
A parallel algorithm for computing cooperative responses
through a Web API

Francisco Corella
Pomcor

fcorella@pomcor.com

Karen P. Lewison
Pomcor

kplewison@pomcor.com

ABSTRACT
Hundreds of new search engines have recently appeared on
the Web. Many of them consist of a search front-end that
accesses one or more search back-ends through a Web API.
Typical API latencies range from one tenth of a second to
one or two seconds. Such latencies are acceptable for run-
ning a single query, but make it impractical to compute a co-
operative response, which requires running many subqueries,
using the sequential algorithms that have been proposed so
in the literature for that purpose. The front-end, however,
can compute a cooperative response by exploiting the in-
herent parallelism of a Web API. We describe a parallel al-
gorithm that computes cooperative responses and prove its
soundness, completeness and non-redundancy. We provide
performance results obtained from an implementation of the
algorithm in Noflail Search, a search front-end available at
noflail.com.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.5 [Information Storage and
Retrieval]: On-line Information Services—Web-based ser-
vices; H.5.2 [Information Interfaces and Presentation]:
User Interfaces

General Terms
Algorithms, Performance

Keywords
Cooperative responses, cooperative answering, query relax-
ation, Web search, search engine, parallel algorithms.

1. INTRODUCTION
A cooperative response to a query is an indirect response
that is more helpful to the user than a direct response would
be. Interest in cooperative responses arose in the context
of natural-language query answering, but carried over to
formal-language query answering [14, 13, 11, 3, 15]. In a

natural language setting, cooperative responses may correct
false presuppositions, anticipate follow-up queries and pro-
vide information not explicitly requested by the user. In a
formal language setting, they may fill the void created by the
absence of results for a query, suggesting follow-up queries
that would produce results, and explaining the failure to pro-
duce results by listing queries that are more general than the
direct query but also fail to produce results.

Much work on cooperative answering has been done over
the last thirty years. Researchers have investigated the use
of various forms of domain knowledge to produce coopera-
tive responses, including integrity constraints [9] and tax-
onomies [7] in a deductive database setting, integrity con-
straints plus completeness assertions [16], type-abstraction
hierarchies [2], and a variety of other meta-data [12]. They
have used methods ranging from heuristics [9] to explicit
user preferences [5] to on-the-fly machine learning [18] in or-
der to choose the most appropriate information to include
in a response. They have constructed intensional [17] re-
sponses, qualified responses [8], and responses to Web search
queries that point to relevant know-how through hyperlinks
[1]. They have also studied the computational complexity
of computing certain cooperative responses [10]. More re-
cently, query relaxation has been studied in the context of
searching XML data [4]. An overview of early work can be
found in [6].

Much further work remains to be done, however, and recent
developments in the field search and information storage and
retrieval provide great opportunities for such work. We are
witnessing today a multi-faceted transformation of the field.
Aspects of this transformation include the development of
large-scale repositories of information and knowledge, both
structured and unstructed (Wikipedia, UMLS, the“commer-
cial ontology” announced by Hakia, etc.); fast-paced inno-
vation in the area of user interfaces for search; the birth of
a search ecosystem where independently developed search
components can be integrated through Web APIs; and the
emergence of hundreds of new search engines. This calls for
further work on semantics-based cooperative answering and
on cooperative search interfaces; and such work is facilitated
by the availability of Web APIs in the search ecosystem.

As a step towards bringing cooperative answering into the
new search ecosystem we have implemented cooperative re-
sponses in Noflail Search, a search front-end available at



noflail.com that obtains search results from the BingTMAPI1.
Few queries on the Web have zero results, because there are
many pages with large lists of words, so one may question
the usefulness of cooperative responses for Web searches.
They are very useful, however, when search is restricted to
a particular Web site or a particular geographic location.

Noflail Search has a user-interface feature designed to reduce
the time and effort it takes to solve a difficult search prob-
lem. The user can collect queries in a left panel and browse
the result sets of muliple queries at once. This makes it
easy to conduct a manual breadth-first search of those re-
sult sets, something hard to do in traditional search engines.
The cooperative answering feature is integrated with this
user-interface feature. When a query fails to produce re-
sults, Noflail Search generates a list of subqueries (queries
with fewer terms) that it inserts in the left panel. The list
comprises the most specific subqueries that produce results,
i.e. those whose set of terms is maximal, and the most gen-
eral subqueries that fail to produce results, i.e. those whose
set of terms is minimal. This list of subqueries is the co-
operative response to the query. The user can immediately
browse the result sets of the subqueries with results, which
are prefetched during the computation of the cooperative
response.

Although we hope to use semantics in the future to improve
the generation of cooperative responses, we do not do so
at this time. In fact, there is nothing new in the list of
subqueries that we provide as a cooperative response. It is
actually the same list that was provided in [3]. But we have
successfully addressed a new problem, one that arises from
the fact that Noflail Search is a search front-end, which takes
advantage of the new search ecosystem by obtaining search
results from a back-end through a Web API.

It typically takes a few tens of a second to obtain a response
from a Web search API. Such a latency is acceptable for pro-
viding a direct response to a query, but makes it impractical
to compute a cooperative response to a failing query using
the sequential algorithms that have been proposed so far in
the literature for that purpose.

A search front-end, however, can compute a cooperative re-
sponse by exploiting the inherent parallelism of a Web API.
Multiple subqueries can be submitted simultenously to the
API, which processes them in parallel, independently of each
other, as if they had been submitted by independent front-
ends. We have developed a parallel algorithm that takes
advantage of this. In Section 2 we give a description the al-
gorithm, for conjunctive queries, in the form of pseudo-code
for event listeners. In Section 3 we prove that the algorithm
is sound and complete, as well as non-redundant in the sense
of [10]. In Section 4 we discuss how the algorithm could be
extended to handle Boolean queries. In Section 5 we provide
performance results and discuss the complexity of the algo-
rithm. In Section 6 we recapitulate and suggest directions
for future work.

2. DESCRIPTION OF THE ALGORITHM
1Bing is a trademark of Microsoft Corporation. We are not
affiliated with Microsoft.

There are two methods for implementing a search front-end:
the traditional, server-based method, and a more modern,
client-based method.

In the server-based method, the user’s browser, running on
the client machine, submits a query to the Web site of the
search front-end, which includes a server farm dedicated to
processing queries. The front-end site relays the query to the
back-end site, an independent Web site, requesting the first
page of results. When the response arrives from the back-
end site, the front-end site creates an HTML file containing
the results and returns it to the browser.

In the client-based method, the search front-end runs on
the client machine. It may run within the user’s browser, if
implemented in Javascript, Flash, Flex (an alternative pro-
gramming platform for Flash Player) or Silverlight. It may
also run under the client machine OS as an independent
application separate from the browser. Noflail Search is a
client-based search front-end that runs within the browser,
implemented in Flex. The client-based front-end submits
queries directly to the back-end site through the Web API,
obtains results from the back-end, and presents the results
to the user. There is a front-end site, but its only role is to
download the front-end code to the user’s machine.2

The parallel algorithm shows the subqueries that make up
a cooperative response to the user as it finds them (at least
those with results). This is easiest to implement in a client-
based search front-end, with the algorithm implemented in
the client. The same functionality, however, could be achieved
in a server-based search front-end with the algorithm imple-
mented in the server, using frames, or polling from the client;
we leave the details to the reader.

In this section we describe the algorithm as it applies to
purely conjunctive queries, i.e. queries consisting of a con-
junction of search terms. Boolean queries are discussed in
Section 4.

The algorithm is event-driven. An event handler, or event
listener, is invoked whenever a response to a query or sub-
query arrives from the back-end, and does the following:3

1. If the response corresponds to a query submitted by
the user, the event listener checks the cardinality of
the result set. If it is positive, it shows the first page
of results to the user. If it is zero, it lets the user
know that there are no results, and it calls the routine
processRoot of Figure 1.

2. If the response corresponds to a subquery, the event
listener calls the routine processNode of Figure 2 and
passes to it two parameters: the subquery, which is
assigned to the parameter curNode, and the cardinality
of the result set of the subquery, which is assigned
to the parameter cardinality. The value of curNode
during an invocation of processNode will be called the
current subquery or current node of the invocation.

2In the case of Noflail Search, search ads are relayed through
the front-end site.
3The same or different handlers may be used for queries and
subqueries.



There are no threading or parallel-processing constructs in
processRoot and processNode. The parallelism of the al-
gorithm takes place in the back-end, not the front-end. The
back-end runs multiple subqueries simultaneously, but in the
front-end different invocations of the subroutines are not ex-
pected to overlap with each other. In fact, there must not
overlap with each other. No special precautions need to be
taken to ensure that they do not overlap if the front-end is
implemented in JavaScript or ActionScript, which are single-
threaded; but mutual exclusion may have to be enforced in
other cases.

The user’s query and its subqueries form a graph (G,≤)
isomorphic to the powerset of the set of search terms of the
user’s query minus the empty set. We shall refer to query
and subqueries as nodes of the graph, and to the user’s query
as the root of the graph, which we call r. The parents of
a node n are the successors of n for the ordering relation,
i.e. the minimal nodes greater than n, i.e. the subqueries
obtained by adding one more search term to the search terms
of n. The children of n are the predecessors of n, i.e. the
maximal nodes less than n, i.e. the subqueries obtained by
removing one search term from those of n. Nodes can be
represented in programming languages as bitmaps of size N ,
where N is the number of search terms of the user’s query.

A query that fails to produce results (whether the user’s
query or a subquery) is called a failing query, a query that
produces results, a succeeding query. We call G′ the sub-
graph of G consisting of those nodes all of whose parents
are failing queries. G′ comprises the failing queries and the
maximal succeeding queries. We shall see that the algorithm
discovers and traverses G′. It does not construct or traverse
the entire graph G.

Figures 1 and 2 describe the routines processRoot and pro-
cessNode using pseudo-code. In the pseudo-code we use
shorthands to refer to functionality that is implemented by
bitmap manipulation if nodes are represented by bitmaps:
>> tests that the left operand is strictly greater than the right
operand in the graph ordering; the foreach... constructs
are loops over bitmaps of length N generated by turning on
(to generate parents) or off (to generate children) one bit of
a given bitmap of length N ; and root is a global variable
whose value is a bitmap of length N all of whose bits have
value 1, representing the root r of G.

The routine processRoot is straightforward. It initializes a
hash table4 failed and an array minFailures. The hash
table failed is used to remember which subqueries fail to
produce results. Undefined hash-table values are equivalent
to false. The array minFailures collects failing subqueries,
but subqueries are removed from the array when found not
to be minimal. At line 105, the routine initializes pending

to 0. The variable pending is an up-and-down counter that
keeps track of the number of subqueries being processed by
the back-end. Finally, the loop at lines 106–109 launches
the subqueries with one fewer term than the user’s query,
and increments pending accordingly.

The routine processNode decrements pending at line 202.

4In ActionScript we implement a hash table as an Object.

101 procedure processRoot() {

102 failed = new HashTable();

103 failed[root] = true;

104 minFailures = new Array();

105 pending = 0;

106 foreach (node in children(root)) {

107 launch(node);

108 pending++;

109 }

110 }

Figure 1: Pseudo-code for processRoot

Then it checks if the current subquery has results. If so, as
shown in section 3, it must be a maximal succeeding sub-
query. The current subquery, with the cardinality of its
result set, is reported to the user as part of the coopera-
tive response at line 204 by calling showSuccess. (In Noflail
Search the subquery is inserted in the left panel with the car-
dinality of its result set.) If the current subquery does not
have results, this fact is recorded at line 207, then the cur-
rent subquery is added to the end of the array minFailures

at line 213 after removing from the array any subqueries
greater than the current subquery.5. Then the children of
the current subquery are generated in the loop at lines 214–
227. Those whose parents have all failed are launched, and
pending is incremented accorgindly. Finally, at line 228 we
use pending to check if the computation has ended. If so, the
loop at lines 229–231 reports the elements of minFailures
to the user as part of the cooperative response. (In Noflail
Search this is done by inserting them in the left panel af-
ter the maximal succeeding subqueries, each with its zero
result-set cardinality.) An indication that the cooperative
response computation has ended is then provided to the user
at line 232.

3. PROPERTIES OF THE ALGORITHM
In this section we prove that the algorithm is sound and
complete. As in [10], we also prove a few non-redundancy
properties.

Soundness has two parts: (I) every subquery reported to
the user by a call to showSuccess is a maximal succeeding
subquery; and (II) every subquery reported to the user by
a call to showFailure is a minimal failing subquery

Completeness also has two parts: (I) every maximal succeed-
ing subquery is reported to the user by a call to showSuccess;
and (II) every minimal failing subquery is reported to the
user by a call to showFailure.

We prove two non-redundancy properties concerning the
user interface: (I) no succeeding subquery is reported twice
by showSuccess; and (II) no failing subquery is shown twice
by showFailure. We show as well three non-redundancy
properties concerning the back-end interface: (III) no sub-
query is launched twice; (IV) no query is launched after a
lesser failing subquery has been launched; and (V) no suc-
ceeding subquery is launched after a greater succeeding sub-

5In ActionScript, remove(minFailures,k) is implemented
as minFailures.splice(k,1)



201 procedure processNode(curNode, cardinality) {

202 pending--;

203 if (cardinality > 0) {

204 showSuccess(curNode, cardinality);

205 }

206 else {

207 failed[curNode] = true;

208 for (k = minFailures.length; k >= 0; k--) {

209 if (minFailures[k] >> curNode) {

210 remove(minFailures,k);

211 }

212 }

213 push(minFailures,curNode);

214 foreach (node in children(curNode)) {

215 allParentsFailed = true;

216 foreach (parentNode in parents(node)) {

217 if (!failed[parentNode]) {

218 allParentsFailed = false;

219 break;

220 }

221 }

222 if (allParentsFailed) {

223 launch(node);

224 pending++;

225 }

226 }

227 }

228 if (pending == 0) {

229 for (k = 0; k < minFailures.length; k++) {

230 showFailure(minFailures[k]);

231 }

232 showDone();

233 }

234 }

Figure 2: Pseudo-code for processNode

query has been launched.

Notice that the fact that the algorithm is non-redundant
does not mean that it is optimal. One possible improvement,
in particular, comes to mind. When searching the Web at
large, rather than a particular site or location, it is rare
to find combinations of ordinary words that produce zero
results. Most failures to find results are due to a phrase
that cannot be found or a non-existent word, i.e. to failing
search terms. It may therefore be advantageous to check the
leaves of the graph first, remove any that fail, and they run
the algorithm starting from the root of the remaining graph.

A run of the algorithm consists of an invocation of the rou-
tine processRoot followed by a number of invocations of
the routine processNode. We number these invocations
starting from 0: invocation number 0 is the invocation of
processRoot, invocations 1, 2, . . . are invocations of process-
Node. We call I the set of invocation numbers; I is finite,
but this needs to be proved. Let I∗ = I \ {0}.

For every i ∈ I∗ let ci be the current subquery during in-
vocation number i,6 i.e. the value of curNode during the

6Recall that, when i is positive, invocation number i is an

invocation; let c0 be r. For every i ∈ I let Li be the set
of subqueries launched by invocation number i; for i = 0,
the subqueries are launched at line 107 of processRoot; for
i > 0 they are launched at line 223 of processNode. For
every i ∈ I let pi be the value of pending at the end of
invocation number i.

We use the word launch to refer to an execution of line 107
by an invocation of processRoot or an execution of line 223
by an invocation of processNode. We say that the back-end
exhibits liveness if every launch has a response, which in
turn causes an invocation of processNode, i.e. if

(∀i ∈ I)(∀n ∈ Li)(∃j ∈ I, j > i)(n = cj). (1)

We do not assume liveness, but we use it as a hypothesis of
the completeness results.

We do have to assume that there are no extraneous invoca-
tions of processNode, which implies

Assumption 1. For every i ∈ I∗ there exists j < i such
that ci ∈ Lj.

and

Assumption 2. For distinct i, i′ ∈ I∗ there exist distinct
launches l and l′ of the subqueries ci and ci′ respectively,
such that l takes place during an invocation j < i and l′

takes place during an invocation j′ < i′.

We prove first a few lemmas.

Lemma 1. For every i ∈ I, Li ⊆ G′.

Proof. Let n ∈ Li. If i = 0, n is a subquery launched
by processRoot at line 107; n is the value of node; therefore
by the loop condition at line 106, it is a child of r. Thus n
has a single parent that is a failing subquery, and n ∈ G′.
If i > 0, then n is a subquery launched by processRoot at
line 223; n is the value of node, and line 223 is executed
only if the loop at lines 216–221 has verified that all parents
of n have failed according to the hash table failed; and it
is clear that the hash table is only assigned the value true
for a query or subquery if it has indeed failed. Therefore
n ∈ G′.

Lemma 2. For every i ∈ I, ci ∈ G′.

Proof. If i = 0, c0 = r ∈ G′. If i > 0, ci ∈ G′ follows
immediately from assumption 1 and lemma 1.

Lemma 3. If the back-end exhibits liveness, for every n ∈
G′ there exists i ∈ I such that n = ci.

invocation of processNode.



Proof. Assume that the back-end exhibits liveness, i.e.
that the liveness condition (1) holds.

Then reason by contradiction: let S be the set of nodes
n ∈ G′ for which there is no i ∈ I such that n = ci, and
assume that S 6= ∅.

Let m be a maximal element of S. If m = r, then m = c0, a
contradiction. Otherwise, let P be the set of parents of m.
Either m is a child of r and P = {r} or r 6∈ P ; we consider
in turn these two cases.

Assume m is a child of r. When proccessRoot is invoked,
the loop at lines 106–109 launches all the children of the
root. Therefore m ∈ L0 and, by (1), there exists i ∈ I such
that m = ci. Hence m 6∈ S, a contradiction.

Now assume r 6∈ P . Since m ∈ G′, every element of P is
a failing query. Since m is a maximal element of S, the
elements of P are not in S; hence every element of P is of
the form cj for some j ∈ I. Let J = {j ∈ I | cj ∈ P}.

Consider an invocation j for j ∈ J , which, since r 6∈ P , is an
invocation of processNode. Since cj ∈ P is a failing query,
the value of cardinality is 0. Therefore the condition of
line 203 fails and branch 207–226 of the conditional is taken.
In particular, line 207 is executed, assigning true (the value
of the constant true) to the key cj of the hash table failed;
and after that value is assigned, it is never removed.

Now consider more particularly the last of those invocations,
i.e. invocation k where k is the greatest element of J . Within
branch 207–226, the loop 214–226 is executed, with one iter-
ation of the loop for each child of ck. Thus in one iteration
of the loop the value of node is m. In that iteration, the
nested loop 216–221 checks the value failed(parentNode)

when parentNode takes the value cj for each j ∈ J , and
finds it to be true in call cases, inclucing the case j = k be-
cause line 207 has already been executed. Therefore line 223
is executed and m is launched. Thus m ∈ Lk and, by the
liveness condition (1), there exists i ∈ I such that m = ci.
Hence m 6∈ S, a contradiction.

The next two lemmas are used in proofs by contradiction,
hence their peculiar hypotheses.

Lemma 4. If i and i′ are distinct elements of I∗ such that
ci = ci′ = n, there exist distinct elements j and j′ of I such
that j < i, j′ < i′, and n ∈ (Lj ∩ Lj′).

Proof. By assumption 2 and the observation that the
same subquery is never launched twice within a given invo-
cation.

Lemma 5. If j and j′ are elements of I such that Lj ∩
Lj′ 6= ∅, with j < j′, there exists k ∈ I, k < j, such that
ck = cj′ .

Proof. Let j, j′ ∈ I with j < j′ and let n ∈ Lj ∩ Lj′ .
Since n is launched by invocations j and j′, n is a child of

both cj and cj′ . We cannot have j = 0 because n would then
be a child of r and we would have cj = cj′ = r and j = j′ =
0. Consider invocation j, an invocation of processNode. It
launches n at line 223 during an execution of the loop 214–
227. Therefore, at loop 216–221, it must have found the
hash table failed to have the value true for every parent
of n, including cj′ . There must have been an invocation
k, with k < j that has set failed to true for cj′ , and an
invocation of processNode can only assign true to failed

for the current query. Hence ck = cj′ .

Lemma 6. For all i, i′ in I, if ci = ci′ then i = i′.

Proof. By contradiction. Let

S = {h ∈ I | (∃h′ ∈ I, h′ > h)(ch = ch′)}

and assume that S 6= ∅. Let i the smallest element of S,
and let i′ ∈ I, i′ > i be such that ci = ci′ . We must have
0 < i < i′ for otherwise ci = ci′ = r and i = i′ = 0. By
lemma 4, there exist distinct g, g′ ∈ I such that g < i, g′ < i′

and Lg ∩ Lg′ 6= ∅. Let j and j′ be the smallest and largest
element, respectively, of {g, g′}. We have j ≤ g < i. By
lemma 5, there exists k ∈ I, k < j, such that ck = cj′ . We
have k < j < j′. From k < j′ and ck = cj′ it follows that
k ∈ S. But j < i, a contradiction.

Lemma 7. For all n ∈ G and i ∈ I, if n > ci then there
exists j ∈ I, j < i such that n = cj.

Proof. By induction on i. Assume that the proposition
is true for every j < i, and let us prove that it is true for
i. If i = 0 it is vacuously true because there is no n ∈ G
such that n > c0 = r. Assume that i > 0 and let n ∈ G
be such that n > ci. Let P be the set of parents of ci.
Consider invocation i, an invocation of processNode. Every
m ∈ P has been found to have failed by the loop 216–221,
and therefore has been launched by an earlier invocation,
so if m ∈ P there is some k < i such that m = ck. If
n = m ∈ P the proposition is therefore proved by letting j
be k. If n 6∈ P , there must exist m ∈ P such that n > m. Let
again k < i be such that m = ck. By induction hypothesis
there exists j < k < i such that n = cj and the proposition
is also true in this case.

Lemma 8. For all i, j ∈ I, if ci > cj then i < j.

Proof. Assume ci > cj . By lemma 7, there exists k < j
such that ck = ci. Then by lemma 6, i = k < j.

Lemma 9. For every i ∈ I, pi =
˛̨̨S

j≤i Lj \ {cj}j≤i

˛̨̨
Proof. By induction.

Lemma 10. For every i ∈ I, if {cj}j≤i 6= G′, then pi > 0.

Proof. Let i ∈ I be such that {cj}j≤i 6= G′. Let S =
G′ \ {cj}j≤i and let n be a maximal element of S. Let P



be the set of parents of n; P ⊆ {cj}j≤i. Let J = {j <
i | cj ∈ P}, and let k be greatest element of J . Since
n ∈ G′, all the elements of P , and ck in particular, are
failing queries. Consider invocation number k. If k > 0, it is
an invocation of processNode, which finds that all parents
of n have failed and therefore launches n. If k = 0, it is an
invocation of processRoot, which launches all the children
of r = ck including n. In either case, n ∈ Lk. Since k < i, n
is an element of

S
j≤i without being an element of {cj}j≤i.

Therefore, by lemma 9, pi > 0.

We can now prove the desired results.

Theorem 1. (Soundness, part I) Every subquery reported
to the user by a call to showSuccess is a maximal succeeding
subquery.

Proof. Let i be an invocation of processNode that exe-
cutes line 204. Recall that the values of curNode and cardina-

lity, which do not change during the invocation, are the
current subquery ci and the cardinality of its result set. The
subquery reported by showSuccess is the value of curNode,
ci; and since line 204 is executed, cardinality must have
a positive value. Hence ci is a succeeding subquery. By
lemma 2, ci ∈ G′; and by definition of G′ all the parents of
ci are failing queries. Therefore ci is a maximal succeeding
subquery.

Theorem 2. Completeness, part I If the back-end ex-
hibits liveness, every maximal succeeding subquery is reported
to the user by a call to showSuccess.

Proof. Assume that the back-end exhibits liveness and
let n be a maximal succeeding subquery. By definition of G′,
n ∈ G′ and by lemma 3, there exists i ∈ I such that n = ci.
Since n succeeds and c0 = r fails, i > 0, and invocation i
is an invocation of processNode. During invocation i, the
value of cardinality is positive, hence line 204 is executed.
And the subquery reported to the user by showSuccess at
line 204 is the value of curNode, which is ci = n.

Theorem 3. (Soundness part II, completeness part II,
and non-redundancy part II) The subqueries reported to the
user by calls to showFailure are the minimal failing sub-
queries, and each is reported only once.

Proof. Consider the function f : i ∈ I 7→ ci. By lemmas
2, 3 and 6, f is a bijection from I onto G′. I being therefore
finite like G′, let k be its greatest element.

All calls to showFailure are made at line 230 of processNode,
within the loop 229–231. This loop runs when pending has
the value 0 at line 228, and the value of pending does not
change between line 228 and the end of the invocation. By
lemma 10, this can only happen during the very last invoca-
tion, invocation k; by lemma 9, pending does have the value
0 at the end of invocation k, and the loop is executed during
that invocation. The loop reports to the user the subqueries
collected in the array minFailures. The array minFailures

is modified by those invocations of processNode where the
current subquery is a failing subquery. Each of those invoca-
tions adds the current subquery and removes any subqueries
greater than the current subquery. Therefore every minimal
failing subquery is added to the array and never removed;
and by lemma 8, every non-minimal failing subquery is re-
moved from the array. Thus at the end of the computation,
and hence when the loop is executed during the last invo-
cation, invocation k, the array contains exactly the minimal
failing subqueries. By lemma 6 each subquery is added only
once to the array, and hence it is reported only once by the
loop.

Theorem 4. (Non-reducancy, part I) No succeeding sub-
query is reported twice by showSuccess.

Proof. A succeeding subquery n is reported by an in-
vocation of processNode only if n is the current subquery
during the invocation. But by lemma 6, there is no more
than one such invocation.

Theorem 5. (Non-redundancy, part III) No subquery is
launched twice.

Proof. Subqueries are launched by loop 106–109 of proc-
essRoot and loop 214–227 of processNode. Each loop is
executed at most once per invocation, and launches each
query at most once. It remains to show that a subquery is
not launched by two invocations. Reasoning by contradic-
tion, assume that there exist j, j′ ∈ I such that Lj∩Lj′ 6= ∅,
with j < j′. Then by lemma 5 there exists k ∈ I, k < j,
such that ck = cj′ . But this contradicts lemma 6.

Theorem 6. (Non-redundancy, part IV) No query is laun-
ched after a lesser failing subquery has been launched.

Proof. Let i, j ∈ I, m ∈ Li, n ∈ Lj , m < n.7 We are
going to prove that j < i.

If j = 0, n is a child of r = c0 = cj . If j > 0, n is launched
by loop 214–227 of processNode during invocation j and is
therefore a child of the current subquery during the invoca-
tion, cj . Thus in both cases n is a child of cj . Similarly, m
is a child of ci.

Since m < n < cj , m is not a child of the root, hence ci is not
the root, and m is launched by loop 214–227 of processNode
during invocation i. The loop verifies that all the parents of
m have failed. From m < n < cj it follows that cj is greater
than some parent of m, which is recorded as having failed in
the failed hash table and must thus have been the current
subquery ck of an earlier invocation k, k < i. From cj > ck

it follows by lemma 8 that j < k. Hence j < i.

Theorem 7. (Non-redundancy, part V) No succeeding sub-
query is launched after a greater succeeding subquery has
been launched.
7m plays the role of “lesser failing subquery”, but we do not
actually need to assume that it fails.



Proof. In fact, no subqueries that are less than a suc-
ceeding subquery are launched, since loop 106–109 launches
children of the root, and loop 214–227 launches subqueries
only after verifying that all their parents are failing queries.

4. BOOLEAN QUERIES
We briefly describe now a possible extension of the algorithm
to provide coopoerative responses to Boolean queries. This
extension has not been implemented yet in Noflail Search.

Consider first the case where the query is in disjunctive nor-
mal form (DNF). If the query fails, a cooperative response
should consist of the maximal succeeding subqueries and
the minimal failing subqueries of each of the disjuncts of the
DNF, as in [3]. The algorithm can be modified to produce
these subqueries. The modified algorithm starts by launch-
ing in parallel the children of all the DNF disjuncts. Later,
a child n of a failing subquery is launched only after all par-
ents of n that are descendents of at least one of the DNF
disjuncts have been found to be failing subqueries.

Now consider the case where the query is not in DNF. In [3],
the query was simply converted to DNF. This makes sense
for bibliographic search, where queries often have few an-
swers, but not necessarily for Web Search, where result sets
are huge and result ordering is important.

Consider for example the query A(B + C)D, where A, B, C
and D are atomic search terms, additive notation is used for
disjunction, and multiplicative notation is used for conjunc-
tion. Assume that the query fails only because D has no
results. If the query is converted to DNF, then two queries
are offered as follow-up queries: AB and AC. If the query
is not converted, then one query is offered as a follow-up
query: A(B + C).

Suggesting AB and AC is not equivalent to suggesting A(B+
C). One one hand, if the user is only allowed to see the first
1000 results of a result set, the two result sets of AB, AC
carry more information than the single result of A(B + C).
On the other hand, inspecting two result sets takes more ef-
fort than inspecting one, and the relative ranking of results
of AB compared to results of AC is lost when the A(B +C)
is multiplied out.

This suggests not converting to DNF, or giving the user
control over conversions.

5. PERFORMANCE RESULTS AND COM-
PLEXITY

Table 2 shows performance results for a sample of queries;
the queries themselves are listed in table 1. The last two
columns of table 2 show the time taken by the parallel com-
putation and the time that would have been taken by issuing
sequentially the same subqueries that are issued in the par-
allel computation.

As discussed in the introduction, it is difficult to find in-
teresing queries with zero results on the Web at large, but
failing queries can easily be found when targetting a partic-
ular site. Queries marked “(Site)” in table 1 are restricted to
the site myrecipes.com. Queries marked “(Web)” are not re-

stricted. Restriction to a site does not seem to have a major
or even a predictable impact on performance. The last six
queries illustrate this by comparing restricted to unrestricted
performance for three queries that have the same graph of
failing subqueries when restricted and not restricted.

1 paella mussels escargots (Site)
2 paella clams mussels sardines (Site)
3 paella mussels clams peas sardines (Site)
4 paella mussels clams peas sardines cauliflower (Site)
5 paella mussels clams peas sardines escargots (Site)
6 paella mussels clams nosuchingredient (Site)
7 paella mussels clams nosuchingredient (Web)
8 paella mussels clams peas nosuchingredient (Site)
9 paella mussels clams peas nosuchingredient (Web)

10 paella mussels clams peas nosuchi1 nosuchi2 (Site)
11 paella mussels clams peas nosuchi1 nosuchi2 (Web)

Table 1: Queries

Query
Num.

Num.
Terms

Subq.
Issued

Max.
Parall.

Time
(ms)

Seq.
Time

1 3 4 3 981 2108
2 4 7 4 819 2516
3 5 15 6 4076 15393
4 6 31 10 4879 26149
5 6 47 14 6824 47431
6 4 8 4 2067 4650
7 4 8 4 3353 4879
8 5 16 5 2340 7178
9 5 16 7 3776 12897

10 6 48 15 7452 51577
11 6 48 14 5578 43984

Table 2: Performance

Table 3 shows the cooperative response for query no. 5, as an
example. Table 4 shows a trace of the parallel computation
for query no. 3 (the trace for query no. 5 is too long).

paella mussels clams peas 7
mussels sardines 1
peas sardines 1
paella sardines 0
mussels peas sardines 0
clams sardines 0
escargots 0

Table 3: Cooperative response for query no. 5

Godfrey [10] showed that computing the minimal failing sub-
queries or the maximal succeeding subqueries is intractable,
because the worst-case number of either kind of subqueries
grows exponentially with the number N of search terms.
The run-time of the parallel algorithm is exponential for
that same reason.

The performance benefit of the algorithm is that it harnesses
the parallelism of the Web API and the power of the back-
end in order to reduce the latency seen by the user (the UI
latency), and thus makes it practical to provide cooperative
responses.

This benefit can be quantified in terms of complexity, in a



Time Event Bitmap Latency Card.
0 Launch 01111
0 Launch 10111
1 Launch 11011
1 Launch 11101
1 Launch 11110

627 Response 01111 627 0
647 Response 11011 646 0
665 Launch 01011
675 Response 11110 674 7
749 Response 11101 748 0
765 Launch 11001
765 Launch 01101

2770 Response 10111 2769 0
2791 Launch 10101
2791 Launch 10011
2791 Launch 00111
2846 Response 01101 2081 0
2872 Response 01011 2207 0
2894 Response 11001 2129 0
2914 Launch 01001
3244 Response 10101 453 0
3315 Response 10011 524 0
3330 Launch 10001
3410 Response 01001 495 1
3502 Response 00111 711 0
3515 Launch 00101
3515 Launch 00011
3746 Response 10001 416 0
3891 Response 00101 376 0
4052 Response 00011 537 1

Table 4: Computation trace for query no. 3

somewhat unorthodox way, by observing that the fraction
of the UI latency attributable to front-end computation is
very small. If we deem it negligible, then the UI latency is
worst-case linear in N , because the depth of the graph is
linear in N , and the graph is traversed in parallel.8

While the parallel algorithm keeps the UI latency low, it
does not reduce the consumption of back-end resources, and
this may require setting an upper limit on the number N
of search terms for which cooperative responses can be pro-
vided. Notice, however, that cooperative responses are only
computed for queries that fail, which are rare, and the back-
end can amortize the cost of computing cooperative responses
for failing queries over the mix of failing and succeeding
queries.9

8Notice, though, that the front-end computations that we
are neglecting are sequential and grow exponentially with
the number of search terms.
9As mentioned above, the back-end for Noflail Search is the
Bing API provided by Microsoft. We discussed the resource-
consumption issue with Alessandro Catorcini of Microsoft.
Because failing queries are very rare, he allowed us to use co-
operative respones without setting any limit on N , and even
offered to help if we had problems with any countermeasures
that might be in place against denial-of-service attacks. We
are very grateful for this. We decided nevertheless to set
an upper limit on N : Noflail Search provides coopertive re-
sponses only for queries having up to six search terms.

6. CONCLUSION
We have described a parallel algorithm for computing co-
operative responses to failing conjunctive queries through
a Web API. The algorithm takes advantage of the inher-
ent parallelism of the API and makes it practical to provide
cooperative responses in spite of the considerable latency of
the API. The algorithm has been implemented on the search
front-end Noflail Search, available at noflail.com, where co-
operative responses are integrated with a new user-interface
feature that lets the user browse multiple result sets at once.
We have presented a sample of performance results showing
how the algorithm reduces the latency of computing coop-
erative responses to queries with 3 to 6 search terms from a
range of 2 to 50 seconds to a range of 1 to 7 seconds. We have
provided pseudo-code for the algorithm and proved sound-
ness, completeness and non-redundancy results. We have
discussed how the algorithm could be extended to handle
general Boolean queries.

The current surge of innovation in search and data mining
presents many opportunities for further work on coopera-
tive responses. New user-interface paradigms for search are
emerging. Cooperative responses should be integrated with
these paradigms and may in turn suggest new ones. The
availability of large-scale repositories of semantic informa-
tion may offer new perspectives for investigating the use of
semantics for query relaxation and detection of false pre-
suppositions. We believe that cooperative responses have
an important role to play in the search revolution.

7. REFERENCES
[1] F. Benamara and P. Saint-Dizier. Advanced relaxation

for cooperative question answering. In M. T. Maybury,
editor, New Directions in Question Answering, pages
263–274. AAAI Press, 2004.

[2] W. W. Chu, H. Yang, K. Chiang, M. Minock,
G. Chow, and C. Larson. Cobase: A scalable and
extensible cooperative information system. J. Intell.
Inf. Syst., 6(2/3):223–259, 1996.

[3] F. Corella, S. J. Kaplan, G. Wiederhold, and L. Yesil.
Cooperative responses to boolean queries. In ICDE,
pages 77–85. IEEE Computer Society, 1984.

[4] G. Dong, X. Lin, W. W. 0011, Y. Yang, and J. X. Yu,
editors. Advances in Data and Web Management,
Joint 9th Asia-Pacific Web Conference, APWeb 2007,
and 8th International Conference, on Web-Age
Information Management, WAIM 2007, Huang Shan,
China, June 16-18, 2007, Proceedings, volume 4505 of
Lecture Notes in Computer Science. Springer, 2007.

[5] T. Gaasterland. Cooperative answering through
controlled query relaxation. IEEE Expert, 12(5):48–59,
1997.

[6] T. Gaasterland, P. Godfrey, and J. Minker. An
overview of cooperative answering. J. Intell. Inf. Syst.,
1(2):123–157, 1992.

[7] T. Gaasterland, P. Godfrey, and J. Minker. Relaxation
as a platform for cooperative answering. J. Intell. Inf.
Syst., 1(3/4):293–321, 1992.

[8] T. Gaasterland and J. Lobo. Qualifying answers
according to user needs and preferences. Fundam.
Inform., 32(2):121–137, 1997.

[9] A. Gal and J. Minker. Informative and cooperative



answers in databases using integrity constraints. In
Natural Language Understanding and Logic
Programming Workshop, pages 277–300, 1987.

[10] P. Godfrey. Minimization in cooperative response to
failing database queries. Int. J. Cooperative Inf. Syst.,
6(2):95–149, 1997.

[11] J. M. Janas. On the feasibility of informative answers.
In Advances in Data Base Theory, pages 397–414,
1979.

[12] M. Kao, N. Cercone, and W.-S. Luk. Providing quality
responses with natural language interfaces: The null
value problem. IEEE Trans. Software Eng.,
14(7):959–984, 1988.

[13] S. J. Kaplan. Designing a portable natural language
database query system. ACM Trans. Database Syst.,
9(1):1–19, 1984.

[14] R. M. Lee. Conversational aspects of database
interactions. In S. B. Yao, editor, VLDB, pages
392–399. IEEE Computer Society, 1978.

[15] A. Motro. Query generalization: A method for
interpreting null answers. In Expert Database
Workshop, pages 597–616, 1984.

[16] A. Motro. Seave: A mechanism for verifying user
presuppositions in query systems. ACM Trans. Inf.
Syst., 4(4):312–330, 1986.

[17] A. Motro. Intensional answers to database queries.
IEEE Trans. Knowl. Data Eng., 6(3):444–454, 1994.

[18] I. Muslea. Machine learning for online query
relaxation. In W. Kim, R. Kohavi, J. Gehrke, and
W. DuMouchel, editors, KDD, pages 246–255. ACM,
2004.


