of the issuance protocol, and to the verifier
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at step 5 of the presentation and verification protocol. How this is done
depends on the public key cryptosystem that is used, which one is used
being determined by the rich credential specification referenced by the version
number field in the rich certificate.

In the following protocol descriptions we shall refer to the subject’s device
as the prover, and to the party that verifies possession of the private key as
the verifier, whether that party is playing the role of credential verifier or
credential issuer. All interactions take place over a previously established se-
cure connection (e.g. a TLS connection) between the prover and the verifier,
after the verifier has demonstrated its identity (e.g. a domain name included
in a TLS server certificate) to the prover and received the prover’s public
key.

The protocols use the verifier’s identity demonstrated during connection
establishment to prevent a man-in-the-middle attack where the attacker im-
personates the prover by relaying protocol messages between the prover and
the verifier. Such a man-in-the-middle attack against authentication is known
as a mafia attack [13] or a chess grand master attack [14].

The following protocol is used if the public key cryptosystem is a digital
signature cryptosystem, such as ECDSA, DSA, or RSA:

1. The verifier sends a nonce to the prover.

2. The prover generates a nonce and computes a joint hash of both nonces
and the verifier’s identity.

3. The prover signs the joint hash with the private key.

4. The prover sends its nonce and the signature to the verifier.

5. The verifier computes the joint hash of both nonces and its own identity.

6. The verifier verifies the signature on the joint hash using the public key

The following protocol is used if the public key cryptosystem is an en-
cryption cryptosystem, such as RSA or El Gamal Encryption:

1. The verifier generates a nonce and sends the prover a message encrypted
with the prover’s public key containing the nonce and a joint hash of
the nonce and the verifier’s identity.
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2. The prover decrypts the message and verifies the hash. If hash veri-
fication fails the prover does not complete the protocol. Otherwise it
sends the nonce to the verifier.

3. The verifier verifies that the nonce is equal to the one it sent.

The following protocol is used if the public key cryptosystem is a key
exchange cryptosystem such as Diffie-Hellman (DH) or Elliptic-Curve Diffie-
Hellman (ECDH).

1. The verifier generates a nonce and an ephemeral DH key pair, derives
a symmetric encryption key from the ephemeral private key and the
prover’s public key, and sends the prover the ephemeral public key and
a message encrypted with the symmetric key, containing the nonce and
a joint hash of the nonce and the verifier’s identity.

2. The prover validates the public key received from the verifier. Pub-
lic key validation routines can be found in [15, 5.6.2.3.1] for DH and
[15, 5.6.2.3.2] for ECDH. If validation succeeds, the prover derives the
symmetric key, decrypts the message and verifies the hash. If public
validation or hash verification fails, the prover stops. Otherwise the
prover sends the nonce to the verifier.

3. The verifier verifies that the nonce is equal to the one it sent.

6.13 Installation of rich credentials in multiple devices

Stage 2 of the issuance protocol can be run multiple times to install creden-
tials in multiple devices. However, the security code that the subject uses
to request a credential should be a one-time code, or, if split into one or
more portions, one of the portions should be a one-time code, to prevent an
adversary from obtaining a credential just by capturing a security code kept
in long term storage.

After using the one-time code to install a credential in a device, the sub-
ject must therefore be able to obtain subsequent one-time codes to install
credentials in subsequent devices. If the subject has access to a rich creden-
tial in one device, he or she can obtain a one-time code for another device
by requesting it remotely from the issuer, using the rich credential for au-
thentication. Otherwise, if the subject has a reusable portion of the original
security code, he or she may be allowed to obtain a one-time portion to be
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used in combination with the reusable portion by remotely presenting a sam-
ple of a non-revocable biometric modality to be matched against a biometric
template in the subject’s record kept by the issuer, with presentation attack
detection, and requesting the one-time portion to be sent by physical mail,
telephone, text messaging or email to a destination known to be controlled
by the subject. Otherwise the subject should be required to repeat Stage 1.

Credentials installed in different devices are constructed with the same
attributes, and the same biometric templates of non-revocable modalities,
but different key pairs and different helper data items of revocable biometric
modalities. They may be constructed using the same or different passwords,
at the subject’s discretion.

The reason for using different helper data items in different devices is that
a helper data item should not be stored in the subject’s record together with
the corresponding biometric key, because useful biometric information could
be derived by an adversary who captures both. And storing the helper data
item by itself would not obviate the need to ask the subject for a biometric
sample in Stage 2. It would be more convenient for the user to simply store
a biometric sample in the subject’s record, but then it would not be possible
to claim that no useful biometric information pertaining to the revocable
biometric modality is ever kept in persistent storage.

7 Solution 1: rich credential issued by a DMV

In Solution 1, we propose the use of a rich credential issued by a DMV as
the primary evidence in a remote identity proofing event. Relying on a DMV
for a remote identity proofing solution is a natural choice, because a driver’s
license or non-driver identity card is the default piece of evidence used for
in-person proofing in the US. On the other hand, a problem with this choice
is that a majority of the more than 50 DMVs in the US must be willing to
support the solution in order for the solution to be deployed at population
state. To mitigate this problem, we have designed Solution 1 so that it is
very easy and inexpensive to implement by a DMV.

A DMV already collects a facial image from each of its customers for
use in a driver’s license or non-driver identity card. Therefore we propose
the use of facial recognition as a non-revocable biometric modality in the rich
credential. For the sake of simplicity, no other modality is used, and the facial
biometric template is the unprocessed facial image itself, all image processing
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being done by the verifier. Biometric verification includes presentation attack
detection by submission of an audio-visual stream of the subject reading
prompted state, but only the verifier, not the DMV, is concerned with this.

Since a rich credential supports selective presentation of verification fac-
tors, the verifier may specify whether it requires facial recognition or not.
It may also specify whether it requires knowledge of the password as a ver-
ification factor, i.e. submission by the subject’s device of the salted hash of
the password and the secret salt. A rich credential also supports selective
disclosure of attributes, so the verifier can also request specific attributes.
The user is asked for consent to present the required verification factors and
disclose the requested attributes.

To facilitate wide deployment, the rich credential is kept by the subject
in JavaScript persistent storage provided by a web browser, often referred
to as HTML5 local storage [16], rather than in a smart card or a dongle.
The credential is placed in local storage by the JavaScript front-end of a
credential-issuance web application of the DMV. A request for presentation
of the credential to a verifier is intercepted by a service worker [17] that the
DMV front-end registers with the browser, and is fulfilled by JavaScript code
generated by the service worker, without any involvement from the back-end
of the DMV web application. The fact that the back-end is not involved in
credential presentation greatly reduces the computational demands on the
DMV data center. It also means that the DMV cannot tell how the subject
uses the credential without colluding with the relying parties, an important
privacy feature known as unobservability [8]. Since the DMV JavaScript
front-end runs on the browser, the fact that the DMV does not observe the
presentations of the credential is auditable by the subject.

Figure 10 is a swimlane diagram of the issuance of a rich credential by
a DMV and its presentation to a verifier. Issuance and presentation of a
rich credential were described in general terms in sections 6.10 and 6.11.
Here we describe the specifics that apply to a DMV rich credential. All
communications take place over TLS connections, where the DMV and the
verifier play the role of TLS servers and authenticate with TLS certificates.

In Stage 1 of the issuance process, the DMV determines the subject’s
attributes, obtains the facial image, and stores the attributes and image in
a record for the subject together with a security code that it provides to the
subject and the subject uses in Stage 2 to retrieve the credential.

The security code may be split into two portions that are provided to the
subject through different channels. Usually, Stage 1 will take place during
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Figure 10: Issuance and presentation of a DMV rich credential

47



an in-person visit of the subject to the DMV. In that case one portion of the
security code may be given to the subject in person, while the other may be
sent to the address of record.

Stage 1 may also take place remotely, if the subject is able to provide
sufficient identity evidence using credentials previously issued by upstream
identity sources. For example, if the subject moves to a different state, he or
she may be able to obtain both a rich credential and a physical driver’s license
from the new state of residence without a visit to the DMV by presenting a
rich credential from the old state along with evidence that the subject has
moved to a a new address in the new state. In that case, one portion of the
security code may be provided to the subject online as part of the remote
identity proofing event where he or she presents the rich credential from the
old state, while the other portion is sent through the post to the new address.

Stage 2 of the issuance process takes place remotely and may be repeated
by the subject to install credentials in several devices, as discussed above
in Section 6.13. The subject initiates Stage 2 by accessing the credential
issuance web application of the DMV and sending the security code (both
portions if split), which the DMV application uses to locate the subject’s
record.

After locating the record, the DMV application responds with an HTML
page containing front-end JavaScript code. The front-end code generates a
key pair and a secret salt, asks the subject for a password, computes the hash
of the password and the secret salt, sends the public key and the salted hash
to the back-end of the DMV application, and proves knowledge of the private
key to the back-end of the DMV application. The back-end constructs the
rich certificate as described in Section 6.10 and downloads it to the front-end.
The front-end assembles the credential, stores it in HTML5 local storage, and
registers a service worker with the browser, which will take care of presenting
the credential to verifiers.

Presentation and verification of the rich credential is initiated by a redi-
rection from a verifier web application to the DMV web application, which is
intercepted by the DMV service worker. The redirection conveys an identi-
fication request, which specifies the attributes that the verifier wants to see,
and whether the verifier requires face recognition or submission of the salted
hash of the password and the secret salt, or both, or neither.

Without involving the back-end of the DMV application, the service
worker constructs and displays a web page that describes the identification
request and the verifier web application making the request and asks the
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user for consent. If the verifier requests submission of the salted hash of the
password, the consent page contains an input field for the subject to enter
the password.

If the subject grants consent, the JavaScript credential-presentation code
in the web page retrieves the rich credential from the HTML5 local storage. If
the salted hash of the password is to be submitted (as assumed in the figure),
the credential-presentation code computes it from the password entered by
the subject and the secret salt in the credential, and sends it to the verifier.
The credential-presentation code transitions a copy of the rich certificate to
the presentation state, and sends it to the verifier along with the issuer’s
certificate chain if included in the credential. As described in more detail in
Section 6.11, transitioning the rich certificate to the presentation state in-
volves pruning peripheral subtrees from the typed hash tree of the credential.
The pruned subtrees include the attribute subtrees for the attributes not to
be disclosed, the password subtree if the salted hash of the password is not to
be submitted, and the subtree for the facial image biometric modality if face
recognition is not to be used. The credential-presentation code also proves
knowledge of the private key to the verifier by one of the methods described
above in Section 6.12.

After receiving the certificate and the salted hash of the password, and
verifying the proof of knowledge of the private key, the verifier transitions the
certificate to the verification state by adding the salted hash of the password
to the label array. Then it computes the root label of the typed hash tree,
verifies the signature and validates the certificate.

If verification and validation succeed, and if face recognition is required
(as assumed in the figure), the verifier launches a native application on the
same device where the browser is running or on a different device, which
streams an audio-visual stream of the subject upon which the verifier per-
forms face recognition with presentation attack (spoofing) detection.

If the subject’s device is a traditional laptop or desktop and the native
application runs on that device, the verifier’s web application can launch the
native application using an HTTP response with a Content-Type header that
the native application has been registered to handle. If the subject’s device
is a mobile device and the native application runs on that device, the veri-
fier’s web application can launch it by redirecting the browser to a custom
URL scheme handled by the native application. If the native application
runs on an ancillary mobile device other than the device where the browser
is running, the verifier provides the subject with a security code that identi-
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fies the credential presentation and asks the subject to manually launch the
native application, direct it to the verifier, and enter the security code into
the native application for authentication to the verifier.

The native application transmits to the verifier an audio-visual stream
of the subject reading prompted text. The text is randomly selected or
generated by the verifier with high entropy, to ensure that an adversary
cannot replay an audio-visual recording of the subject reading the same text.
The verifier uses face recognition software to match the facial image in the
label array to the face shown in the video channel of the stream, and speech
recognition to verify that the text being read is the prompted one.

The verifier must also verify that the audio and video channels are in
synchrony, to prevent an adversary from combining a recorded video of the
subject with live audio of the adversary reading the prompted text into an
MP4 or other container stream.

To verify synchrony, the verifier checks that the lip movement in the
video channel of the stream is synchronized with the utterances in the audio
channel. It has been shown in [18] that it is possible to automatically analyze
lip movement in a facial video to the extent of lip reading a sequence of
digits. The prompted text is arbitrary text rather than a sequence of digits,
and lip reading is difficult even for humans, because there are about three
times as many phonemes than visemes in English, and because, while some
visemes are easy to identify, others are obscured by coarticulation [19, 20].
However all that the verifier needs to do is to correlate the timing of easily
distinguishable visemes with corresponding phonemes.

If the subject’s face is recognized and no presentation attack is detected,
the presentation of the rich credential has been successful and the verifier
may then authorize a transaction or register the subject as a subscriber to a
service.

8 Security analysis

8.1 General threat model for all five solutions

8.1.1 Adversarial goals

Remote identity proofing adversaries may have the following goals:

Impersonation An adversary may want to impersonate a subject vis-à-vis
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a verifier, by capturing evidence pertaining to the subject, falsifying
evidence, or tampering with the protocol for remote presentation of
the evidence.

Fraudulent claiming of attributes A subject who has obtained identity
evidence may want to claim attributes that he or she is not entitled to
by modifying the evidence or tampering with the protocol for presenting
the attributes to a verifier.

Repudiation A subject who has presented evidence in an identity proofing
event in order to perform a transaction or register for a service may
want to claim later that he or she has not participated in the event and
performed the transaction or registered for the service.

False implication A verifier may want to implicate a subject in a remote
identity proofing event that has not taken place or has involved a dif-
ferent subject.

PII capture An adversary may want to capture personally identifiable in-
formation (PII) pertaining to a subject that is included in a remote
identity proofing credential or exposed in the process of acquiring or
presenting the credential.

8.1.2 Adversaries

Remote identity proofing procedures may face the following categories of
adversaries:

Subject A subject who has obtained identity evidence is a potential adver-
sary who may want to claim attributes not asserted by the identity
source, impersonate a different subject, or repudiate his or her partici-
pation in a proofing event.

Identity source insider An identity source has to be trusted and therefore
cannot be counted as an adversary. But insiders with limited opera-
tional roles at the identity source may not be fully trusted and may be
counted as adversaries.

Verifier or verifier insider The subject must disclose some verification
data to the verifier, but the verifier or its personnel may be counted as

51



potential adversaries if they try to obtain subject data not meant to be
disclosed during a proofing event, or use subject data to impersonate
the subject vis-à-vis a different verifier.

Network attacker Remote identity proofing takes place across the Internet
and is exposed to attack over the network by any party with access to
the Internet. A network attacker may also be able to extract identity
evidence or PII from a computing device that carries a remote identity
proofing credential by interacting with the device or planting malware
on the device.

We generally assume that a network adversary is not able to breach the
security of a TLS connection established from a subject-controlled com-
puting device to either an identity source or a verifier with destination
authentication, nor to impersonate the destination.1

(In the papers on solutions 3-5, which use NFC technology, we will
discuss the capabilities of adversaries within NFC attack range of a
device carrying identity evidence.)

Physical attacker A physical attacker is an adversary who tries to capture
a device containing digital data, or capture or copy a document carrying
printed data, the latter being relevant to Solution 5.

Identity sources and verifiers may use virtual servers and databases hosted
in computing clouds. The cloud operator and other cloud tenants are po-
tential adversaries. However, for simplicity, we shall not consider a separate
category of cloud attackers. If an identity source uses a computing cloud, we
shall include the operator and other tenants of that cloud in the category of
identity source insiders. Similarly, if a verifier uses a computing cloud, we
shall consider the operator and other tenants of that cloud in the category
of verifier or verifier insiders.

8.2 Adversarial capabilities specific to Solution 1

Solution 1 faces three particular kinds of identity source insider adversaries:

1 Unfortunately, this assumption often fails to be satisfied in practice, because TLS is
repeatedly affected by protocol or implementation vulnerabilities. However, finding miti-
gations for the lack of secure connection capability would be difficult, and implementing
such mitigations is likely to be impractical. The best mitigation against TLS security woes
would be to define and deploy a better protocol [21, 22].
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1. A developer working on the DMV web application, either in-house or
at a contractor or software vendor, may be able to tamper with the
code, causing it to plant malicious JavaScript in the web application
front-end. That malicious code will run in the subject’s browser with
the same origin as the DMV web application, and may therefore be able
to capture the rich credential, including its private key component, and
send it to the adversary.

2. A software engineer at the DMV or at a contractor working for the
DMV or a vendor supplying software to the DMV may be able to
tamper with the pseudo-random bit generator (PRBG) that is used
to generate the random salts used in rich credentials and the labels of
any dangling nodes that may be present in the issuance state of the
rich certificate. While the key pair used to sign credentials is likely
to be generated in a hardware security module (HSM) using a secure
PRBG, the random salts may not be generated inside an HSM and little
attention may be paid to the security of the PRBG used to generated
them.

3. Personnel who interact with the subject during the in-person phase of
credential issuance are in charge of providing the security code to the
subject, and are therefore well placed to copy it and use it to retrieve
the credential issued to the subject.

A network attacker may be able to exploit a cross-site scripting (XSS)
vulnerability in the DMV web application to plant malicious JavaScript code
in the subject’s web browser that will run with the same origin as the DMV
web application, and may then be able to capture the rich credential, includ-
ing its private key component, and send it to the adversary.

A network attacker may also be able to capture the rich credential using
malware that takes control of the subject’s device, and may also capture the
subject’s password and biometric samples as they are entered.

A physical attacker may try to capture the subject’s computing device
with the intention of extracting the rich credential from browser storage.

A physical attacker may also try to steal or copy the document containing
the security code, given to the subject during the in-person visit to the DMV.
Such physical attacker may be a DMV insider as noted above, or some other
adversary.
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8.3 Threats and mitigations pertaining to Solution 1

Threat 1: malicious JavaScript code

An adversary plants malicious JavaScript code in a web page returned by
the DMV web application to the subject’s browser. That code runs in the
browser with same origin as the DMV application and is able to extract
the rich credential, including the private key, the secret salt and the rich
certificate, from HTML5 local storage. The malicious JavaScript code may
be planted by one of the following means:

• It may be planted in a JavaScript library used by the DMV web appli-
cation.

• It may be placed by a cross-site scripting (XSS) attack in a string
included in the HTML source of the web page, which the application
fails to sanitize.

• It may be planted by a malicious insider at the DMV in the front-end
of the DMV web application.

Malicious JavaScript code may also be carried by advertisements, but no
advertisements are presumably placed in the web site of a DMV.

It should be noted that capturing the private key is not sufficient to
impersonate the subject vis-à-vis a verifier that requires presentation of all
three verification factors supported by the rich credential.

Mitigations of Threat 1

Mitigation 1a If the experimental W3C Web Cryptography API [23] is
used to generate the key pair, the resulting public and private keys are
contained in CryptoKey objects, and the private key can be made non-
extractable from its CryptoKey object. The CryptoKey object is not persis-
tent and cannot be converted to a string for storage in HTML5 local storage,
but it may be stored in an alternative persistent browser storage made avail-
able through the IndexedDB API [24].

Making the private key non-extractable does not protect it from being
captured by the code that generates the key pair, nor from used in situ by
malicious JavaScript code with same web origin as the DMV application,
but protects it against being extracted from the subject’s device and used
elsewhere.
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Mitigation 1b The DMV web application that issues rich credentials and
registers the service worker responsible for the presentation of rich credentials
uses a DNS domain different from the DNS domain of the DMV web site
(both may be subdomains of a common DNS domain registered by the DMV).
Developers of the web application are trained to avoid XSS vulnerabilities
and the use of unnecessary JavaScript libraries. Any libraries that need to
be used are carefully inspected before deployment to ensure that they don’t
contain malware, and the web application code is carefully reviewed and
screened for XSS vulnerabilities. This, however does not prevent an attack
by an identity source insider.

Mitigation 1c The tasks of generating the key pair, storing the rich cer-
tificate and private key in HTML5 local storage, asking the user for consent
to present the credential to a verifier, and presenting the credential, are car-
ried out by a service worker, but the service worker is registered by a fourth
party, independent of the DMV that issues the credential and of the verifiers,
which acts on behalf of the subject and is freely chosen and trusted by the
subject. We shall refer to such a service worker as a consent manager. The
consent manager mitigates Threat 1 because only JavaScript code with same
origin as the consent manager has access to the rich credential.

Threat 2

An adversary plants malware in the subject’s computing device that hosts
the browser where the rich credential is stored, or in the device that captures
the audio-visual stream used by the subject to present a facial image to
the verifier, if different. Such malware may be able to capture any of the
following:

• The rich credential kept in the browser’s HTML5 local storage includ-
ing the private key, the secret salt, the attributes, and the biometric
verification data.

• The password when entered by the user, by means of a key logger.

• The audio-visual stream.
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Partial mitigation of Threat 2

The private key can be protected by storing the rich credential in a cryp-
tographic module and making the private key not extractable. The cryp-
tographic module may be located in a smart card or dongle connected to
the computing device that hosts the web browser; this requires browser sup-
port or a browser plug-in. The cryptographic module may also be include
in a Trusted Execution Environment (TEE), a Secure Element, or a Trusted
Platform Module (TPM) within the computing device; this requires support
by the platform provider.

Threat 3

An adversary physically captures the subject’s computing device that hosts
the browser where the rich credential is stored, and reads the rich credential
from persistent storage.

Mitigations of Threat 3

Mitigation 3a Modern computing devices provide protection against this
threat by encrypting all user data, including browser storage, under a key or
key hierarchy derived from a password and a device key that is stored in or
built into tamper resistant storage. The subject can mitigate Threat 3 by
using a device that provides such protection and activating the protection
when the device is not being actively used.

Mitigation 3b The rich credential can be protected against physical cap-
ture by storing it in a tamper-resistant hardware such as a smart card, a
Hardware Security Module (HSM) in a dongle form factor, a Secure Ele-
ment, or a TPM.

Threat 4

A physical attacker, which may or may not be a DMV insider, captures the
security code provided to the subject for retrieval of the rich credential.
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Mitigation of Threat 4

The security code needed to retrieve the credential is split into two portions,
a reusable portion and a one-time portion, as already mentioned above. The
reusable portion is provided to the subject in Stage 1 of the credential is-
suance process, typically during the in-person visit to the DMV, possibly as
the result of a remote identity proofing event involving an upstream identity
source. The one-time portion is sent by mail to the address of record of the
subject, by personnel belonging to a separate organization within the DMV.
The reusable portion is kept by the subject in secure storage and can be
reused as needed to retrieve credentials for use in computing devices owned
by the subject, or for replacement of a lost credential, as described above in
Section 6.13.

Threat 5

A network attacker breaches the security of the DMV data center to capture
the record containing the subject’s attributes and facial image.

Mitigation of Threat 5

The subject’s record is taken offline after the rich credential is issued to
the subject’s first device. If the subject subsequently requests a new one-
time portion of the security code in order to retrieve a credential for another
device, the subject’s record is put back online when the new one-time portion
is mailed to the subject.

Threat 6

A subject repudiates participation in a remote identity proofing event, or a
verifier falsely implicates a subject in an event.

Defense against fraudulent repudiation of a transaction involving a cryp-
tographic credential is usually based on the fact that the private key com-
ponent of the credential is controlled by the subject, is generated within a
subject-controlled device, and never leaves the device. In Solution 1, how-
ever, this defense is not available because the private key is stored in HTML5
local storage that the same origin policy of the web makes accessible to the
DMV web application.
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Mitigation of Threat 6

The usual defense against fraudulent repudiation can be made available by
the Mitigation 1c of Threat 1 and the mitigation of Threat 2 described above.

The verifier can also defend against non-repudiation by recording the
audiovisual stream presented by the subject and retaining the recording, if
the facial recognition verification factor is not omitted.

The subject can defend against false implication by carefully protecting
the private key, and promptly reporting a theft or compromise of the device
that carries the private key.

8.4 Security posture of Solution 1

The security posture of Solution 1 can be summarized as follows:

• Subtrees can be pruned from the typed hash tree of the rich credential,
allowing for selective disclosure of attributes, and selective presentation
of verification factors, i.e. omission of password verification and/or face
recognition. But none of the following can be done without invalidating
the signature in the credential:

– Adding or modifying attributes.

– Using a different password than the one whose salted hash was
sent to the issuer in Stage 1 of the credential issuance process.

– Adding a biometric modality to the credential.

– Modifying the facial image in the credential.

It should be noted that, although a rich credential provides selective
disclosure of attributes like an Idemix Anonymous Credential or a U-
Prove Token, it does not provide unlinkability. Even if no identifying
attributes are disclosed, credential presentations can be linked to each
other and to credential issuance by the signature on the credential and
by metadata such as the serial number. The rich credential does provide
unobservability of presentations by the issuer, as discussed above in
Section 7.

• Assuming the above mitigation of Threat 4, an adversary who tries
to retrieve from the DMV the rich credential issued to a subject must
capture two portions of a security code: a reusable portion usually
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provided in person to the subject, and a one-time portion that is mailed
to the address of record of the subject.

• If the verifier requires all three verification factors supported by the
rich credential, impersonation of the subject requires:

– Knowledge of the private key.

– Knowledge of the password.

– Submission of an audio-visual stream that spoofs the subject read-
ing prompted text randomly selected or generated by the verifier.
The verifier verifies the synchrony of the audio and visual channels
by tracking lip movement in the video channel and correlating dis-
tinguishable visemes to phonemes identified in the audio channel.

• The rich credential is vulnerable to capture by malicious JavaScript
code, but only if the malicious code has the same web origin as the
credential-issuance web application of the DMV. Mitigations 1a–c are
available to address this vulnerability.

• The rich credential is vulnerable to capture by malware planted in the
device that hosts the browser. This includes the private key, unless the
above partial mitigation of Threat 2 is used, at a high usability cost.

• The subject can protect the private key against physical capture by
using a modern computing device that protects user data by encrypting
user data, including browser storage, under a key or key hierarchy
derived from a password and a device key that is stored in or built
into tamper resistant storage, and activating such protection when the
device is not being actively used.

• The salted hash of the password is vulnerable to capture by a DMV
insider when it is supplied in Stage 1 of the credential issuance process,
or by a verifier or verifier insider when it is submitted together with the
rich credential. If captured, it can be used in a fraudulent presentation
of the rich credential.

• The password is not vulnerable to capture by a DMV insider, nor by
a verifier or verifier insider. If reused by the subject at web sites and
captured at a web site, it cannot be used in a fraudulent presentation
of the rich credential.
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• The password is not vulnerable to a security breach at the DMV data
center or at a verifier data center, but it is vulnerable to an offline
guessing attack by an adversary that captures the rich credential stored
in the browser.

• The verifier cannot mount a guessing attack against any data that is
not used in a presentation of the rich credential, including omitted
attributes, the salted hash of the password if password verification is
omitted, and the facial image if facial recognition is omitted.

• The verifier cannot rely on the private key not being shared in a defense
against fraudulent repudiation of a presentation of the credential, but
can instead rely on a recording of the audiovisual stream presented by
the subject.

Solution 1 provides arguably stronger identity assurance than in-person
presentation of a physical driver’s license, for the following reasons:

1. It provides three verification factors, whereas a physical driver’s license
provides only two.

2. Driver’s licenses can be forged. There is a market for forged driver’s
licenses, where they sell for $150 each [25]. By contrast, a rich credential
issued by a DMV cannot be forged.

9 Conclusion

This paper has described Solution 1, the first of five remote identity proofing
solutions that we have identified as possible alternatives to knowledge-based
verification. Solution 1 is based on the concept of a rich credential, a new
kind of cryptographic credential that can be used by a subject to remotely
present multiple verification factors to a verifier with whom the subject may
have no prior relationship, including something that the user has (a private
key), something that the user knows (a password), and something that the
user “is” (one or more biometric features).

The concept of a rich credential is based on another new concept, the
concept of a typed hash tree, a tree that can be used to represent a collection
of key-value pairs and whose root label provides an omission-tolerant crypto-
graphic checksum of the collection. The omission tolerance of a typed hash
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tree is used in a rich credential to provide selective disclosure of attributes
and selective presentation of verification attributes.

In Solution 1, the rich credential contains a facial image, which the verifier
matches against the subject’s face shown in an audio-visual stream of the
subject reading prompted text. The verifier verifies the synchrony between
the audio and video channel of the stream by tracking the subject’s lips in
the video stream and matching distinguishable visemes to phonemes in the
audio stream.

Solution 1 provides arguably stronger identity assurance than in-person
presentation of a physical driver’s license because it provides three verification
factors rather than two and it cannot be forged.
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