
Overcoming the UX Challenges Faced by FIDO
Credentials in the Consumer Space⋆

Francisco Corella

Pomcor
https://pomcor.com

fcorella@pomcor.com

Abstract. Cryptographic authentication using FIDO credentials pro-
mises to improve cybersecurity by preventing man-in-the-middle phish-
ing attacks against traditional two-factor authentication. But the FIDO
Alliance reported in a March 2022 white paper that FIDO authentica-
tion had not yet attained large-scale adoption in the consumer space,
citing user experience challenges such as the burden of enrolling a new
device to replace a lost or stolen device. Passkey syncing is now being
implemented to eliminate the need to enroll a new device with the rely-
ing party, but it requires password-based, phishing-vulnerable enrollment
with the platform provider. This paper proposes and shows how to im-
plement two alternative user experiences that overcome these challenges.
The first proposed UX lets the user log in on any browser, in any de-
vice, with on-the-fly device enrollment using an email verification link
for authentication. The second UX frees the user from having to set up
device locking, by using as a second factor a password submitted to the
relying party, instead of a device-unlocking PIN or biometric. The pass-
word is protected against reuse at malicious sites and backend database
breaches by being used together with an enhanced cryptographic creden-
tial in a joint authentication procedure. The same enhanced credential is
replicated in all devices, without syncing, by regenerating it from a seed
derived in an HSM from a master secret and the email address.

Keywords: User experience · Cryptographic authentication · Two-factor
authentication · FIDO · WebAuthn.

Patent disclosure. Pomcor owns US patent 9,887,989, which is related to the
joint authentication procedure described in Section 5.1.

1 Introduction

1.1 The need for cryptogaphic authentication

Over the last decade, two-factor authentication (2FA) with a password and an
authentication code has become the standard method for mitigating the well-
known vulnerabilities of passwords. Revision 1 of the Electronic Authentication

⋆ Preprint of paper to be presented at HCI International 2023.

2 F. Corella

Guidelines, published by NIST in December 2011, included 2FA as an option for
authentication at Assurance Level 3, citing a code sent to the user’s phone in a
text message as an example of a second factor.

But traditional 2FA methods have been found to have their own vulnerabili-
ties. Sending a code to a phone was “restricted” in Revision 3 of the Guidelines
[4, §5.2.10] for being vulnerable to attacks such as “device swap, SIM change or
number porting” [4, §5.1.3.3]. A one-time password (OTP) generated by an app
was not restricted, but OTPs can be phished [19] just like passwords. Further-
more, a phishing attack against any authentication method based on sending
secrets over the wire can be turned into a man-in-the-middle attack, allowing
the attacker to log in by relaying the secrets, then observe and modify the traf-
fic, capture the session cookie, and continue the session by importing the cookie
“into a different browser, on a different computer, in a different country” [13].
Some of these vulnerabilities were reported to NIST in a response by the FIDO
Alliance to a pre-draft call for comments on the forthcoming Revision 4 of the
Guidelines [8].

The vulnerabilities of traditional 2FA can be avoided by using instead cryp-
tographic authentication. In cryptographic authentication of a web user to a web
site or web application (the “relying party” or RP), the JavaScript frontend of
the RP running in the user’s browser registers the public key with the backend,
and later authenticates by proving possession of the private key. The private
key cannot be phished because it is not sent to the backend, and a man-in-the
middle phishing attack is prevented by restricting the use of the private key to
JavaScript code of same web origin as the RP. FIDO authentication [15] is a
method of cryptographic authentication.

1.2 FIDO2 and WebAuthn

Since its launch in 2012, the FIDO Alliance [10] has published a series of cryp-
tographic authentication standards where a key pair called a FIDO credential
is generated by a cryptographic module called a FIDO authenticator, and proof
of possession of the private key is provided by a signature computed within the
authenticator.

The World Wide Web Consortium (W3C) has endorsed FIDO authentica-
tion by specifying the Web Authentication API (WebAuthn) [20], which defines
the interface that the RP frontend uses to ask the authenticator to generate
a credential or compute a signature, while the Client to Authenticator protocol
(CTAP) of the FIDO Alliance defines the communication protocol between the
browser and the authenticator. Together, WebAuthn and CTAP comprise the
FIDO2 specifications [9].

FIDO2 authenticators include roaming authenticators, implemented as secu-
rity keys that communicate with the user’s computing device over NFC, Blue-
tooth or USB, and platform authenticators, implemented within the device in
secure storage, and made available by the operating system to the browsers run-
ning on the device. Original authenticators had a limited amount of storage and
saved space by exporting the private key after encrypting it under a key-wrapping

Overcoming Challenges Faced by FIDO Credentials 3

key. The wrapped private key serves as the credential ID, which is passed as an
argument to the authenticator when requesting a signature, and is decrypted in
the authenticator before signing. Platform authenticators have more space than
security keys and may use resident credentials, a.k.a. discoverable credentials,
which are not exported and are referenced by a randomly generated credential
ID.

All OSes now provide platform authenticators, and all browsers support
them. That makes FIDO2 a generally available available web technology with
the potential to greatly improve the security of web applications by providing
phishing resistant authentication.

But as is the case for any new technology, adoption of FIDO credentials
will require a favorable user experience (UX), and FIDO credentials face UX
challenges, some of which were recognized in a FIDO Alliance white paper [11,
12]. While some of these UX challenges will no doubt be ironed out as the
W3C publishes incremental revisions of the WebAuthn specification, two of them
are major challenges that will require rethinking of the FIDO UX. This paper
proposes two alternative user experiences that overcome those challenges, and
two protocols that provide those experiences.

Complexity issues in WebAuthn Besides UX challenges, adoption of FIDO
authentication is no doubt also impeded by a very complex and confusing spec-
ification [12].

A particularly complex aspect of WebAuthn is attestation [21]. Attestation
is omitted by default [20, §5.4.7] and not recommended in consumer cases [17].
It is omitted in the protocols proposed here.

Another complexity issue is how signatures are computed and verified.
All WebAuthn signatures, including the “assertion signatures”, called “au-

thentication signatures” here for clarity, are computed on a signature base de-
rived from a challenge, rather than on the challenge itself. As shown in [20,
Figure 4], the signature base is the concatenation of authenticator data and a
hash of client data comprising the challenge. The process used by the RP to
verify such a signature takes as inputs the authenticator data and the client
data. The RP verifies that the correct challenge is found in the client data, then
it verifies the signature after reconstructing the signature base by concatenating
the authenticator data and the hash of the client data.

In the figures, each signature should be understood as being supplemented
by the authenticator and client data that the RP backend needs to reconstruct
the signature base and verify the signature.

2 First challenge: the private key is bound to the
authenticator

The first challenge is not specific to FIDO credentials: it is faced by any key
pair credential that is generated and used within a cryptographic module. It is a

4 F. Corella

tenet of cryptography that the private key component of such a credential never
leaves the module in the clear. This means that a FIDO credential can only be
used in the authenticator where it was generated, and may be irrecoverably lost
if the authenticator is lost.

A FIDO platform authenticator is accessible to every browser in the device
and a FIDO credential can be used in any such browser. But it is not acces-
sible to browsers in other devices, and this has been blamed for lack of adop-
tion. The above-cited FIDO Alliance white paper [11] reported in March 2022
that FIDO2/WebAuthn “has not attained large-scale adoption in the consumer
space”, and attributed this to difficulties that users face with platform authen-
ticators: “having to re-enroll each new device”, and having “no easy ways to
recover from a lost or stolen device”.

As anticipated in the white paper, Apple, Google and Microsoft are address-
ing this challenge by syncing FIDO credentials across platform authenticators
located in devices with operating systems from the same OS vendor [7]. A synced
credential is called a “passkey”, presumably because, like a password, it can be
used on multiple devices.

2.1 Challenges faced by passkeys

But passkeys face their own challenges, with respect to both usability and secu-
rity:

1. They weaken security by violating the cryptographic principle that a private
key generated in a cryptographic module never leaves the module in the
clear.

2. While a new device does not have to be enrolled with the RP, it must be en-
rolled with the platform provider for syncing, which may be just as onerous.

3. Enrollment with the platform provider requires authentication of the user to
the platform provider with password-based, phishing-vulnerable, traditional
2FA,1 which further weakens security and conflicts with the FIDO Alliance
marketing message that FIDO authentication is passwordless and phishing
resistant.

4. And credentials cannot be synced between devices with operating systems
from different OS vendors.

3 First alternative user experience (UX 1): multi-device
authentication without passkey syncing

The loss of credential problem is not unique to cryptographic authentication. It
also occurs when a user forgets a password, and a standard solution is used to
recover from that in the consumer space: an email message is sent to a registered
address with a password reset link containing an email verification code. This

1 As documented, for example, in the section on “Synchronization security” of Apple’s
support article on the security of passkeys [2]

Overcoming Challenges Faced by FIDO Credentials 5

solution is phishing resistant: manually entering the code would be phishing-
vulnerable, but clicking on the link is not. This solution can be adapted to
construct a cryptographic authentication protocol, which we shall call Protocol
1, where the user can log in with any browser, on any device, without passkey
syncing.

3.1 Summary of Protocol 1

To register with the RP, the user enters user data and an email address in the
registration form of the relying party, shown on an initial browser. The email
address is verified by a code contained in a link sent to the address, which
the user opens, usually, in the initial browser.2 The user unlocks the platform
authenticator of the device where the browser is running with a biometric or a
PIN, an initial FIDO credential is created by the authenticator, and the public
key is registered with the RP backend. If the initial credential is a resident
credential, the private key is stored in the authenticator; otherwise it is wrapped
and exported as the credential ID; in either case we shall say that the browser
owns the FIDO credential.

To log in on any browser, the user enters the email address in a login box.
If the browser owns a FIDO credential, the user is authenticated by a signature
computed by the platform authenticator using the private key. If not, the RP
sends an email verification link to the address entered in the login box, and the
user is authenticated by opening the link, usually in the same browser.3 A new
FIDO credential is created on the fly in the platform authenticator of the device
where the browser is running, and a credential ID for the new credential is stored
in the browser. Notice that different browsers in the same device create different
credentials in the platform authenticator of the device, all with the same web
origin as the RP, each referenced by a credential ID stored in the browser that
owns the credential.

Fig. 1 shows the resulting user experience.

3.2 RP database schema

Fig. 2 illustrates the schema of the user database of the RP in Protocol 1.
The database comprises user records, credential records and session records.

Each user record comprises the email address and the user data entered on the
registration form. The email address is used as the unique identifier of the record.
The user record is also used to record working data items such as the email
verification code, the authentication challenge, and their issuance timestamps.

Different FIDO credentials are used to authenticate the user on different
browsers, and there is a record for each of them, comprising the credential ID,

2 If the link is opened is another browser, possibly on another device, the registration
process continues on that other browser.

3 If the link is opened in another browser, the user is logged in on that other browser,
using an existing FIDO credential or a new one created on the fly.

6 F. Corella

REGISTRATION

A.User registers user data and email address

B.Email verification link is sent to address

C.User opens link in browser

D.User unlocks authenticator with biometric or PIN

E.User is now registered and logged in on browser,

and browser owns a FIDO credential

LOGIN ON BROWSER THAT OWNS A FIDO CREDENTIAL

A.User submits email address

B.User unlocks authenticator with biometric or PIN

C.User is now logged in on browser

LOGIN ON BROWSER THAT DOES NOT OWN A FIDO CREDENTIAL

A.User submits email address

B.Email verification link is sent to address

C.User opens link in browser

D.User unlocks authenticator with biometric or PIN

E.User is now logged in on browser, and browser owns a FIDO credential

Fig. 1. UX 1

Email address

User data

Email verification code

Verification code timestamp

Authentication challenge

Challenge timestamp

Session ID

Session timestamp

Email address

Session ID

Session timestamp

Email address

Credential ID

Public key

Email address

Credential ID

Public key

Email address

User records

Email address

User data

Email verification code

Verification code timestamp

Authentication challenge

Challenge timestamp

Credential ID

Public key

Email address

Session ID

Session timestamp

Email address

Session records
(Multiple per user if

simultaneous logins allowed
in different browsers)

Credential records
(One per browser)

Fig. 2. Protocol 1: User database

Overcoming Challenges Faced by FIDO Credentials 7

the public key, and the user’s email address, which is used as a reference to the
user’s record.

There may be multiple session records for a given user if simultaneous login
sessions are allowed on different browsers. Each session record comprises the
session ID used as the value of the session cookie, the session creation timestamp
that determines expiration, and the user’s email address, used as reference to
the user’s record.

3.3 Registration phase

Fig. 3 shows the steps of the registration phase of Protocol 1.

Email
service
provider

JavaScript-only
page

Platform
authenticator

W
eb

A
u

th
n

A
P

I

Page with
registration

form

Brower storage
(localStorage or
IndexedDB)

User’s computing
device (e.g.,
laptop or phone)

Browser

Session
cookie

9

User data,
email address

1Email address,
verification code
3

Link with email address and
verification code

2

Credential
creation
request4

Credential ID,
public key

6

CTAP5

Email address

Credential ID

7

Email address,
verification code,

credential ID,
public key

8

RP backend

Fig. 3. Protocol 1: Registration

1. The user submits the RP’s registration form with user data and the user’s
email address, and the RP backend creates a user record with the data and
address, and a randomly generated email verification code.

2. The RP backend emails a link to the email address with the address and an
email verification code. The user opens the link in the browser, causing the
browser to send an HTTP request to the RP backend, containing the email
address and the verification code. (All HTTP requests and responses should
be understood as being sent over TLS.)

3. The RP backend verifies the code against the user record referenced by
the email address, and sends an HTTP response to the browser with a
JavaScript-only page containing the email address and the verification code.
The verification code is included in the response so that it can be used in

8 F. Corella

step 8 to authenticate the browser to the backend; an alternative to using
the verification code for this purpose would be to create a session (not yet a
login session) and use the session ID.

4. The JavaScript code in the page calls the function
navigator.credentials.create of the WebAuthn API to request the cre-
ation of a FIDO credential.

5. The browser communicates with the platform authenticator using the CTAP
protocol, transmitting the request. The user is prompted to unlock the au-
thenticator by supplying a biometric or a PIN. The authenticator creates a
FIDO credential and returns the credential ID and the public key.

6. The browser asynchronously responds to the call to
navigator.credentials.create with an object that contains the creden-
tial ID and the public key.

7. The code in the JavaScript-only page creates a record in browser storage (ei-
ther LocalStorage or an IndexedDB database) containing the email address
and the credential ID.

8. The code in the JavaScript-only page sends an HTTP POST request to the
RP backend conveying the email address, the verification code, the credential
ID and the public key. The RP backend verifies the code a second time and
creates a credential record.

9. The RP backend creates a session record and sets the session cookie.

3.4 Authentication on a browser that owns a FIDO credential

Fig. 4 shows the steps of the authentication phase of Protocol 1 when the browser
already owns a credential.

1. The user visits an RP page containing a form with a text input field for
entering an email address, enters his/her email address in the field, and
requests submission of the form. A form submission event listener finds a
record in browser storage containing the email address and a credential ID,
and copies the credential ID to a hidden input of the form.

2. The form submission event listener submits the form, sending an HTTP
POST request to the RP backend that conveys the email address and the
credential ID.

3. The RP backend uses the email address to find the user’s record, generates an
authentication challenge that it records in the user’s record, and responds to
the HTTP request with a JavaScript-only page containing the email address,
the credential ID and the challenge.

4. The JavaScript code in the page calls the function
navigator.credentials.get of the WebAuthn API, passing as an argu-
ment an object that contains the credential ID and the challenge.

5. The browser communicates with the platform authenticator using the CTAP
protocol, forwarding the credential ID and the challenge. The user is prompted
to unlock the authenticator by supplying a biometric or a PIN. The au-
thenticator computes the authentication signature and returns it along with
authenticator data

Overcoming Challenges Faced by FIDO Credentials 9

RP backend

JavaScript-only
page

Platform
authenticator

W
eb

A
u

th
n

A
P

I

Page with
login box

Brower storage
(localStorage or
IndexedDB)User’s computing

device (e.g.,
laptop or phone)

Browser

Session
cookie

8

Email address,
credential ID

2Email address,
credential ID,
challenge

3

Credential ID,
challenge

4

Authentication
signature
6

CTAP5

Email address

Credential ID

1

Email address,
credential ID,

authentication signature

7

Credential ID

Fig. 4. Protocol 1: Authentication on browser owning a credential

6. The browser asynchronously responds to the call to
navigator.credentials.get with an object that contains the signature,
supplemented with the authenticator and client data (not shown in the fig-
ure) that the RP backend needs to reconstruct the signature base as ex-
plained in Section 1.2.

7. The code in the JavaScript-only page sends an HTTP POST request to
the RP backend conveying the email address, the credential ID, and the
supplemented authentication signature.

8. The RP backend uses the email address to locate the user record, and the
credential ID along with the user record to locate the credential record for
the credential owned by the browser. It verifies the challenge found in the
client data against the user record and authenticates the user by verifying
the signature. Then it logs the user in by creating a session record and setting
the session cookie.

3.5 Authentication on a browser that does not own a FIDO
credential

Fig. 5 shows the steps of the authentication phase of Protocol 1 when the browser
does not yet own a credential.

1. The user visits an RP page containing a form with a text input field for
entering an email address, enters his/her email address in the field, and
requests submission of the form. A form submission event listener cannot
find a record in browser storage containing the email address.

10 F. Corella

Email
service
provider

RP backend

JavaScript-only
page

Platform
authenticator

W
eb

A
u

th
n

A
P

I

Brower storage
(localStorage or
IndexedDB)User’s computing

device (e.g.,
laptop or phone)

Browser

Session
cookie

10

Link with email address and
verification code

3

CTAP6

Email address

Credential ID

8

Page with
login box

1

No record with email
address found

Email
address

2

5

Credential ID,
public key

7

Email address,
verification code,

credential ID,
public key

9 Email address,
verification code
4

Credential
creation
request

Fig. 5. Protocol 1: Authentication on browser not owning a credential

2. The form submission event listener submits the form with the email address
as-is, sending an HTTP POST request to the RP backend that conveys the
email address.

3. The RP backend verifies that there is a user record with the submitted email
address, then sends a link to the email address with the address and an email
verification code, which the user opens as in step 2 of the registration phase.

4. Steps 4–10 are then as steps 3–9 of the registration phase.

4 Second challenge: reliance on the device unlocking
mechanism

The second major UX challenge is specific to FIDO2 and WebAuthn. Crypto-
graphic authentication needs a second factor for protection against theft of the
hardware where the private key is stored, and FIDO2 uses as second factor the
same biometric or PIN used to unlock the user’s device; but many users do not
set up the device unlocking mechanism. There is evidence, for example, that
only about 30% of Windows users set up Windows Hello [1].

Large scale adoption of FIDO authentication would require convincing most
users of setting up device unlocking, and that is going to be difficult. Recent user
research [6] has shown that depending on biometrics as the sole authentication
method for unlocking a device raises anxieties about being locked out of the
device; therefore a PIN would have to be used instead of, or as backup for a
biometric. But a PIN is a very weak and much reused password; and asking users
to use a PIN for authentication conflicts with the “passwordless authentication”

Overcoming Challenges Faced by FIDO Credentials 11

marketing campaign of the FIDO Alliance, and the decades of cybersecurity user
education arguing against weak passwords and password reuse.

5 Second alternative user experience (UX 2):
cryptographically protected password as second factor

The second alternative UX uses a full-fledged password as a second factor instead
of a PIN or a biometric. But the password is not submitted to the RP backend
separately and independently from the cryptographic credential, which would
make it vulnerable to reuse at malicious sites and backend database breaches.
The password and the cryptographic credential protect each other by being used
together in a joint authentication procedure.

5.1 Joint authentication with an enhanced credential and a
password

While the UX of Section 1 can be implemented using ordinary FIDO authenti-
cators and credentials, UX 2 requires several extensions to WebAuthn, as reca-
pitulated below in Section 5.3.

One of those extensions is the option to generate an enhanced credential
that can be combined with a password in a joint authentication procedure. An
enhanced credential differs from an ordinary credential in two ways: (i) it has an
additional component that is hashed with the password as a secret salt ; and (ii)
its public key is retained in the authenticator and is not stored in the backend
database. In the joint authentication procedure, the RP frontend submits the
authentication signature, the salted password and the public key to the backend.
The backend uses the public key to verify the signature, then computes a joint
hash of the salted password and the public key that it compares with a registered
joint hash.

This protects the password against reuse at a malicious site, because different
sites use different secret salts; and it protects both the password and the key
pair against database breaches. In case of a database breach, the password is
protected against a dictionary attack by being hashed first with the secret salt
and then with the public key; and, by being hashed with the salted password,
the key pair is protected against any weakness of its underlying cryptosystem
that might be discovered by an adversary, and against a postquantum brute
force attack that would attempt to derive the private key from the public key.

5.2 Replicating the enhanced credential without syncing

At first glance UX 1 and UX 2 are mutually exclusive. It would seem that an
enhanced credential used to implement UX 2 could only be used on one device,
because the same password must be used on all devices, and the public key of the
credential generated in one device would not be available for computing the joint

12 F. Corella

hash and verifying the password when creating a new credential in a different
device.

This difficulty could be solved by syncing the enhanced credential across
devices, as passkeys are now being synced. But that would negate the benefits
of UX 1.

The protocol proposed here to implement UX 2, which we shall call Protocol
2, solves the difficulty instead by generating the enhanced credential using the
same pseudo-random bit generation seed in all devices. The seed is computed by
the RP backend in a hardware security module (HSM) from the email address
and a master secret randomly generated in the module from a noise source. The
seed can be derived, for example, as the PRK output of HKDF-Extract [16,
§2.2], using the address as the HKDF salt, and the master secret as the IKM
input. The seed is then included in the email verification link along with the
email verification code at registration, and when creating a credential for a new
device.

Using the same seed will result in having the same credential in all devices
without syncing, provided that the same method is consistently used to generate
the credential from the seed. This means that the credential creation options
passed as input to navigator.credentials.create will have to determine not
only the type of credential to be used (such as an ECDSA key pair suitable for
use with COSE algorithm ES256 [14], or an RSA key pair usable with algorithm
RS256) but also the procedure to be used for computing the key pair from the
seed.

That can be done by specifying: (i) how to derive a stream of random bits
from the seed; and (ii) how to compute one or more components of the credential
from one or more portions of the stream. The bit stream can be derived, for
example, using any of the DRBG algorithms of [3, §10] with specific parameters,
or HKDF-Expand [16, §2.2] using the seed as the PRK input. The component
computation is easy to specify for an ES256 credential: the private key d is a
random number in the range 0 . . . n where n is the order of the NIST P256
curve [5], which can be computed using, for example, the extra random bits
method of [18, §B.1.1] by reducing modulo n the integer having as its binary
representation the first 256+64 = 320 bits of the stream. The public key is then
the scalar product dG of the private key with the base point G of the curve. It
would be more complicated to specify the computation of the p and q primes for
an RS256 credential but, although RS256 is used by Windows Hello, it is not
a recommended COSE algorithm [14] and may be replaced with ES256 in the
future.

5.3 Required extensions to WebAuthn

To recapitulate, the following modifications to WebAuthn are needed to imple-
ment Protocol 2:

– The function navigator.credentials.create used at registration must
provide the option to create an enhanced credential that comprises a se-

Overcoming Challenges Faced by FIDO Credentials 13

cret salt as an additional component and whose public key is retained by the
authenticator.

– When an enhanced credential is requested, navigator.credentials.create
must take a DRBG seed as an additional input and use it to generate the
pseudo-random bits used to construct the credential.

– When creating an enhanced credential, navigator.credentials.create

must take a password as an additional input, hash the password with the
secret salt, and outputs the joint of hash the public key and the salted pass-
word instead of the public key.

– When authenticating with an enhanced credential, the function
navigator.credentials.get must take the password as an additional in-
put, compute the hash of the password and secret salt, and ouput the re-
tained public key and the salted password in addition to the authentication
signature.

– When creating or using an enhanced credential, the user must not be asked
for a biometric or PIN to unlock the authenticator.

5.4 Summary of Protocol 2

To register, the user enters the email address and user data in a registration
box. The RP backend creates a user record with the address and the data, then
it derives a seed from the address and emails a link with the seed and an email
verification code. The user opens the link and is prompted to register a password.
The RP frontend inputs the seed and the password to the authenticator, which
creates the enhanced credential and returns the credential ID and the joint hash
of the public key and the salted password. The RP frontend creates a record
with the email address and the credential ID in browser storage and sends the
email address, the credential ID, and the joint hash to the RP backend. The
backend adds the joint hash to the user record and logs the user in by creating
a session record and setting a session cookie.

To log in, the user enters the email address in a login box. The RP frontend
looks for a record containing the email address and a credential ID in browser
storage.

If such a record is found, the email address and the credential ID are sub-
mitted to the backend, which generates a challenge and responds with a page
containing a password submission box and JavaScript code containing the email
address, the credential ID and the challenge. The user supplies the password and
the RP frontend inputs the challenge, the credential ID and the password to the
authenticator, which returns a signature, the salted password, and the public
key. The RP frontend submits the email address, the salted password, the public
key and the signature to the backend, which verifies the signature, computes the
joint hash of the public key and the password, and verifies the joint hash against
the user record referenced by the email address. The user is thus authenticated
by possession of the private key and knowledge of the password. Then the back-
end logs the user in by creating a session record and setting a cookie with the
session ID.

14 F. Corella

If no such record is found, the RP backend derives the seed from the email
address and sends the seed to the address along with an email verification code
in a link. The user opens the link and is prompted for the password. The au-
thenticator creates an enhanced credential identical to the one that was created
at registration. (The authenticator may have multiple replicas of the credential
for multiple browsers installed in the device, each with a different credential ID.)
The authenticator computes the hash of the password and the secret salt and
outputs the joint hash of the public key and the salted password, which is sent
to the backend and verified against the registered joint hash. The user is thus
authenticated by having received the email verification link and knowing the
password. Then the backend logs the user in by creating a session record and
setting a cookie with the session ID.

Fig. 6 shows the resulting user experience.

REGISTRATION

A.User registers user data and email address

B.Link with email verification code and DRBG seed is sent to address

C.User opens link in browser and registers password

D.User is now registered and logged in on browser,

and browser owns a credential

LOGIN ON BROWSER THAT OWNS A CREDENTIAL

A.User submits email address and is prompted for password

B.User submits password

C.User is now logged in on browser

LOGIN ON BROWSER THAT DOES NOT OWN A CREDENTIAL

A.User submits email address

B.Link with email verification code and DRBG seed is sent to address

C.User opens link in browser and is prompted for password

D.User submits password

E.User is now logged in on browser and browser owns a credential

Fig. 6. UX 2

5.5 RP database schema

Fig. 7 illustrates the schema of the user database of the RP in Protocol 2.

Since the same enhanced credential is used for all browsers in all devices,
there are no credential records. Instead, each user record stores the joint hash of
the public key and the salted password. Notice how the public key is not stored
in the database, as it is retained by the enhanced authenticator and submitted
along with the salted password for authentication.

Overcoming Challenges Faced by FIDO Credentials 15

Email address

User data

Email verification code

Verification timestamp

Authentication challenge

Challenge timestamp

Session ID

Session timestamp

Email address

Session ID

Session timestamp

Email address

User records

Session ID

Session timestamp

Email address

Session records
(Multiple per user if

simultaneous logins allowed
in different browsers)

NO CREDENTIAL RECORDS
IN PROTOCOL 2

Joint hash of public key and
salted password

Email address

User data

Joint hash of public key and
salted password

Etc.

Fig. 7. User database of the RP

5.6 Registration phase

Fig. 8 shows the steps of the registration phase of Protocol 2.

1. The user submits the RP’s registration form with user data and the user’s
email address; the RP backend creates a user record comprising the data,
the address, and a randomly generated email verification code.

2. The RP backend inputs the email address to a hardware security module
(HSM) containing a master secret. The HSM outputs a bit string to be used
as a DRBG seed, computed as the PRK output of HKDF-Extract [16, §2.2]
with the master secret as the IKM input and the email address as the salt
input.

3. The RP backend sends a link to the email address with the email address,
the verification code and the seed. The user opens the link in the browser,
causing the browser to send an HTTP request to the RP with the contents
of the link.

4. The RP backend verifies the code against the user record referenced by the
email address, and sends an HTTP response to the browser with a password
registration form. JavaScript code in the page contains the email address
and the seed, as well as the verification code, which will be used in step 9
to authenticate the browser to the RP backend; an alternative to using the
verification code for this purpose would be to create a session (not yet a
login session) and use the session ID.

5. The user supplies a password. The JavaScript code in the page calls the
function navigator.credentials.create of the extended WebAuthn API
to request the creation of an enhanced credential, passing the seed and the
password.

16 F. Corella

RP backend

Platform
authenticator

Ex
te

n
d

ed
 A

P
I

User’s computing
device (e.g.,
laptop or phone)

Browser

Session
cookie

10

Link with email address,
verification code and seed

3

CTAP6

8

Email address
user data

1
Email address,

verification code,
seed

2 Master
secret

Email address

Seed

HSM

4

Seed,
password

5

Credential ID,
joint hash of
public key and
salted password

7

Brower storage
(localStorage or
IndexedDB)

Email address

Credential ID

Email
service
provider

Page with
registration form
for email address

and user data

Page with
password

registration
form

Email address,
verification code,
joint hash

9

Fig. 8. Protocol 2: Registration

6. The browser communicates with the platform authenticator using an en-
hanced version of the CTAP protocol, and transmits the request. The user
is NOT prompted to unlock the authenticator by supplying a biometric or a
PIN. The authenticator creates an enhanced credential, computes the hash
of the password and the secret salt, and returns the credential ID and the
joint hash of the public key and the salted password.

7. The browser asynchronously responds to the call to
navigator.credentials.create with an object that contains the creden-
tial ID and the joint hash.

8. The JavaScript code in the password registration page creates a record in
browser storage (either LocalStorage or an IndexedDB database) containing
the email address and the credential ID.

9. The JavaScript code in the password registration page sends an HTTP POST
request to the RP backend conveying the email address, the verification code
and the joint hash. The RP backend verifies the code again and adds the
joint hash to the user record referenced by the email address.

10. The RP backend creates a session record and responds to the POST request
with an HTTP response that sets a cookie with the session ID in the browser.

5.7 Authentication on a browser that owns a FIDO credential

Fig. 9 shows the steps of the authentication phase of Protocol 2, when the
browser already owns a credential.

1. The user visits an RP page containing a form with a text input field for
entering an email address, enters his/her email address in the field, and

Overcoming Challenges Faced by FIDO Credentials 17

RP backend

Platform
authenticator

Ex
te

n
d

ed
 A

P
I

Brower storage
(localStorage or
IndexedDB)User’s computing

device (e.g.,
laptop or phone)

Browser

Session
cookie

8

Email address,
credential ID

2Email address,
credential ID,
challenge

3

Credential ID,
password,
challenge

4

Public key,
salted password,
authentication signature

6

CTAP5

Email address

Credential ID

1

Email address,
public key,

salted password,
authentication signature

7

Page with email
address

submission box

Page with
password

submission
box

Master
secret

HSM

Fig. 9. Protocol 2: Authentication on browser owning a credential

submits the form. A form submission event listener finds a record in browser
storage containing the email address and a credential ID, and copies the
credential ID to a hidden input of the form.

2. The form submission event listener submits the form, sending an HTTP
POST request to the RP backend that conveys the email address and the
credential ID. The credential ID is not stored in the backend. It is sent in
this step so that it can be returned in the next step and used in step 4.

3. The RP backend generates an authentication challenge, records it in the
user’s record along with a challenge creation timestamp, and responds to the
HTTP request with a page for completing the login by entering a password.
JavaScript code in the page contains the email address, the credential ID
and the challenge.

4. The JavaScript code in the password submission page calls the function
navigator.credentials.get of the extended WebAuthn API, passing as
an argument an object that contains the challenge, the credential ID and
the password.

5. The browser communicates with the platform authenticator using an en-
hanced version of the CTAP protocol, forwarding the challenge, the creden-
tial ID and the password. The user is NOT prompted to unlock the authen-
ticator by supplying a biometric or a PIN. The authenticator computes the
hash of the password with the secret salt, derives a signature base from the
challenge as explained above in Section 1.2, signs it with the private key of
the credential, and sends the signature, the salted password and the public
key to the browser along with the authenticator data and the client data
that the backend will need to reconstruct the signature base.

18 F. Corella

6. The browser asynchronously responds to the call to
navigator.credentials.get with an object that contains the the salted
password, the public key, and the signature supplemented with the authen-
ticator and client data.

7. The JavaScript code in the password submission page sends an HTTP POST
request to the RP backend conveying the email address, the salted password,
the public key, and the signature supplemented with the authenticator and
client data.

8. The RP backend uses the email address to locate the user record and verifies
that the challenge recorded in the user record is recent, and is the one found
in the client data. It hashes the client data and reconstructs the signature
base by concatenating the authenticator data and the hash of the client
data. It uses the public key to verify the signature on the signature base.
It computes the joint hash of the public key and the salted password and
verifies it against the user record. Then it logs the user in by creating a
session record and responding to the POST request with an HTTP response
that sets a cookie with the session ID in the browser.

5.8 Authentication on a browser that does not own a FIDO
credential

Fig. 10 shows the steps of the authentication phase of Protocol 2, when the
browser does not yet own a credential.

RP backend

Platform
authenticator

Ex
te

n
d

ed
 A

P
I

User’s computing
device (e.g.,
laptop or phone)

Browser

Session
cookie

11

Link with email address,
verification code and seed

4

CTAP7

9 1

Email
address

2
Email address,

verification code,
seed

10

3 Master
secret

Email address

Seed

HSM

5

Seed,
password

6

Credential ID,
joint hash of
public key and
salted password

8

Brower storage
(localStorage or
IndexedDB)

Email address

Credential ID

Email
service
provider

Email address,
verification code,
joint hash

Page with
password

submission
box

Page with email
address

submission box

No record with
email address

found

Fig. 10. Protocol 2: Authentication on browser lacking a credential

Overcoming Challenges Faced by FIDO Credentials 19

1. The user visits an RP page containing a form with a text input field for
entering an email address, enters his/her email address in the field, and
submits the form. A form submission event listener cannot find a record in
browser storage containing the email address.

2. The form submission event listener submits the form with the email address
as-is.

3. The RP backend verifies that there is a user record with the submitted email
address, then inputs the email address to the HSM and obtains the seed as
in Fig. 8.

4. Steps 4–11 are then as steps 3–10 of the registration phase, except that,
at step 10, the RP backend verifies the joint hash against the user record
instead of adding it to the user record.

6 Conclusion

This paper has proposed two protocols for two-factor cryptographic authen-
tication to a web site or web application that overcome the user experience
challenges of FIDO credentials. Both protocols allow the user to log in on any
browser, in any device, with authentication by email verification and on-the-fly
browser enrollment.

The first protocol uses ordinary FIDO credentials and authenticators. When
a browser is enrolled, a key pair is generated for the browser in the platform
authenticator of the device, and a record containing the public key, the credential
ID and a reference to the user record is added to the backend database. The
second authentication factor is provided by the biometric or PIN supplied by
the user to unlock the authenticator.

The second protocol uses a cryptographically protected password as a second
factor instead of a PIN or biometric, but requires an enhanced credential that
comprises a secret salt in addition to the key pair. A two-factor joint authen-
tication procedure protects the password against reuse at malicious sites and
database breaches. If the database is compromised, it also protects the public
key against exploitation of any cryptographic weakness that may be discovered
by an adversary in the underlying cryptosystem, and against any postquantum
brute force attempt to compute the private key from the public key. The use
of the password and the credential in combination requires the same enhanced
credential to be used in all devices. This is achieved, without passkey syncing,
by using a pseudo-random bit generation seed derived in an HSM from the email
address and a master secret to generate the credential.

References

1. Informal interview with a Geek Squad Agent on February 22, 2023

2. Apple Support: About the security of passkeys, https://support.apple.com/en-
us/HT213305

20 F. Corella

3. Barker, E., Kelsey, J.: Recommendation for Random Number Generation Using
Deterministic Random Bit Generators (June 2015), NIST Special Publication 800-
90A Revision 1. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-90Ar1.pdf

4. Burr, W.E., Dodson, D.F., Polk, W.T.: NIST SP 800-63-1 Electronic Au-
thentication Guideline (December 2011), http://csrc.nist.gov/publications/
nistpubs/800-63-1/SP-800-63-1.pdf

5. Center for Research on Cryptography and Security: Standard curve database, P-
256, https://neuromancer.sk/std/nist/P-256

6. Chuhan, S., Wojnas, V.: Designing and evaluating a resident-centric digital wallet
experience, To appear in the proceedings of HCI International 2023

7. FIDO Alliance: Apple, Google and Microsoft Commit to Expanded Support
for FIDO Standard to Accelerate Availability of Passwordless Sign-Ins, May
5, 2022. https://fidoalliance.org/apple-google-and-microsoft-commit-

to-expanded-support-for-fido-standard-to-accelerate-availability-of-

passwordless-sign-ins/

8. FIDO Alliance: FIDO Alliance Input to the National Institute of Standards
and Technology (NIST), August 2020. https://www.nist.gov/system/files/

documents/2020/09/08/Comments-800-63-009.pdf

9. FIDO Alliance: FIDO2 Specifications, https://fidoalliance.org/fido2/
10. FIDO Alliance: Open Authentication Standards More Secure than Passwords,

fidoalliance.org

11. FIDO Alliance: White Paper: Multi-Device FIDO Credentials, March 2023. https:
//fidoalliance.org/white-paper-multi-device-fido-credentials/

12. Firstyear (anonymous blogger): Exploring Webauthn Use Cases, June 13, 2022.
https://fy.blackhats.net.au/blog/html/2022/06/13/exploring_webauthn_

use_cases.html

13. Gretzky, K.: Evilginx 2 – Next Generation of Phishing 2FA Tokens, July 26,
2018. https://breakdev.org/evilginx-2-next-generation-of-phishing-2fa-
tokens/

14. IANA: COSE algorithms, https://www.iana.org/assignments/cose/cose.

xhtml#algorithms

15. Jen Easterly, Director, CISA: NEXT LEVEL MFA: FIDO AUTHENTICATION,
October 18, 2022. https://www.cisa.gov/blog/2022/10/18/next-level-mfa-

fido-authentication

16. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF), RFC 5869, May 2010. http://tools.ietf.org/html/rfc5869

17. Langley, A.: Attestation not recommended in consumer cases. https:

//groups.google.com/a/chromium.org/g/security-dev/c/BGWA1d7a6rI/m/

nwOt22fDBAAJ?pli=1

18. NIST: Digital Signature Standard (DSS) (July 2013), FIPS PUB 186-4, http:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

19. Sachs, E., Dingle, P.: The Cutting-Edge: Standards at Work In Google’s Mobile-
Focused Future, Presentation at Cloud Identity Summit 2015. https://www.

youtube.com/watch?v=UBjEfpfZ8w0

20. W3C: Web Authentication: An API for accessing Public Key Credentials Level
3, W3C First Public Working Draft, 27 April 2021. https://www.w3.org/TR/

webauthn-3/

21. Yubico: Attestation, WebAuthn Developer Guide. https://developers.yubico.
com/WebAuthn/WebAuthn_Developer_Guide/Attestation.html

