
An Omission-Tolerant Cryptographic
Checksum

Francisco Corella and Karen Lewison
Pomcor

Revised March 25, 2019

Abstract

A cryptographic checksum is a small data item that is computed
from a data structure and can be used to prevent undetected inten-
tional modification by making it difficult for an adversary to construct
a different data structure that has the same checksum. We broaden
the concept of a checksum to include the concept of a data item in-
tended to prevent certain modifications while tolerating others. An
omission-tolerant checksum is computed from an encoding of a set and
does not change when the encoding is modified to omit elements from
the set, while making it difficult for an adversary to modify an orig-
inal, i.e. unmodified, encoding in any other way without invalidating
the checksum.

We use the root label of a typed hash tree to implement an omission-
tolerant checksum. A typed hash tree is a variation on a Merkle tree,
where each node has a type and a label. The root label of a typed
hash tree does not change when a subtree is pruned from the tree.
The same is true for a Merkle tree, but in a Merkle tree this a “bug”
to be mitigated, while in a typed hash tree it is a “feature” that makes
it possible to use the label of the root node as an omission-tolerant
checksum for a set of key-value pairs. To do so, we encode each key-
value pair as the type and label of a leaf node of an incomplete typed
hash tree without internal-node labels, then serialize the tree to ob-
tain a bit-string encoding of the set. To compute the checksum on the
encoding we deserialize the bit-string, compute the missing internal
nodes, and output the label of the root node as the checksum.

1

We use Boneh and Shoup’s system parameterization and attack
game methodology to prove that, given an original encoding of a set
of key-value pairs, an efficient adversary has a negligible probability of
producing a modified encoding that represents a set of key-value pairs
other than a subset of the given one and that has the same checksum.

Contents

1 Introduction 2
1.1 Prior work and present contributions 5

2 Preliminaries 7
2.1 Algorithms . 7
2.2 Games . 8
2.3 Notations and conventions . 9
2.4 Hash functions . 9
2.5 Simple encoding schemes . 10

3 Typed hash trees 10

4 An omission-tolerant checksum 18
4.1 Overview . 18
4.2 Representation of a set of key-value pairs 18

5 Asymptotic security 24
5.1 Boneh and Shoup’s system parameterization 24
5.2 Encoding schemes with system parameterization 27
5.3 Omission-tolerant integrity protection in the asymptotic secu-

rity setting . 30

6 Conclusion 39

1 Introduction

A checksum is a small data item that is computed from a data structure and
can be used to verify its integrity, i.e. to verify that the data structure has
not been accidentally or intentionally modified. We are primarily concerned
with cryptographic checksums that are used to prevent undetected intentional

2

modification by making it difficult for an adversary to construct a different
data structure that has the same checksum. An example of a cryptographic
checksum is a cryptographic hash computed on a bit-string encoding of a
data structure. A cryptographic checksum can be verified by comparing it
to an original checksum supplied by the originator of the data structure, or
by verifying a signature on the checksum by the originator.

In this paper we broaden the concept of a checksum to include the concept
of a data item intended to prevent certain modifications while tolerating
others. An omission-tolerant checksum is computed from an encoding of a
set and does not change when the encoding is modified to omit elements
from the set, while making it difficult for an adversary to modify an original
encoding (i.e. an encoding produced by the encoding algorithm rather than by
omitting elements from an encoding of a superset) in any other way without
invalidating the checksum.

We use a typed hash tree to represent a set of key-value pairs with omission-
tolerant integrity protection provided by the root label of the tree, i.e. by the
label of its root node. In a typed hash tree each node has a type and a label,
and the label of an internal node is a cryptographic hash of an encoding of
the types and labels of its children called the prelabel of the node. A dis-
tinguished type is assigned to all the internal nodes and possibly to some of
the leaf nodes. The key and the value of a key-value pair are encoded as bit
strings and represented by the type and the label of a leaf node that has an
undistinguished type. The same key may be associated with multiple values,
and thus a typed hash tree can be used to represent a set of unstructured
elements as a special case of a set of key-value pairs where there is only one
key, associated with all the unstructured elements.

The key-value pairs in a subtree can be omitted without modifying the
root label of the tree by “pruning” the subtree, causing its root node to
become a leaf node whose type is the distinguished type; we refer to such a
node as a dangling node; this can be used to implement selective disclosure
by pruning different subtrees when presenting the tree to different verifiers.
When the tree is intended to be used for selective disclosure, a dangling
node with a random label may be used to make it infeasible to tell whether
a subtree rooted at that node has been pruned or the node was originally
dangling. It may also be used to make it infeasible to guess what has been
pruned when a subtree rooted at an ancestor of the node is pruned.

If a typed hash tree Y is derived from a typed hash tree X by pruning
one or more subtrees, then X and Y have the same root label. Conversely,

3

we formally prove that if X and Y have the same root label, then either Y
is isomorphic to a pruned derivative of X, or the label of an internal node of
Y is equal to the label of a dangling node of X, or an internal node of Y has
the same label as an internal node of X but a different prelabel.

From this formal result it follows that if a typed hash tree is used to
represent a set of key-value pairs and the hash function used to construct
the tree is collision and preimage resistant, then the root label of the tree
can serve as an omission-tolerant checksum of that set. This is easy to see
informally, but a formal proof faces the well known difficulty of formalizing
the concepts of collision and preimage resistance for a keyless hash function.
We solve this difficulty using the novel concept of system parameterization
proposed by Boneh and Shoup in [1], and the attack game methodology that
they use.

A further difficulty arises from the fact that some of the algorithms in-
volved in the attack games are hybrid non-deterministic algorithms, which
make two kinds of non-deterministic choices: probabilistic choices, and ar-
bitrary, non-probabilistic ones. The output of such an algorithm is a ran-
dom variable that has a well-defined distribution over a probability space
only if the probabilistic choices that define the space are made after the
non-probabilistic ones and after any probabilistic ones not included in the
definition of the space. We solve this difficulty in the asymptotic security
setting by letting only some aspects of a typed hash tree be dependent on
the security parameter.

An omission-tolerant checksum has many possible applications. A par-
ticularly important one is a method for implementing selective disclosure
of data items bound to a public key by a public key certificate, either by
including the omission-tolerant checksum in a traditional X.509 certificate
and presenting the data with any omissions separately, or by defining a new
certificate format that includes the data, with omissions as desired at presen-
tation time, and the signature computed on the omission-tolerant checksum.
Cryptographic credentials that feature selective disclosure of attributes, such
as anonymous credentials [2] or U-Prove tokens [3], have been proposed be-
fore; but they are more difficult to use than public key certificates and have
failed to be widely deployed. Public key certificates with selective disclosure
would be much easier to deploy for a wide range of privacy-preserving appli-
cations, such as TLS client authentication. Details of such applications are
left for future work.

4

1.1 Prior work and present contributions

Hash trees were first proposed by Merkle [4]. In a Merkle tree, each internal
node is labeled by a hash of the concatenation of the labels of its children,
and each leaf node is labeled by a hash of a data block. In both kinds
of trees, a subtree can be pruned without modifying the root label of the
tree. But in the case of a Merkle tree this is a “bug” to be mitigated if
the tree is to provide integrity protection, while in the case of a typed hash
tree it is a “feature” that allows the root label of the tree to be used as an
omission-tolerant checksum. The root label of a Merkle tree is a checksum
of a collection of data blocks whose hashes label the leaf nodes. The root
label of a typed hash tree is a checksum of a collection of key-value pairs, the
key and value of each pair being represented by the type and the label of a
leaf node. Pruning a subtree causes data blocks in the case of a Merkle tree,
or key-value pairs in the case of typed hash tree, to be removed from the
checksummed collection without modifying the checksum. But in the case
of a Merkle tree, it also causes an extraneous data block to be added to the
collecion, viz. the concatenation of the labels of the children of the root of the
subtree. In the case of a typed hash tree, nothing is added to the collection,
because the type and label of a leaf node do not represent a key-value pair
when the type of the leaf node is the distinguished type.

In Certificate Transparency [5], the subtree pruning “bug” of a Merkle
hash tree is mitigated by prepending a byte to the data that is hashed into
the label of a node, the value of the byte being 0x00 for leaf nodes and
0x01 for internal nodes. This byte is akin to a type in a typed hash tree,
but the intended effect of the byte is to alter the value of the root label of
the tree when a subtree is pruned. So this kind of type cannot be used for
implementing omission-tolerant integrity protection.

The Secure Electronic Transactions (SET) protocol [6, 7], uses a “dual
signature” to disclose different information about an online credit card trans-
action to the merchant and to the acquiring bank. The dual signature uses a
cascade of hashes that can be mapped to a very special case of a typed hash
tree. Neither a broadly applicable concept of an omission-tolerant checksum
nor a proof of security are provided.

We originally proposed the concept of omission-tolerant integrity pro-
tection in a white paper concerned with a specific application [8]. NIST
has subsequently but independently proposed the equivalent concept of “in-
tegrity protection with erasure capability” [9]. In the method that NIST

5

uses to implement the concept, data items, referred to as blocks, are ar-
ranged in a two-dimensional matrix, and integrity is verified by the hashes
of the rows and columns of the matrix. Zeroing out one of the blocks alters
the hashes of the row and column of the block, but the hashes of the other
rows and columns can still be used to verify the integrity of the other blocks.
A carefully designed algorithm assigns a sequence of blocks to matrix posi-
tions excluding the diagonal, in a manner that ensures that two consecutive
blocks can be zeroized without losing integrity protection for other blocks.
An advantage of this method over ours is that a data block can be altered
in any way, not just deleted by zeroing it, without losing integrity protec-
tion for other blocks. A disadvantage is that, when a block is zeroized or
otherwise altered, multiple hashes have to be individually checked to verify
the integrity of the remaining blocks. Origin authentication by digital sig-
nature would thus requires all the row and column hashes to be individually
signed. It is interesting that the collection of row and column hashes provides
integrity protection but does not constitute an omission-tolerant checksum,
since two of the hashes in the collection change when a block is zeroized or
altered. This shows that the concepts of omission-tolerant checksum and
omission-tolerant integrity protection are not equivalent.

US patent 6,802,002 [10] describes “structured certificates”, which are
public key certificates containing nested “certificate folders” than can be
open or closed, where closing a folder means replacing it with a cryptographic
hash of the folder. This is essentially equivalent to binding the public key to
the root label of a typed hash tree, a folder being equivalent to a subtree,
and closing a folder being equivalent to pruning the corresponding subtree.
Thus the certificates described in the patent provide selective disclosure of
certified information. However neither a broadly applicable concept of an
omission-tolerant checksum nor a proof of security are provided.

The contributions made by this paper include:

1. The concepts of omission-tolerant checksum and omission-tolerant in-
tegrity protection.

2. The concept of a typed hash tree.

3. A fundamental theorem relating the structures of typed hash trees hav-
ing the same root label (Theorem 1).

4. A method for using a typed hash tree to represent a set of key-value
pairs (or, as a special case, a set of unstructured elements all associated

6

as values with the same key), serializing the tree to obtain a bit-string
encoding of the set, and using the root label of the tree as an omission-
tolerant cryptographic checksum of the encoding.

5. A formal proof in an asymptotic security setting that given a set of
key-value pairs, an efficient adversary has a negligible probability of
producing a set of key-value pairs, other than a subset of the given
one, that has the same root-label checksum (Theorem 3).

2 Preliminaries

2.1 Algorithms

Many definitions of the concept of algorithm have been proposed [11]. We
shall not use a particular one or propose our own. We think of an algorithm in
a practical way as an abstraction of the concrete concept of a computer pro-
gram, and all algorithms described in the paper can be readily implemented
in a modern programming language.

An algorithm may be passed any input or inputs, but may stop without
output if it receives an unexpected input, or for other reasons. Stopping
without output is an abstraction of the programming concept of throwing
an exception. When we say that an algorithm takes as input data of some
particular form we mean that it determines whether the input is of that form
before performing any other computation, and stops without output if it is
not of that form. An algorithm may also have parameters, which may be
viewed as being hardcoded into the program that implements the algorithm
or as additional inputs.

An algorithm may be deterministic or non-deterministic. Non-deterministic
algorithms may make probabilistic choices or arbitrary, non-probabilistic
choices. Examples of algorithms that make non-probabilistic choices, in a
variety of contexts, include: ASN.1 encoding with Basic Encoding Rules
(BER), which allow more than one way of encoding a data item into a byte
string; the algorithm for generating the DSA domain parameters p and q spec-
ified in [12, Appendix A.1.1.2], which chooses an arbitrary domain parameter
seed at step 5; and the non-deterministic polynomial time algorithms used in
the definition of the complexity class NP. Examples of algorithms that make
probabilistic choices, again in a variety of contexts, include: the Miller-Rabin

7

primality testing algorithm; the OAEP padding algorithm for RSA encryp-
tion; randomized signature schemes such as DSA or ECDSA; and Boneh &
Shoup’s concept of a system parameterization algorithm [1, Definition 2.9]
further discussed below in Section 5.1.

Some algorithms make both kinds of choices. For example, the the algo-
rithm for generating the DSA domain parameters p and q specified in [12,
Appendix A.1.1.2] chooses an arbitrary domain parameter seed at step 5,
then uses the Rabin-Miller primality test, which makes probabilistic choices.
We refer to such algorithms as hybrid algorithms, and to an algorithm that
only makes probabilistic choices as a probabilistic algorithm.

The output of a probabilistic algorithm is a random variable with a prob-
ability distribution that only depends on its inputs. We will have the need
to view the output of a hybrid algorithm as a random variable whose proba-
bility distribution depends on the non-probabilistic choices and some of the
probabilistic choices, and make statements about that random variable that
are universally quantified over the inputs and the other choices. However
such probability distribution is only well defined if the choices that define
the probability space are made after the other choices, and we will be careful
to ensure that this is indeed the case.

When describing specific algorithms, for the sake of brevity and as is
done elsewhere, e.g., in [13], we shall sometimes blur the distinction between
algorithmic variables, which take different values at different stages of an
execution of an algorithm, and particular values of those variables.

2.2 Games

We use attack games to define security properties as in [1].
A game has a challenger and an adversary, which are algorithms, and

parameters that are available to the challenger and the adversary. The chal-
lenger may be a hybrid algorithm, but the adversary may not make any
non-probabilistic choices, and is therefore either deterministic or probabilis-
tic.

Executing the game means invoking the challenger algorithm, with the
adversary algorithm provided as an input to the challenger algorithm. As its
last step, the challenger usually invokes the adversary algorithm, providing
it with inputs, and obtaining any outputs produced by the adversary. In
exceptional cases, the challenger may stop without invoking the adversary.
The game protocol specifies the steps taken by the challenger, the inputs that

8

the challenger provides to the adversary, whether the adversary is deemed to
have won or lost if it is not invoked by the challenger, and winning conditions
on any outputs produced by the adversary that determine if the adversary
wins the game, in the usual case where it is invoked by the challenger. After
running the adversary, the challenger produces a boolean output indicating
whether the adversary has won the game. It also relays any outputs produced
by the adversary as part of its own outputs, and may produce other outputs
that it has computed itself.

2.3 Notations and conventions

We write {0, 1}∗ for the set of all bit strings, {0, 1}n for the set of bit strings
of length n, {0, 1}<n for the set of bit strings less than n, and Z≥1 for the set
of the positive integers.

We write f : S 7→ S ′ to state that f is a function with domain S and
codomain S ′.

As in [13], we use the term “fact” to refer to a theorem whose proof is
left to the reader.

2.4 Hash functions

It is difficult to provide formal definitions for the security properties of hash
functions, especially for collision resistance [14, end of §5.1.1], [1, preamble of
§8.1]. In an asymptotic security setting, the difficulty comes from the absence
of randomness in the inputs and algorithms of hash functions, and is usually
avoided by defining security properties for keyed hash functions that take a
random key as an additional input, rather than for keyless hash functions
such as those of the SHA-2 family. As further discussed below in Section 5.1,
we overcome this difficulty using the system parameterization methodology
of [1], which introduces randomness without adding a key argument to the
hash function.

For our purposes we need hash functions with domain {0, 1}<a and codomain
{0, 1}b with a much greater than b and we only consider such hash functions.
The hash functions of the SHA-2 family satisfy this requirement, with b equal
to 224, 256, 384 and 512 for SHA-224, SHA-256, SHA-384 and SHA-512 re-
spectively, and a being equal to 264 for SHA-224 and SHA-256, and 2128 for
SHA-384 and SHA-512, as determined by the number of bits used to spec-
ify the length of the input in the padding. This requirement motivates the

9

following definition of a simple hashing scheme. A definition of a hashing
scheme with system parameterization will be provided in Section 5.

Definition 1 (Simple hashing scheme). A simple hashing scheme is a triple
(a, b, h), where a and b and positive integers such that a > b and h is a
function with domain {0, 1}<a and codomain {0, 1}b.

A hash function should be hard to invert and have security properties
such as collision and preimage resistance. The following broad definition
does not capture such requirements, but formal definitions of collision and
preimage resistance are provided below in Section 5 using attack games.

Definition 2 (Hash function). A function h is a hash function if there exist
positive integers a and b such that (a, b, h) is a simple hashing scheme.

2.5 Simple encoding schemes

We will need the following simple notion of an encoding scheme. A more
complex definition of an encoding scheme with system parameterization will
be provided in Section 5.

Definition 3 (Simple encoding scheme). A simple encoding scheme for the
elements of a set S is a triple E = (S,E,D), where

1. S is the set of data items to be encoded.

2. E is an algorithm, possibly non-deterministic, called the encoding algo-
rithm of the scheme, that takes as input an element x of S and outputs
a bit string y called an encoding of x.

3. D is a deterministic algorithm, called the decoding algorithm of the
scheme, that takes as input a bit string y and is such that:

(a) If y is an output of E on input x, then D outputs x on input y.

(b) If y is not an output of E, then D stops without output.

3 Typed hash trees

A typed hash tree is an ordered tree augmented by assignments of types and
labels to its nodes, where the label of each internal node is a hash of a prelabel

10

consisting of the types and labels of its children. The formal definition is in
four stages, which define the concepts of an ordered tree, an ordered tree
augmented with types and labels, a prelabel, and finally a typed hash tree.

There are many equivalent ways of defining an ordered tree. Here we
define it as a set of nodes together with a function mapping each node to the
sequence of its children.

Definition 4 (Ordered tree). An ordered tree is a pair (N , C) where

1. N is a finite set whose elements are called the nodes of the tree.

2. C is a function that maps each node N ∈ N to a sequence without
repetitions, the nodes in the sequence being called the children of N ,
nodes without children being called leaf nodes and nodes with children
being called internal nodes, such that:

(a) Every node N is a child of at most one other node, which is called
the parent of N .

(b) The parent-child relation is a directed acyclic graph.

(c) Exactly one node, called the root of the tree, has no parent.

In an ordered tree augmented with types and labels, the types are bit
strings of fixed length m, while the labels of some nodes are of variable
length less then 2m and the labels of some other nodes are of fixed length
b. These complications are due to the fact that b is the bit length of the
output of the hash function, which will grow with the security parameter in
the asymptotic security setting of Section 5 while m will be constant.

Definition 5 (Ordered tree augmented with types and labels). An ordered
tree augmented with types and labels or, more briefly, an augmented ordered
tree, is a tuple (N , C,m, d, b, T ,L) that augments an ordered tree (N , C) with
the following components:

1. A positive integer m, large enough that the number of children of any
node can be binary-encoded as m bits (i.e. greater than the base-2 log-
arithm of the degree of the tree).

2. A bit string d of length m, known as the distinguished type.

3. A positive integer b.

11

4. A function T : N 7→ {0, 1}∗ that maps each node N ∈ N to a bit
string of length m called the type of N , such that every internal node
and zero or more leaf nodes have type d, nodes having type d being
called distinguished nodes and distinguished leaf nodes, if any, being
called dangling nodes.

5. A function L : N 7→ {0, 1}∗ that maps each node N ∈ N to a bit string
called the label of N , such that distinguished nodes have labels of length
b and undistinguished nodes have labels of length less than 2m.

In the following definition, m determines the length of the length indicator
of certain labels, in addition to determining the length of types, and the
length of the binary encoding of the number of children of a node (for tree
serialization). We let the same parameter m play these three roles for the sake
of simplicity. There would be no difficulty in using three different parameters,
other than additional complication.

Definition 6 (Prelabel). Let T = (N , C,m, d, b, T ,L) be an augmented or-
dered tree, and N a node of T . The prelabel of N is the bit string obtained
by concatenating, for each node N ′ in the sequence C(N) of the children of
N :

1. The type of N ′, of fixed length m; and

2. Either

(a) The label of N ′, of length b, if the type of N ′ is d, or

(b) The label of N ′, of length less than 2m, preceded by the m-bit binary
representation of its length, if the type of N ′ is other than d.

In the following definition, the tuple (N , C,m, d, a, b, h, T ,L) is a mathe-
matical definition of a typed hash tree X, not a data structure representing
X. Implementations of algorithms that create and manipulate typed hash
trees may use any data structure suitable to the programming language in
which the algorithm is implemented.

Definition 7 (Typed hash tree). A typed hash tree is a tuple X = (N , C,m,
d, a, b, h, T ,L) where (N , C,m, d, b, T ,L) is an augmented ordered tree and (
a, b, h) a simple hashing scheme, such that for every internal node N ∈ N
the prelabel p of N is a bit string of length less than a and the label of N is
h(p).

12

We say that two typed hash trees having the same parameters m, d,
a, b and h are of the same kind and define the kind of a typed hash tree
accordingly.

Definition 8 (Kind of a typed hash tree). A kind of typed hash tree is a
tuple (m, d, a, b, h) where m is a positive integer, d is a bit string of length
m, and (a, b, h) is a simple hashing scheme. A typed hash tree (N , C,m, d, a,
b, h, T ,L) is said to be of kind (m, d, a, b, h).

We need a notion of isomorphism for typed hash trees of a particular
kind.

Definition 9 (Isomorphism of typed hash trees). Let (m, d, a, b, h) be a kind
of typed hash tree. We say that two typed hash trees of kind (m, d, a, b, h) are
isomorphic if there exists a bijection between their sets of nodes such that cor-
responding nodes have same type, same label, and sequences of corresponding
children.

The subtree of a typed hash tree X = (N , C,m, d, a, b, h, T ,L) rooted at
a node N of X is the typed hash tree X ′ = (N ′, C ′,m, d, a, b, h, T ′,L′), where
N ′ is the set of descendants of N (including N itself), and C ′, T ′ and L′
are the restrictions of the functions C, T and L to the domain N ′. Pruning
X ′ means removing from X the descendants of N other than N itself, and
thus results in the typed hash tree X ′′ = (N ′′, C ′′,m, d, a, b, h, T ′′,L′′), where
N ′′ = (N \ N ′) ∪ {N}, C ′′ = (C \ C ′) ∪ {(N, ∅)}, and T ′′ and L′′ are the
restrictions of the functions T and L to the domain N ′′. A pruned derivative
of X is the result of pruning zero or more subtrees from X. If X ′′ is the
result of pruning X ′ from X, we also say that X is the result of grafting X ′

onto X ′′.
The labels of the internal nodes of a typed hash tree can be computed

from the types and labels of the leaf nodes, hence they can be omitted when
the tree is serialized. Algorithm 1 below attempts to compute the internal-
node labels of a typed hash tree where they are missing either because the
tree is under construction, or because they have been omitted. In the former
case it may fail and stop without output if it encounters a prelabel that is
too long. The details of the algorithm are worth noting because a trace of
the algorithm is used in the proof of Theorem 1.

We need a formal notion of an incomplete typed hash tree without internal-
node labels to characterize the input to the label computation algorithm. A

13

similar notion of and incomplete typed hash tree without distinguished-node
labels will be needed later for other purposes. We provide both definitions
together.

Definition 10 (Incomplete typed hash tree without internal-node or distin-
guished-node labels). An incomplete typed hash tree without internal-node
labels (resp. without distinguished-node labels) is a tuple (N , C,m, d, b, T ,L)
(resp. (N , C,m, d, T ,L)) where N , C, m, d, b, T , and L (resp. N , C, m, d,
T and L) are as in Definition 5, except that L is a partial function that only
assigns labels to leaf nodes (resp. distinguished nodes).

We also need definitions of a kind of incomplete typed hash tree with-
out internal-node labels and a kind of incomplete typed hash tree without
distinguished-node labels, and corresponding definitions of isomorphism.

Definition 11 (Kinds and isomorphism of incomplete typed hash trees). A
kind of typed hash tree without internal-node labels (resp. without distinguished-
node labels) is a tuple (m, d, b) (resp. (m, d) where m and b are positive in-
tegers (resp. m is a positive integer) and d is a bit string of length m. An
incomplete typed hash tree (N , C,m, d, b, T ,L) resp. (N , C,m, d, T ,L) with-
out internal-node labels (resp. undistinguished node labels) is said to be of kind
(m, d, b). (resp. (m, d)). Two incomplete typed hash trees without internal-
node labels (resp. without distinguished-node labels) of the same kind are
isomorphic if there exists a bijection between their sets of nodes such that
corresponding nodes have the same type, the same set of labels (comprising
zero or one labels), and sequences of corresponding children.

We will make use of the following fact.

Fact 1. Let X and Y be incomplete typed hash trees without internal-node
labels of kind (m, d, b), and let X ′ and Y ′ be incomplete typed hash trees with-
out distinguished-node labels derived from X and Y by removing the labels of
the internal nodes. Then if X and Y are isomorphic as incomplete typed hash
trees without internal-node labels of kind (m, d, b), X ′ and Y ′ are isomorphic
as incomplete typed hash trees without distinguished-node labels of kind (m,
d).

Algorithm 1 (Label computation). Let (m, d, a, b, h) be a kind of typed hash
tree. The (m, d, a, b, h)-label computation algorithm, takes as input an in-
complete typed hash tree X without internal-node labels of kind m, d, b, main-
tains a state consisting of a stack of type-label pairs and a node list, and
performs the following steps:

14

1. Initialize the stack to be empty, and the node list to the list of all the
nodes in the tree in depth-first post-order.

2. While the node list is not empty, perform a step, said to be “triggered”
by the first node N in the list, as follows:

(a) If N has no children, push a type-label pair with its type and its
label onto the stack.

(b) If N has n > 0 children, the type-label pairs of those children can
be found at the top of stack. Use them to assemble the prelabel
p. Stop without output if the bit length of p is not less than a.
Otherwise compute l = h(p), augment X by assigning l as the
label of N , pop the top n entries from the stack, and push the
type-label pair (d, l) onto the stack.

(c) Remove N from the node list.

3. Output X, as augmented.

Algorithm 1 outputs a typed hash tree of kind (m, d, a, b, h) unless it
encounters a prelabel that is too long.

The omission-tolerant integrity protection provided by the root label of
a typed hash tree is based on the following fundamental theorem about the
structure of typed hash trees that have the same root label.

Theorem 1 (Fundamental theorem: typed hash trees with same root label).
Let X and Y be two typed hash trees of the same kind. If X and Y have the
same root label, then either (i) Y is isomorphic to a pruned derivative of X,
or (ii) the label of an internal node of Y is equal to the label of a dangling
node of X, or (iii) an internal node of Y has the same label as an internal
node of X but a different prelabel.

Proof. Let X and Y be two typed hash trees of kind K = (m, d, a, b, h) that
have the same root label. To prove that Y satisfies one of the conditions
(i), (ii) or (iii) of the theorem we consider the computation of the internal
labels of the nodes of Y , X, and various pruned derivatives of X using
Algorithm 1. Strictly speaking, Algorithm 1 takes as input an incomplete
typed hash tree without internal-node labels. For our present purposes we
let it take as input a complete typed hash tree, ignoring and recomputing its
internal-node labels.

15

Recall that Algorithm 1 maintains a state consisting of a stack of type-
label pairs and a node list. We define the label computation trace (LCT) of
a typed hash tree as the sequence of states in an execution of the algorithm
when given the tree as input, except that the node list contains entries cor-
responding to the nodes instead of the nodes themselves, each entry being
a tuple consisting of the type, the number of children, and the label of the
node, except that the label is omitted if the number of children is zero; thus
the entry corresponding to an internal node N is a pair (d, nN), where d is
the distinguished type and nN is the number of children of N . We still refer
to nodes, rather than node entries, as “triggering” the steps of the algorithm.

The stack is empty in the initial state and never becomes empty again.
In the final state it contains a single type-label pair, where the type is d and
the label is the root label. The node list contains entries for all the nodes
in the initial state, and is empty in the final state. It is easy to see that the
LCT is entirely determined by its initial state, and that two typed hash trees
of kind K with the same LCT are isomorphic.

Let τ be the LCT of Y . Since X and Y have the same root label, the last
state of τ is also the last state of the LCT of X. Let σ be the earliest state
of τ that is also a state of the LCT of a pruned derivative of X and let X ′

be a minimally pruned such derivative, i.e. let X ′ be a pruned derivative of
X that has σ as a state of its LCT and is not a pruned derivative of another
pruned derivative of X that also has σ as a state of its LCT. Let τ ′ be the
LCT of X ′.

If the stack is empty in state σ, σ is the initial state of both τ and τ ′,
hence τ and τ ′ are identical and Y and X ′ are isomorphic. Therefore Y
satisfies condition (i) of the theorem.

If the stack is not empty in state σ, let (t, l) be the type-label pair at
the top of the stack. Let N be the node of Y and N ′ the node of X ′ that
trigger the steps leading to state σ in the label computations of Y and X ′

respectively. N and N ′ both have type t and label l.
Type t must be d, because otherwise N and N ′ would be leaf nodes

of Y and X ′, and the state preceding σ would be the same in τ and τ ′,
contradicting the definition of σ as the earliest state of τ that is also a state
of the LCT of a pruned derivative of X (such as X ′). Therefore each of N
and N ′ must be either an internal node or a dangling node.

N ′ cannot be an internal node of X ′ if N is a dangling node of Y . Oth-
erwise let X ′′ be the pruned derivative X ′′ of X obtained by further pruning
from X ′ the subtree rooted at N ′. N ′ would be a dangling node of X ′′ trig-

16

gering a step leading to σ in the label computation of X ′′. Since a label
computation proceeds in depth-first post order, the LCTs of X ′′, X and Y
would be identical from state σ onward. But then, N ′ and N being leaf
nodes of X ′′ and Y , the states preceding σ would be the same in X ′′ and Y ,
contradicting the definition of σ as the earliest state of τ that is also a state
of the LCT of a pruned derivative of X (such as X ′′).

This leaves two possibilities. N may be an internal node of Y while N ′

is a dangling node of X ′, or both may be internal nodes.
Consider first the case where N is an internal node of Y and N ′ is a

dangling node of X ′. N ′ must also be a dangling node of X, for otherwise
the tree X ′′′ derived from X ′ by grafting the subtree of X rooted at N ′ would
be a pruned derivative of X having σ as a state of its LCT, and X ′ would be
a pruned derivative of X ′′′ distinct from X ′′′, contradicting the minimality
of X ′. Therefore N ′ is a dangling node of X having the same label l as the
internal node N of Y , hence Y satisfies condition (ii) of the theorem.

Now consider the case where N and N ′ are internal nodes of Y and X ′.
Let nN be the number of children of N in Y and nN ′ the number of children
of N ′ in X ′. Let ρN and ρN ′ be the states that precede σ in the LCTs of
Y and X ′ respectively, with N triggering the transition from ρN to σ in the
LCT of Y and N ′ the transition from ρN ′ to σ in the LCT of X ′.

By the definition of σ, ρN and ρN ′ must be different. This implies that the
sequences of type-label pairs of the children of N and N ′ must be different,
since the stack of σ is derived by popping the type-label pairs of the children
of N from ρN before pushing (t, l) as well as by popping the type-label pairs
of the children of N ′ from ρN ′ before pushing (t, l), and the node list of σ is
derived by removing the entry (d, nN) from the front the node list of ρN as
well as by removing the entry (d, nN ′) from the front of the node list of ρN ′ ;
so if the sequences of type-label pairs of the children of N and N ′ were the
same, both the states and the node lists of ρN and ρN ′ would be the same,
and thus ρN and ρN ′ would be the same.

But if the sequences of type-label pairs of the children of N and N ′ are
different, so must be the prelabels of N in Y and N ′ in X ′. Hence N is an
internal node of Y having the same label l as the internal node N ′ of X ′ but
a different prelabel. But it follows from the fact that N ′ is an internal node
of a pruned derivative of X that N ′ is also an internal node of X and has the
same prelabel in X as in X ′. Thus an internal node of Y has the same label
as an internal node of X but a different prelabel, and Y satisfies condition
(iii) of the theorem.

17

4 An omission-tolerant checksum

4.1 Overview

The root label of a typed hash tree can be used as an omission-tolerant
checkum of a bit string encoding of a finite set of key-value pairs, as follows.
A non-deterministic algorithm is used to produce an incomplete typed hash
tree without distinguished-node labels that represents the set of key-value
pairs. The representation algorithm is free to choose the form of the tree, and
may choose to include dangling nodes. If the tree has dangling nodes, random
labels are assigned to them to obtain an incomplete typed hash tree without
internal-node labels. That tree is then serialized to produce the bit string
encoding of the set of key-value pairs. A checksum computation algorithm
applies to the bit string encoding, deserializes it to obtain an incomplete
typed hash tree without internal-node labels, uses the label computation
algorithm to compute the labels of the internal nodes, and outputs the label
of the root node as the checksum.

In this section we define the representation algorithm, a derepresentation
algorithm, and the serialization and deserialization algorithms. The encoding
and checksum algorithms are defined in Section 5 in an asymptotic security
setting.

4.2 Representation of a set of key-value pairs

When a typed hash tree is used to represent a set of key-value pairs, the key
and the value of each pair are represented as the type and the label of an
undistinguished leaf node. But in order to represent a key as a type and a
value as a label, the key and the value must be encoded as bit strings. This
motivates the following definitions.

Definition 12 (Space of key-value pairs). A space of key-value pairs is a
pair (K,V), where K is a finite non-empty set of elements called keys and
V = (Vk)k∈K is a family of finite non-empty sets, the elements of Vk being
the values that can be associated with key k. In the context of such a space,
a key-value pair is an element of the cartesian product

∏
k∈K Vk, and a set of

key-value pairs is an element of the powerset of the cartesian product, which
we write SetsK,V = P(

∏
k∈K Vk).

18

Definition 13 (Representation framework for sets of key-value pairs). A rep-
resentation framework for sets of key-value pairs is a tuple F = (m, d,K, V,
KE,KD,VE,VD) where

1. (m, d) is a kind of incomplete typed hash tree without distinguished-node
labels.

2. (K,V) is a space of key value pairs.

3. KE and KD are the encoding and decoding algorithms of a simple en-
coding scheme (K,KE,KD) such that, for every k ∈ K, on input k,
KE outputs a bit string of length m other than d.

4. VE = (VEk)k∈K and VD = (VDk)k∈K are families of algorithms such
that, for all k ∈ K, (Vk,VEk,VDk) is a simple encoding scheme such
that, for all v ∈ Vk, VEk outputs a bit string of length less than 2m on
input v.

We can now define the representation algorithm, using a representation
framework F as a parameter.

Algorithm 2 (F -representation of a set of key-value pairs). Let F = (m, d,K, V,
KE,KD,VE,VD) be a representation framework for sets of key-value pairs.
The F-representation algorithm takes as input an element x of SetsK,V and
outputs an incomplete typed hash tree without distinguished-node labels of
kind (m, d), constructed by the following steps:

1. Construct an ordered tree X having a number of leaf nodes at least
equal to the cardinality |x| of x.

2. For each key-value pair (k, v) ∈ x, run KE on input k and VEk on
input v and assign their outputs to the type and label of a leaf node that
has not been assigned a type yet.

3. For each node N that has not been assigned a type yet (including all
internal nodes and possibly some of the leaf nodes), assign d as the type
of N .

4. Output X, which is now an incomplete typed hash tree without distinguished-
node labels of kind (m, d).

19

The above F -representation algorithm is non-deterministic, as it makes
non-probabilistic choices in step 1, then calls KE and VE, which may make
probabilistic and/or non-probabilistic choices. It has a deterministic inverse,
which we call the F-derepresentation algorithm.

Algorithm 3 (F -derepresentation). Let F = (m, d,K, V,KE,KD,VE,VD)
be a representation framework for sets of key-value pairs. The F-derepresentation
algorithm takes as input an incomplete typed hash tree without distinguished-
node labels X of kind (m, d) and performs the following steps to construct a
set x ∈ SetsK,V .

1. Let the initial value of x be ∅.

2. Traverse X, enumerating its nodes in depth-first post-order. (The
traversal order is immaterial, but one must be specified if the algo-
rithm is to be deterministic.) For each undistinguished node N do the
following, where l is the label of N :

(a) Run KD on input t and stop without output if KD stops without
output, or else let k ∈ K be the output of KD.

(b) Run VDk on input l and stop without output if VDk stops without
output, or else let v ∈ Vk be the output of VDk.

(c) Stop without output if (k, v) is already in x, or else add (k, v) to
x.

3. Output x.

Fact 2. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation frame-
work for sets of key-value pairs, let R and D be the F-representation and
derepresentation algorithms, and let X be an incomplete typed hash tree with-
out distinguished-node labels of kind (m, d). Then:

1. If X is an output of R on input x ∈ SetsK,V , then D outputs x on input
X.

2. If X is not an output of R on any input, then D stops without output.

Fact 3. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation frame-
work for sets of key-value pairs, let D be F-derepresentation algorithm, and
let X and Y be incomplete typed hash trees without distinguished-node labels
of kind (m, d). If D outputs x on input X and Y is isomorphic to X, then
D outputs x on input Y .

20

Fact 4. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation frame-
work for sets of key-value pairs, and let R and D be the F-representation
and derepresentation algorithms. Let x be an element of SetsK,V , X an in-
complete typed hash tree of kind (m, d) output by R on input x, and Y an
incomplete typed hash tree of kind (m, d) isomorphic to X. Then D outputs
x on input Y .

Fact 5. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation frame-
work for sets of key-value pairs, let X and Y be typed hash trees of kind (m,
d, a, b, h), let X ′ and Y ′ be the incomplete typed hash trees obtained by remov-
ing the distinguished-node labels from X and Y , and let x and y be outputs
of the F-derepresentation algorithm on inputs X ′ and Y ′ respectively. If Y
is a pruned derivative of X, then y ⊆ x.

Algorithm 4 ((m, d, b)-serialization of an incomplete typed hash tree with-
out internal node labels). Let (m, d, b) be a kind of incomplete typed hash
tree without internal-node labels. The (m, d, b)-serialization algorithm takes
as input an incomplete typed hash tree X without internal-node labels of kind
(m, d, b) and outputs a bit string computed by the following steps:

1. Initialize a bit string s to have length 0.

2. Traverse X in depth-first post-order and, for each node N , append to
s a node description string consisting of:

(a) The type of N , which is an m-bit string.

(b) The m-bit binary representation of the number of children of N .

(c) If N is a dangling node (i.e. if the type of N is d and the number
of children is 0), the label of N , which is a bit string of length b.

(d) If N is an undistinguished leaf node, the label of N preceded by the
m-bit representation of its bitlength.

3. Output s.

Algorithm 5 ((m, d, b)-deserialization of an incomplete typed hash tree
without internal node labels). Let (m, d, b) be a kind of incomplete typed
hash tree without internal-node labels. The (m, d, b)-deserialization algorithm
takes as input a bit string s and performs the following steps:

21

1. Attempt to parse s as a concatenation of node description strings and
construct a sequence r of corresponding node description entries, each
having components specifying a type, a number of children, and a label
if the number of children is not 0, as follows:

(a) Initialize r to be empty.

(b) While s is not empty do the following:

i. Create a node description entry e.

ii. Stop without output if the length of s is less than m; otherwise
let the bit string comprising the first m bits of s be the type
component of e and remove the bits from s.

iii. Stop without output if the length of s is less than m; otherwise
parse the first m bits of s as a nonnegative integer n, let n be
number-of-children component of e, and remove the bits from
s.

iv. If n = 0, stop without output if the length of s is less than m;
otherwise parse the first m bits of s as a nonnegative integer l
and remove those bits from s; then let the bit string comprising
the first l bits of s be the label component of e, stopping without
output if the length of s is less than l.

v. Append e to r.

2. Attempt to construct an incomplete typed hash tree without internal
node labels X of kind (m, d, b) as follows:

(a) Initialize to empty a stack that will be used to store nodes of X
temporarily as they are created by the algorithm.

(b) Initialize the set of nodes of X as being empty.

(c) While the sequence r is non-empty do the following:

i. If the number-of-children component of the first entry of r is
0, create a node, add it to the set of nodes of X, assign to it
the type and the label specified by the entry, and push it onto
the stack.

ii. If the number-of-children component of the first entry of r is
n > 0:

A. Stop without output if the type specified by the entry is not
d.

22

B. Create a node N , add it to the set of nodes of X, and
assign to it the type specified by the entry.

C. Stop without output if there are fewer than n nodes in the
stack; otherwise assemble a sequence of the top n nodes in
the stack and assign it to N as the sequence of its children.

D. Pop the top n nodes off the stack and push N onto the
stack.

E. Remove the first entry from r.

(d) Stop without output if the stack does not contain a single node.

3. Output X.

Fact 6. Let (m, d, b) be a kind of incomplete typed hash tree without internal-
node labels, let S and D be the (m, d, b)-serialization and deserialization al-
gorithms, and let s a bit string. Then:

1. If s is an output of S on input X, where X is an incomplete typed
hash tree without internal-node labels of kind (m, d, b), then D outputs
an incomplete typed hash tree Y without internal-node labels of kind
(m, d, b) isomorphic to X on input s.

2. If s is not an output of S on any input, then D stops without output.

The serialization algorithm is deterministic, but the deserialization algo-
rithm is non-deterministic because it does not specify what the nodes that it
creates are. (It could be made deterministic by specifying that the nodes are,
for example, integers denoting positions in a total order such as depth-first
post order; but that is unnecessary.) But it is deterministic up to isomor-
phism in the following sense:

Fact 7. Let (m, d, b) be a kind of incomplete typed hash trees without internal-
node labels, and s a bit string. If X and Y are outputs of the (m, d, b)-de-
serialization algorithm on input s, then X and Y are isomorphic as incom-
plete typed hash trees without internal-node labels of kind (m, d, b).

23

5 Asymptotic security

5.1 Boneh and Shoup’s system parameterization

In an asymptotic security setting, a cryptographic scheme is said to be secure
if an adversary has a negligible probability of breaching a specified security
property. This requires a security parameter, so that a “negligible proba-
bility” can be defined as a probability that is asymptotically negligible as a
function of the security parameter. It also requires a probability space, which
in a traditional asymptotic security setting is defined by randomness inher-
ent in the scheme. In [1, §2.4.2], Boneh and Shoup define a novel asymptotic
security setting that uses both a security parameter λ and an additional sys-
tem parameter Λ, output by a system parameterization algorithm P on input
λ. The algorithm P is probabilistic, and thus provides a probability space
independent of any randomness inherent in the scheme. This is essential if
the scheme itself has no randomness.

In particular, randomized system parameterization makes it possible to
provide a formal definition of collision resistance for a keyless hash function.
Collision resistance in an asymptotic security setting is traditionally defined
for keyed rather than keyless hash functions, and introduce a probability
space by letting the key be random. Boneh and Shoup define a keyless hash
function as an algorithm that takes as inputs λ and Λ in addition to the
message m. They say on one hand that this is “really the same” as the keyed
hash function approach, where the random key can be viewed as a system
parameter; but they also suggest, on the other hand, that each choice of
system parameter can be viewed as describing a different hash function. We
adopt the latter view by referring to the algorithm that takes as inputs λ and
Λ as a hashing scheme rather than a hash function, and using the hashing
scheme to define a family of ordinary keyless hash functions parameterized
by the security and system parameters.

We find the idea of a family of hash functions indexed by security and
system parameters intuitive and close to actual practice. After all, SHA-2 is a
family of hash functions defined for several security parameters, whose design
includes various constants that could have been chosen at random. More
generally, one could think of the randomness of a system parameterization
algorithm taken as input by a cryptographic scheme as the randomness of
the process of technological evolution resulting in the design of the scheme.

Besides the above-mentioned change in terminology, we simplify Boneh

24

and Shoup’s treatment of hash functions by defining the domain and codomain
of a hash functions in terms of bit lengths, as is done in actual practice, and
we provide a formal definition of preimage resistance, which is not provided
in [1]. We also adapt and simplify Boneh and Shoup’s complex definition
of an efficient algorithm, which they allow to not terminate [1, Definition
2.8]. We say that an algorithm is efficient if it terminates and its run time is
bounded by a polynomial function of the security parameter, independently
of the length of other inputs; we can do this because, as explained above
in Section 2.1, our algorithms stop without output when given unexpected
inputs, and may thus stop without output when given inputs that are too
long.

Definition 14 (Efficient algorithm). We say that an algorithm A that takes
as its first input a security parameter λ is efficient if there exists a polynomial
p such that, for all λ ∈ Z≥1, the running time of A until it stops with or
without output is less than p(λ).

Boneh and Shoup define a system parameter Λ as a bit string that is
efficiently generated by a probabilistic algorithm P when given as input a
security parameter λ and has a length bounded by a polynomial function of λ
. They use the notation Supp(P (λ)) to refer to the support of the distribution
of Λ, i.e. to the range of possible values that P may output on input λ. We
must require that it be possible to determine efficiently if Λ ∈ Supp(P (λ)),
so that an efficient algorithm that takes λ and Λ as inputs can stop without
output if Λ is not in its expected range, in accordance with our definition
in Section 2.1 of what it means to take as an input data of some particular
form. Hence the following definition.

Definition 15 (System parameterization). A system parameterization P is
an efficient probabilistic algorithm that takes as input a security parameter
λ ∈ Z≥1 and outputs a bit string Λ called a system parameter, such that

1. there exists a polynomial p such that the length of Λ is less than p(λ)
for all λ ∈ Z≥1, and

2. there exists an efficient deterministic algorithm that takes as inputs
λ ∈ Z≥1 and Λ ∈ {0, 1}∗ and outputs a boolean value indicating whether
Λ ∈ Supp(P (λ)).

Definition 16 (Hashing scheme with system parameterization). A hashing
scheme with system parameterization P is a tuple H = (P,A,B,H) where:

25

1. P be a system parameterization.

2. A and B are indexed families of positive integers Aλ, Bλ, with λ ∈ Z≥1.
‘

3. H is an efficient deterministic algorithm that takes as inputs λ ∈ Z≥1,
Λ ∈ Supp(P (λ)) and a bit string x ∈ {0, 1}<a, and outputs a bit string
y ∈ {0, 1}b, where a = Aλ and b = Bλ.

Definition 17 (Family of hash functions defined by a hashing scheme with
system parameterization). A hashing scheme H = (P,A,B,H) with system
parameterization P defines an indexed family of hash functions Hλ,Λ, where
each Hλ,Λ has domain {0, 1}<a with a = Aλ and codomain {0, 1}b with b =
Bλ, and maps each x ∈ {0, 1}<a to the output of H on inputs λ, Λ and x.

(In the above definition the notationH is used to refer both to the hashing
scheme and to the family of hash functions that it defines, but this abuse of
notation should create no confusion.)

The following attack game is used to define collision resistance for a hash-
ing scheme.

Game 1 (Attack on collision resistance).

Game parameters:

1. A hashing scheme with system parameterization H = (P,A,B,H).

2. A security parameter λ ∈ Z≥1.

Game protocol:

1. The challenger runs P on input λ, and P outputs Λ.

2. The challenger runs the adversary on input λ and Λ.

3. Let a = Aλ and b = Bλ. The adversary wins the game if it outputs
a collision of the hash function h = Hλ,Λ, i.e. a pair of distinct
elements (u, u′) of {0, 1}<a such that h(u) = h(u′).

Definition 18 (Collision resistance of a hashing scheme with system param-
eterization). A hashing scheme H = (P,A,B,H) with system parameteriza-
tion P is collision resistant if for every efficient adversary A, the probability
that A wins Game 1 with parameters H and λ is a negligible function of λ.

26

The following attack game is used to define preimage resistance for a
hashing scheme.

Game 2 (Preimage resistance). [Attack on preimage resistance]

Game parameters:

1. A hashing scheme with system parameterization H = (P,A,B,H).

2. A security parameter λ ∈ Z≥1.

Game protocol:

1. The challenger runs P on input λ, and P outputs Λ.

2. Let b = Bλ. The challenger chooses an element v of {0, 1}b at
random with uniform distribution.

3. The challenger runs the adversary on inputs λ, Λ and v.

4. Let a = Aλ. The adversary wins the game if it outputs an element
u of {0, 1}<a such that h(u) = v.

Definition 19 (Preimage resistance). A hashing scheme H = (P,A,B,H)
with system parameterization P is preimage resistant if for every efficient
adversary A, the probability that A wins Game 2 is a negligible function of
λ.

5.2 Encoding schemes with system parameterization

Definition 20 (Encoding scheme with system parameterization). An encod-
ing scheme with system parameterization is a tuple E = (P, S,E,D) where

1. P is a system parameterization.

2. S is the set of data items to be encoded.

3. E is an efficient algorithm, possibly non-deterministic, called the en-
coding algorithm of the scheme, that takes as inputs λ ∈ Z≥1, Λ ∈
Supp(P (λ)), and an element x of S and outputs a bit string y called
an E-encoding of x for security and system parameters (λ,Λ).

4. D is an efficient deterministic algorithm, called the decoding algorithm
of the scheme, that takes as inputs λ ∈ Z≥1, Λ ∈ Supp(P (λ)) and a bit
string y and

27

(a) outputs an element x of S if y is an output of E on inputs λ, Λ
and x, or

(b) stops without output otherwise.

Definition 21 (Checksum scheme with system parameterization). A check-
sum scheme with system parameterization is a pair (P,C) where

1. P is a system parameterization.

2. C is an efficient deterministic algorithm that takes as inputs λ ∈ Z≥1,
Λ ∈ Supp(P (λ)), and a bit string, and outputs a bit string or stops
without output.

A checksum scheme with system parameterization (P,C) may be used
in conjunction with an encoding scheme (P, S,E,D) if both have the same
system parameterization P . Then, if E outputs y on inputs λ, Λ and an
element x of S, and C outputs z on inputs λ, Λ and y, z is said to be an
(E,C)-checksum of x for security and system parameters (λ,Λ).

As a warm-up for the proof of Theorem 3, we now prove that a hashing
scheme with system parameterization provides full integrity protection for
an encoding scheme with system parameterization, in the special case where
the encoding algorithm does not make any non-probabilistic choices, i.e. in
the case where it is deterministic or probabilistic.

Fact 8. If (P,A,B,H) is a hashing scheme with system parameterization,
then (P,H) is a checksum scheme with system parameterization.

Game 3 (Attack on full integrity protection).

Game parameters:

1. An encoding scheme with system parameterization E = (P, S,E,D)
where the encoding algorithm E is deterministic or probabilistic.

2. A checksum scheme with system parameterization C = (P,C).

3. An element x of S.

4. A security parameter λ ∈ Z≥1.

Game protocol:

1. The challenger runs P on input λ, and P outputs Λ.

28

2. The challenger runs E on inputs λ, Λ and x, and E outputs a bit
string y.

3. The challenger runs C on inputs λ, Λ and y, and either C stops
without output or it outputs a bit string z.

4. If C stops without output, the challenger stops without invoking
the adversary and the adversary is deemed to have lost the game.

5. The challenger runs the adversary on inputs λ, Λ and y. (The
adversary may run C on inputs λ, Λ and y to obtain z.)

6. The adversary wins the game if it outputs a bit string y′ satisfying
the following winning conditions:

(a) C outputs the same bit string z on inputs λ, Λ and y′ as on
inputs λ, Λ and y.

(b) y′ is an E-encoding of an element x′ of S for security and
system parameters (λ,Λ), computable by running D on inputs
λ, Λ and y′.

(c) x′ 6= x.

Definition 22 (Full integrity protection with system parameterization). Let
E = (P, S,E,D) be an encoding scheme with system parameterization where
E is deterministic or probabilistic. A checksum scheme C = (P,C) is said to
provide full integrity protection for E if for every x ∈ S and every efficient
adversary A, the probability that A wins Game 3 with parameters E, C, x
and λ ∈ Z≥1 is a negligible function of λ.

Theorem 2 (Integrity protection provided by a collison-resistant hashing
scheme). Let E = (P, S,E,D) be an encoding scheme with system parame-
terization where E is deterministic or probabilistic. If H = (P,A,B,H) is
a collision-resistant hashing scheme, then the checksum scheme C = (P,H)
provides full integrity protection for E.

Proof. Let E , H and C be as stated. Reasoning by contradiction, assume
that C does not provide integrity protection for E . This means that there
exists an element x of S and an efficient adversary A of Game 3 such that the
probability p(λ) that A wins Game 3 with parameters E , C, x and λ ∈ Z≥1

is not a negligible function of λ. Let x̄ and Ā be particular selections of such
an x and A.

29

For every λ ∈ Z≥1, consider an execution of Game 1 with parameters
H = (P,A,B,H) and λ. The challenger of Game 1 runs P on input λ,
and P outputs Λ; then the challenger runs the adversary on inputs λ and Λ.
Consider a particular adversary ACR of Game 1 defined as follows. ACR plays
Game 3 with parameters E , C, x and λ, instructing the challenger to use Ā
as the adversary, and modifying the challenger so that it uses the system
parameter Λ produced by the challenger of Game 1 instead of running P
to generate Λ. This modification makes no difference to ¯mathcalA, which
still has a probability p(λ) of winning Game 3. ACR further modifies the
challenger of Game 3 to output the pair (y, y′) whenever the adversary of
Game 3 wins the game, and ACR relays such pair as its own input in Game 1;
so with probability p(λ), ACR outputs a pair (y, y′) where

1. y is an output of E on inputs λ, Λ and x̄, by construction;

2. H outputs the same bit string z on inputs λ, Λ and y as on inputs λ, Λ
and y′, by the first winning condition of Game 3, i.e. h(y) = z = h(y′)
with h = HlL;

3. D outputs an element x′ of S on inputs λ, Λ and y′, by the second
winning condition of Game 3; and

4. x′ 6= x̄ by the third winning condition of Game 3.

Since y is an output of E on inputs λ, Λ and x̄, x̄ is an output or D on
inputs λ, Λ and y. Hence since x′ is an output of D on inputs λ, Λ and y′,
D is deterministic, and x′ 6= x̄, we have that y′ 6= y. And since h(y) = h(y′),
(y, y) is a collision of h. Therefore ACR wins Game 1.

Furthermore ACR is an efficient algorithm, because the algorithms E and
H used by the modified challenger of Game 3 and Ā are efficient. Thus ACR

is an efficient adversary that wins Game 1 with non-negligible probability
(p(λ), contradicting the hypothesis that H is collision resistant.

5.3 Omission-tolerant integrity protection in the asymp-
totic security setting

In Game 3 the probability that the adversary wins the game would not be
well defined if the encoding algorithm were allowed to make non-probabilistic
choices, because those choices would be made after the probabilistic choices

30

made by P for the computation of Λ. Since omission-tolerant integrity protec-
tion is achieved by representing data as a typed hash tree whose construction
involves non-probabilistic choices, we must now find a way of allowing the
encoding algorithm to make such choices.

We do that by splitting the encoding algorithm into two phases, a first
phase EI that is allowed to make non-probabilistic choices but does not take
as inputs security and system parameters, and a second phase EII that takes
as inputs security and system parameters but is only allowed to make prob-
abilistic choices. The output EI need not be a bit string, so we refer to EI as
the representation phase while we refer to EII as the encoding phase. Since
the output of EI does not depend of the security parameter, we refer to it as
a fixed representation of the input.

Definition 23 (Two-phase split). A two-phase split of an encoding algorithm
with system parameterization is a tuple (P, S,EI, EII) where

1. P is a system parameterization.

2. S is a set of data items to be encoded.

3. EI is an algorithm, possibly exhibiting hybrid non-determinism, that
takes as input an element x of S and outputs a data structure X known
as a fixed representation of x.

4. EII is a deterministic or probabilistic algorithm that takes as inputs
λ ∈ Z≥1, Λ ∈ Supp(P (λ)), and a fixed representation X of an element
x of S and outputs a bit string y known as an encoding of x for security
and system parameters (λ,Λ).

Algorithm 6 (Two-phase encoding). Let S = (P, S,EI, EII) be a two-phase
split of an encoding algorithm with system parameterization. The two-phase
encoding algorithm with system parameterization defined by S takes as in-
puts λ ∈ Z≥1, Λ ∈ Supp(P (λ)), and an element x of S and performs the
following steps:

1. Run EI on input x and let X be the output.

2. Run EII on inputs λ, Λ, and X and let y be the output.

3. Output y.

31

The following attack game is used in the definition of omission-tolerant
integrity protection. Notice the adversary is given an original encoding, i.e.
an encoding computed by the encoding algorithm, rather than by omitting
elements from an encoding of a superset.

Game 4 (Attack on omission-tolerant integrity protection).

Game parameters:

1. An encoding scheme with system parameterization E = (P, S,E,D)
where the elements of S are sets and E is a two-phase encoding
algorithm defined by a two-phase split (P, S,EI, EII).

2. A checksum scheme with system parameterization C = (P,C).

3. An element x of S.

4. A fixed representation X of x, i.e. an output X of EI on input x.

5. A security parameter λ ∈ Z≥1.

Game protocol:

1. The challenger runs P on input λ, and P outputs Λ.

2. The challenger runs EII on inputs λ, Λ and X, and EII outputs a
bit string y.

3. The challenger runs C on inputs λ, Λ and y, and either C stops
without output or it outputs a bit string z.

4. If C stops without output, the challenger stops without invoking
the adversary and the adversary is deemed to have lost the game.

5. The challenger runs the adversary on inputs λ, Λ and y. (The
adversary can compute z from y as needed.)

6. The adversary wins the game if it outputs a bit string y′ satisfying
the following winning conditions:

(a) C outputs the same bit string z on inputs λ, Λ and y′ as on
inputs λ, Λ and y.

(b) y′ is an E-encoding of an element x′ of S for security and
system parameters (λ,Λ), computable by running D on inputs
λ, Λ and y′.

(c) x′ 6⊆ x.

32

Definition 24 (Omission-tolerant integrity protection with system parame-
terization). Let E = (P, S,E,D) be an encoding scheme with system param-
eterization where the elements of S are sets and E is a two-phase encoding
algorithm defined by a two-phase split (P, S,EI, EII). A checksum scheme
with system parameterization C = (P,C) is said to provide omission-tolerant
integrity protection for E if for every x ∈ S, every fixed representation X
of x, and every efficient adversary A, the probability that A wins Game 4
with parameters E, C, x, X and λ ∈ Z≥1 is a negligible function of λ. An
(E,C)-checksum is then said to be an omission-tolerant checksum.

Algorithm 7 (Assign-and-serialize). Let F = (m, d,K, V,KE,KD,VE,VD)
be a representation framework for sets of key-value pairs, andH = (P,A,B,H)
a hashing scheme with system parameterization. The (F ,H)-assign-and-
serialize algorithm takes as inputs λ ∈ Z≥1, Λ ∈ Supp(P (λ) and an in-
complete typed hash tree X without internal-node labels of kind (b,m, d) with
b = Bλ and performs the following steps:

1. Assign random labels to the dangling nodes of X, if any, each assigned
label being uniformly distributed over {0, 1}b, to obtain an incomplete
typed hash tree U without internal-node labels of kind (m, d, b).

2. Run the (m, d, b)-serialization algorithm on input U to obtain a bit
string y.

3. Output y.

Algorithm 8 (Encoding of a set of key-value pairs with system parameteriza-
tion). Let F = (m, d,K, V,KE,KD,VE,VD) be a representation framework
for sets of key-value pairs, and H = (P,A,B,H) a hashing scheme with sys-
tem parameterization. The (F ,H)-encoding algorithm for sets of key-value
pairs with system parameterization is the two-phase encoding algorithm de-
fined by the two-phase split (P, S,EI, EII) where EI is the F-representation
algorithm and EII is the (F ,H)-assign-and-serialize algorithm.

Algorithm 9 (Decoding of a set of key-value pairs with system parameteriza-
tion). Let F = (m, d,K, V,KE,KD,VE,VD) be a representation framework
for sets of key-value pairs, and H = (P,A,B,H) a hashing scheme with sys-
tem parameterization. The (F ,H)-decoding algorithm for sets of key-value
pairs with system parameterization takes as input λ ∈ Z≥1, Λ ∈ Supp(P (Λ))
and a bit string y and performs the following steps:

33

1. Run the (m, d, b)-deserialization algorithm on input y with b = Bλ and
let U be the output if one is produced, or stop without output otherwise.
If U is produced, it is an incomplete typed hash tree without internal-
node labels of kind (m, d, b).

2. Remove the labels of the dangling nodes of U , if any, obtaining an
incomlete typed hash tree X without distinguished-node labels of kind
(m, d).

3. Run the F-derepresentation algorithm on input X and let x be the
output if one is produced, or stop without output otherwise.

4. Output x.

Algorithm 10 (Checksum of a set of key-value pairs with system parameter-
ization). Let F = (m, d,K, V,KE,KD,VE,VD) be a representation frame-
work for sets of key-value pairs, and H = (P,A,B,H) a hashing scheme
with system parameterization. The (F ,H)-checksum algorithm for sets of
key-value pairs with system parameterization takes as input λ ∈ Z≥1, Λ ∈
Supp(P (Λ)) and a bit string y and performs the following steps:

1. Run the (m, d, b)-deserialization algorithm on input y, where b = Bλ,
and let Y be the output if one is produced, or stop without output oth-
erwise.

2. Run the (m, d, a, b, h)-internal node label computation algorithm on in-
put Y , where a = Aλ, b = Bλ and h = Hλ,Λ, and let Z be the ouput if
one is produced, or stop without output otherwise.

3. Output the root label z of Z.

Fact 9. The (F ,H)-encoding, decoding and checksum algorithms for sets of
key-value pairs with system parameterization are efficient algorithms.

Theorem 3. Let F = (m, d,K, V,KE,KD,VE,VD) be a representation
framework for sets of key-value pairs, and H = (P,A,B,H) a hashing scheme
with system parameterization that is collision and preimage resistant. Let
E = (P, S,E,D) be the encoding scheme with system parameterization where
S = SetsK,V , and E and D are the (F ,H)-encoding and decoding algorithms
with system parameterization. Let C = (P,C) be the checksum scheme with
system parameterization where C is the (F ,H)-checksum algorithm for sets

34

of key-value pairs with system parameterization. Then C provides omission-
tolerant integrity protection for E.

Proof. Let F , H, E and C be as stated and let EI and EII be the phases of the
two-phase encoding algorithm E. Reasoning by contradiction, assume that
C does not provide omission-tolerant integrity protection for E . This means
that there exists an element x of S, a fixed representation X of x output by
EI, and an efficient adversary A, such that the function p that maps λ ∈ Z≥1

to the probability that A wins Game 4 with parameters E , C, x, X and λ is
not negligible.

Consider an execution of Game 4 with the stated parameters where A
wins the game. X is an incomplete typed hash tree without distinguished-
node labels of kind (m, d), where the type-label pairs of leaf nodes with
undistinguished types are the key-value pairs of x.

The challenger runs P on input λ, and P outputs Λ. Let a = Aλ, b = Bλ,
and h = Hλ,Λ.

Then the challenger runs EII, which is the (F ,H)-assign-and-serialize
algorithm, on inputs λ, Λ and X. Let N1, . . .Nj, j ≥ 0 be the dangling
nodes of X, if any. For each i, 1 ≤ i ≤ j, EII chooses a random element
of {0, 1}b with uniform distribution and assigns it to the dangling node Ni.
This results in an incomplete typed hash tree U without internal-node labels.
Then EII runs the (m, d, b)-serialization algorithm on input U and outputs
the bit string y that it produces.

Then the challenger runs C, which is the (F ,H)-checksum algorithm
for sets of key-value pairs, on inputs λ, Λ and y. C runs the (m, d, b)-
deserialization algorithm, which outputs an incomplete typed hash tree Y
without internal-node labels of kind (m, d, b). Then C runs the (m, d, a, b,
h)-label computation algorithm on input Y , which adds internal-node labels
to Y and outputs a complete typed hash tree Z. Then C outputs the root
label z of Z.

Then the challenger runs the adversary on inputs λ, Λ and the adver-
sary wins the game by outputting a bit string y′ that satisfies the winning
conditions.

One of the winning conditions is that D outputs an element x′ of S
on inputs λ, Λ and y′. D computes x′ in three stages. It runs the (m,
d, b)-deserialization algorithm on input y′ to obtain an incomplete typed
hash tree U ′ without internal-node labels of kind (m, d, b). Then it removes
the dangling-node labels from U ′ to obtain an incomplete typed hash tree

35

X ′ without distinguished-node labels of kind (m, d). Then it runs the F -
derepresentation algorithm on input X ′ to obtain x′.

Another winning conditions is that C outputs z on inputs λ, Λ and y′. To
do so, C runs the (m, d, b)-deserialization algorithm and obtains an incom-
plete typed hash tree Y ′ without internal-node labels of kind (m, d, b). Then
C runs the (m, d, a, b, h)-label computation algorithm on input Y ′, obtaining
a complete typed hash tree Z ′ whose root label is z.

Z and Z ′ are typed hash trees of same kind (m, d, a, b, h) that have the
same root label z. Therefore, by Theorem 1, either (i) Z ′ is isomorphic to
a pruned derivative of Z, or (ii) the label of an internal node of Z ′ is equal
to the label of a dangling node of Z, or (iii) an internal node of Z ′ has the
same label as an internal node of Z but a different prelabel.

But (i) can be ruled out by the following argument:

1. U and Y are isomorphic as incomplete typed hash trees without internal-
node labels of kind (m, d, b) by Fact 6, and so are U ′ and Y ′ by Fact 7.

2. Since U is derived from X by assigning labels to the internal nodes, X is
derived from U by removing those labels. Let V be derived from Y and
V ′ from Y ′ by removing the labels of the internal nodes. Then X, V ,
X ′ and V ′ are incomplete typed hash trees without distinguished node
labels derived respectively from U , Y , U ′ and Y ′ by removing the labels
of the internal nodes. Therefore, by Fact 1, since (U, Y) and (U ′, Y ′) are
pairs of isomorphic incomplete typed hash trees without internal-node
labels of kind (m, d, b), (X, V) and (X ′, V ′) are isomorphic incomplete
typed hash trees without distinguished-node labels of kind (m, d).

3. Since X and V are isomorphic, from the fact that the F -representation
algorithm outputs X on input x it follows by Fact 4 that the F -
derepresentation algorithm outputs x on input V .

4. SinceX ′ and V ′ are isomorphic, from the fact that the F -derepresentation
algorithm outputs x′ on input X ′ it follows by Fact 3 that it also out-
puts x′ on input V ′.

5. Now suppose that (i) holds, i.e. that Z ′ is isomorphic to a pruned
derivative of Z. Since Z is output by the m, d, a, b, h-label compu-
tation algorithm on input Y , Y is derived from Z by removing the
internal-node labels, and therefore V is derived from Z by removing

36

the distinguished-node labels. Similarly V ′ is derived from Z ′ by re-
moving the distinguished-node labels. Since x and x′ are output by
the F -derepresentation algorithm on inputs V and V ′ respectively, it
follows by Fact 5 that x′ is a subset of x. But this is ruled out by the
contradiction hypothesis.

Hence either an internal node of Z ′ has the same label as an internal node
of Z but a different prelabel, or the label of an internal node of Z ′ is equal
to the label of one of the dangling nodes of Z, which are also the dangling
nodes of U and the dangling nodes Ni, 1 ≤ i ≤ j of X.

Let E be the event that A wins Game 4 with parameters E , C, x, X and
λ, whose probability is p(λ). Let p′0 be the function that maps λ ∈ Z≥1 to
the probability that E occurs and furthermore an internal node of Z ′ has the
same label as an internal node of Z but a different prelabel. Similarlhy, for
1 ≤ i ≤ j, let p′i(λ) be the probability that E occurs, and furthermore the
label of an internal node of Z ′ is equal to the label of Ni. Since one or more
of the further eventualities must occur when event E occurs, we have

p(λ) ≤
j∑
i=0

p′i(λ) (1)

The fact that the function p is not negligible means that there exists c ∈ Z≥1

such that, for all λ ∈ Z≥1 there exists λ′ > λ such that p(λ′) ≥ 1
λ′c

; or that,
for such a c, the set

L = {λ ∈ Z≥1|p(λ) ≥ 1

λc
}

is infinite. Define

Li = {λ ∈ Z≥1|p′i(λ) ≥ 1

(j + 1)λc
}

for 0 ≤ i ≤ j. From (1) it follows that, since L is infinite, at least one of the
Li is infinite. And if Li is infinite, so is

L′i = {λ ∈ Z≥1|p′i(λ) ≥ 1

λc′
}

for c′ = c+ 1, which implies that p′i is not negligible.
If p′0 is non-negligible, consider an execution of Game 1, used in the

definition of collision resistance, with parameters (P,A,B,H) and λ, played

37

by a collision resistance challenger CCR and a collision resistance adversary
ACR. CCR runs P on λ, P outputs Λ, and CCR invokes ACR on inputs λ and
Λ. ACR executes Game 4 with parameters E , C, x, X and λ, invoking the
challenger algorithm and specifying the adversary algorithm to be run by
providing it an input to the challenger.

The adversary of Game 4 that ACR specifies is the particular adversary
A that has a probability p(λ) of winning the game, modified as needed to
ensure that it outputs Z and Z ′ if it wins the game. ACR also modifies the
challenger of Game 4 so that it takes Λ as an input instead of obtaining it
by running P on input λ; then it passes the Λ of Game 1 as input to the
challenger of Game 4. These modifications do not change the probability
p′0(λ) that A wins the game and an internal node of Z ′ has the same label
as an internal node of Z but a different prelabel.

If A wins the game, which happens with probability p(λ), the challenger
of Game 4 relays Z and Z ′ to ACR, which looks for nodes N0 of Z and N ′0 of
Z ′ that have the same label l but different prelabels u and u′. If it finds such
nodes, which happens with probability p′0(λ), it outputs (u, u′) as a collision
of h, thus winning Game 1.

Furthermore, ACR is efficient according to Definition 14, for the following
reasons:

1. The algorithms run by the unmodified challenger of Game 4, the un-
modified challenger itself, and the unmodified adversary A are efficient.

2. Z and Z ′ are of size polynomial in λ because they are constructed by
efficient algorithms.

3. The challenger of Game 4 and the adversary A remain efficient when
modified to output Z and Z ′ respectively because Z and Z ′ are of size
polynomial in λ.

4. Finding N0 and N ′0 takes polynomial time because Z and Z ′ are of
polynomial size.

5. Outputting u and u′ takes polynomial time because u and u′ are of
polynomial size.

Thus ACR is an efficient adversary that wins Game 1 with non-negligible
probability p′0(λ), contradicting the assumption that (P,A,B,H) is collision-
resistant.

38

If p′i is non-negligible for some i in the range 1 ≤ i ≤ j, consider an
execution of Game 2, used in the definition of preimage resistance, with pa-
rameters (P,A,B,H) and λ, played by a preimage resistance challenger CPR

and a collision resistance adversary APR. CPR runs P on λ and P outputs
Λ. Then CPR chooses an element v of {0, 1}b at random with uniform dis-
tribution, and invokes APR on inputs λ, Λ and v. APR executes Game 4
with parameters E , C, x, X and λ, invoking the challenger algorithm and
specifying the adversary algorithm to be run by providing it an input to the
challenger.

As above, APR specifies A as the adversary of Game 4, modifying it so
that it outputs Z and Z ′ if it wins the game, modifying the challenger of
Game 4 so that it takes Λ as an input instead of obtaining it by running
P on input λ, and passing the Λ of Game 1 as input to the challenger of
Game 4. Furthermore APR modifies the parameter E of Game 4 so that its
second phase EII assigns v as the label of Ni, instead of generating a fresh
random label. Given that v is an element of {0, 1}b randomly generated with
uniform distribution, none of these modifications change the probability p′i(λ)
that A wins the game and the label of an internal node of Z ′ is equal to the
label of Ni.

The challenger of Game 4 relays Z and Z ′ to APR, which traverses Z ′

looking for an internal node whose label coincides with the label v of the i-th
dangling node of Z. If it can find such a node, which happens with probability
p′i(λ), it wins Game 2 by outputting its prelabel. Like ACR above, APR is
an efficient algorithm because the data structures that it manipulates are
of size polynomial in λ and the algorithms that it invokes are themselves
efficient. Thus APR is an efficient adversary that wins Game 2 with non-
negligible probability p′i(λ), contradicting the assumption that (P,A,B,H)
is preimage resistant.

Having reached a contradiction in both cases, we can conclude that E
does provide omission-tolerant integrity protection.

6 Conclusion

We have introduced the concepts of an omission-tolerant checksum and a
typed hash tree, and described a method for using a typed hash tree to rep-
resent a set of key-value pairs or, as a special case, a set of unstructured
elements, serializing the tree to obtain a bit-string encoding of the set, and

39

using the root label of the tree as an omission-tolerant cryptographic check-
sum of the encoding. Using Boneh & Shoup’s system parameterization and
attack game methodology, we have proved that, given a set of key-value pairs,
an efficient adversary has a negligible probability of producing a set of key-
value pairs other than a subset of the given one that has the same root-label
checksum.

An omission-tolerant checksum has many possible applications. A par-
ticularly important one is a method for implementing selective disclosure of
data items bound to a public key by a public key certificate such as, e.g.,
a TLS client certificate. We leave the details of this application for future
work.

References

[1] Dan Boneh and Victor Shoup. A Graduate Course in Applied
Cryptography. Version 0.4. September 2017.
https://crypto.stanford.edu/~dabo/cryptobook/.

[2] J. Camenisch and A. Lysyanskaya. Efficient non-transferable
anonymous multi-show credential system with optional anonymity
revocation. In Theory and Application of Cryptographic Techniques,
EUROCRYPT, 2001.

[3] Microsoft Corporation. U-Prove Home Page.
http://www.microsoft.com/u-prove.

[4] R. C. Merkle. A digital signature based on a conventional encryption
function. In C. Pomerance, editor, Advances in Cryptology —
CRYPTO 1987. Springer. Lecture Notes in Computer Science, vol 293.

[5] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. IETF
RFC 6962. https://tools.ietf.org/html/rfc6962.

[6] Mastercard and VISA. SET Secure Electronic Transaction
Specification. Version 1.0, May 1997.
http://www.maithean.com/docs/set_bk1.pdf,
http://www.maithean.com/docs/set_bk2.pdf,
http://www.maithean.com/docs/set_bk3.pdf.

40

https://crypto.stanford.edu/~dabo/cryptobook/
http://www.microsoft.com/u-prove
https://tools.ietf.org/html/rfc6962
http://www.maithean.com/docs/set_bk1.pdf
http://www.maithean.com/docs/set_bk2.pdf
http://www.maithean.com/docs/set_bk3.pdf

[7] William Stallings. The SET Standard & E-Commerce. November 1,
2000. http://www.drdobbs.com/the-set-standard-e-
commerce/184404309#.

[8] Karen Lewison and Francisco Corella. Rich Credentials for Remote
Identity Proofing. Pomcor technical report, revised July 10, 2017; first
version October 15, 2016.
https://pomcor.com/techreports/RichCredentials.pdf.

[9] D. Richard Kuhn. A Data Structure for Integrity Protection with
Erasure Capability. NIST White Paper (DRAFT), Computer Security
Division, Information Technology Laboratory. May 31, 2018.
https://csrc.nist.gov/publications/detail/white-

paper/2018/05/31/data-structure-for-integrity-protection-

with-erasure-capability/draft.

[10] Francisco Corella. Method and apparatus for providing field
confidentiality in digital certificates, October 2004. US Patent
6,802,002.

[11] Wikipedia. Algorithm characterizations.
https://en.wikipedia.org/wiki/Algorithm_characterizations.
Accessed October 30, 2018.

[12] NIST. Digital Signature Standard (DSS), July 2013. FIPS PUB 186-4,
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[13] Alfred J. Menezes and Paul C. Van Oorschot and Scott A. Vanstone
and R. L. Rivest. Handbook of Applied Cryptography, 1997. Chapters
available online at http://cacr.uwaterloo.ca/hac/.

[14] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography, Second Edition. Chapman & Hall/CRC, 2nd edition,
2014.

41

http://www.drdobbs.com/the-set-standard-e-commerce/184404309#
http://www.drdobbs.com/the-set-standard-e-commerce/184404309#
https://pomcor.com/techreports/RichCredentials.pdf
https://csrc.nist.gov/publications/detail/white-paper/2018/05/31/data-structure-for-integrity-protection-with-erasure-capability/draft
https://csrc.nist.gov/publications/detail/white-paper/2018/05/31/data-structure-for-integrity-protection-with-erasure-capability/draft
https://csrc.nist.gov/publications/detail/white-paper/2018/05/31/data-structure-for-integrity-protection-with-erasure-capability/draft
https://en.wikipedia.org/wiki/Algorithm_characterizations
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://cacr.uwaterloo.ca/hac/

	Introduction
	Prior work and present contributions

	Preliminaries
	Algorithms
	Games
	Notations and conventions
	Hash functions
	Simple encoding schemes

	Typed hash trees
	An omission-tolerant checksum
	Overview
	Representation of a set of key-value pairs

	Asymptotic security
	Boneh and Shoup's system parameterization
	Encoding schemes with system parameterization
	Omission-tolerant integrity protection in the asymptotic security setting

	Conclusion

