
A Comprehensive Approach to Cryptographic and
Biometric Authentication from a Mobile Perspective

Patents Pending

Francisco Corella, PhD
fcorella@pomcor.com

Karen Lewison, MD
kplewison@pomcor.com

Last updated on April 20, 2013

Executive Summary
User authentication on the Internet is widely acknowledged to be broken. Ordinary

passwords have many vulnerabilities. Third-party login with a password adds a pri-
vacy problem while arguably making the security problem worse. Security questions
are an invasion of privacy, and their answers can be easily discovered online. One-
time passwords generated by a soft or hard token or communicated via email or text
or voice messaging add only limited security at the cost of substantial user inconve-
nience. Cryptographic or biometric authentication is only used in special cases, such
as employee or contractor authentication to information systems in US government
agencies.

Mobile devices make the authentication problem worse. It is difficult to enter a
high-entropy password on the touchscreen keyboard of a smart phone, and characters
are echoed by the keyboard as they are typed. It is also difficult to protect the pri-
vate key component of a cryptographic key pair against an adversary who captures the
device because data protection mechanisms currently available on mobile devices are
not effective. But at the same time mobile devices have brought us a new app-centric
computing paradigm, in which both native and web-based applications can communi-
cate with each other within the device, paving the way for innovation in the area of
authentication architecture.

All of this has led us to rethink user authentication. We have identified a useful
distinction between closed-loop and open-loop authentication, and defined the concept
of a protocredential.

In closed-loop authentication, the party that issues or registers a credential is the
same party that verifies possession of the credential at authentication time, whereas
in open-loop authentication user attributes are asserted by a party that is not directly
involved in the authentication process. Today, most authentication on the web is closed-
loop, including traditional two-party authentication with username and password, and
third-party login where a relying party redirects the browser to an identity provider who
authenticates the user and redirects the browser back to the relying party, conveying
the user’s identity.

A protocredential consists of cryptographic parameters stored in the user’s com-
puting device, at least one of them secret, that are used to regenerate an uncertified

1



key pair in conjunction with one or more additional secrets provided by the user, such
as a PIN and/or a biometric sample. We propose a protocredential-based technique
for implementing multifactor closed-loop authentication. Without requiring tamper-
proof storage, the technique provides protection against offline attack by an adversary
who gains access to the user’s device, as well as protection against an adversary who
breaches database or network confidentiality.

One benefit of protocredential-based authentication is that it provides an effective
data protection method for data stored on mobile devices, without relying on tamper
resistance or special encryption hardware. The data is encrypted under a data en-
cryption key that is entrusted to a key storage service or cryptographically distributed
over multiple services. To retrieve the key, the user authenticates to the key storage
service(s) using protocredential-based authentication.

Cryptographic closed-loop authentication provides full privacy when only two par-
ties are involved, but open-loop authentication provides more privacy than closed-
loop authentication when an authoritative third party is relied upon to assert user at-
tributes. Credentials that can be used in open-loop authentication include a traditional
PKI certificate coupled with its associated private key, a U-Prove token, or an Idemix
anonymous credential. Protocredential-based authentication is applicable to multifac-
tor closed-loop authentication, but not to open-loop authentication or one-factor closed
loop authentication; but the proposed data protection method can be used to safeguard
credentials used in open-loop authentication and one-factor closed-loop authentication
when the device containing those credentials is captured by an adversary. A collection
of such credentials can be encrypted under the same data-encryption key, so that they
can all be decrypted at once and then used without further user intervention, thus
providing a form of single sign-on.

We also propose an architecture for both closed-loop and open-loop authentica-
tion on mobile devices, encompassing both web-based applications and applications
with a native front-end, that insulates application developers from the complexities
of cryptographic and biometric authentication. We show how login sessions can be
implemented in the framework of the architecture, and we describe a second form of
single sign-on based on the sharing of login sessions among a group of applications, such
as applications deployed by an enterprise. Finally, we show how the proposed mobile
architecture can be adapted for use on a traditional personal computer by means of a
browser extension that does not require modification of core browser functionality.

Contents

1 Introduction 5

2 Protocredential-Based Authentication 10
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Two-Factor Authentication with Protocredential and PIN . . . . . . . . . . . 13
2.3 Credential Revocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Preserving Access to the User’s Account . . . . . . . . . . . . . . . . . . . . 13
2.5 Device Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Credential Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2



2.6.1 Generic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 DSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.3 ECDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.4 RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Using Biometrics for Protocredential-Based Authentication 20
3.1 Security, Privacy and Usability Concerns with Biometrics . . . . . . . . . . . 20
3.2 Consistently Producing the Biometric Key . . . . . . . . . . . . . . . . . . . 21
3.3 Two-Factor Authentication with Biometrics . . . . . . . . . . . . . . . . . . 21
3.4 Three-Factor Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Security Analysis of Two-Party Protocredential-Based Authentication 23
4.1 Secrets and Their Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Security Posture of Authentication with a Key Pair Regenerated from a Pro-

tocredential and a Passcode . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Countermeasures against Back-End Spoofing . . . . . . . . . . . . . . 27

4.3 Comparison with Other Security Postures . . . . . . . . . . . . . . . . . . . 28
4.3.1 Encrypted Private Key . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Passcode Independent of Key Pair . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Smart Card with Key Pair Programmatically Enabled by a PIN . . . 31
4.3.4 OTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.5 Ordinary Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Security and Privacy Provided by Two-Party Protocredential-Based Authen-
tication with Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Security and Privacy Provided by Two-Factor Authentication with

Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Additional Security Provided by Three-Factor Authentication . . . . 38

5 Data Protection Mediated by Protocredential-Based Authentication 38
5.1 State of the Art of Data Protection . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Effective Data Protection Using Protocredential-Based Authentication . . . . 39
5.3 Using Multiple Storage Services . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Using a Protokey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Credential Protection and SSO Based on Data Protection . . . . . . . . . . . 41

6 Open-Loop Authentication 42
6.1 Cryptographic Open-Loop Authentication . . . . . . . . . . . . . . . . . . . 42
6.2 Biometric Open-Loop Authentication . . . . . . . . . . . . . . . . . . . . . . 43

7 Mobile Authentication Architecture 44
7.1 Configurations and Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Communication between Native Applications . . . . . . . . . . . . . . . . . . 47
7.3 Native Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 Web-based Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . 53

3



7.5 SSO Based on Shared Login Sessions . . . . . . . . . . . . . . . . . . . . . . 55
7.5.1 Shared Session Usage by a Native Front-End . . . . . . . . . . . . . . 56
7.5.2 Shared Session Usage by a Web-Based Application . . . . . . . . . . 59
7.5.3 Benefits of SSO Based on Shared Sessions . . . . . . . . . . . . . . . 62

7.6 Credential Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.6.1 Device Registration in the Mobile Architecture . . . . . . . . . . . . . 62
7.6.2 Issuance of Cryptographic Credentials for Open-Loop Authentication 64

8 Security Analysis of the Mobile Authentication Architecture 65
8.1 Secondary Authentication with a Bearer Token . . . . . . . . . . . . . . . . 65
8.2 Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2.1 Two-Party Closed Loop Authentication . . . . . . . . . . . . . . . . . 66
8.2.2 Shared Login Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.3 Third-Party Closed-Loop Authentication . . . . . . . . . . . . . . . . 68
8.2.4 Open-Loop Authentication . . . . . . . . . . . . . . . . . . . . . . . . 68

8.3 Risk of PBB Spoofing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Authentication on traditional PCs 70

10 Privacy Considerations 73

11 Conclusion 74

A Appendices 75
A.1 Bit Length of the RSA Decryption Exponent . . . . . . . . . . . . . . . . . . 75
A.2 Size of the GCD of two Random Numbers . . . . . . . . . . . . . . . . . . . 76
A.3 Probability of two Random Numbers Having a Common Prime Factor Greater

than 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

List of Figures

1 Multifactor two-party authentication using a protocredential. . . . . . . . . . 11
2 Two-factor authentication with a PIN. . . . . . . . . . . . . . . . . . . . . . 14
3 Two-factor authentication with an iris scan. . . . . . . . . . . . . . . . . . . 22
4 Three-factor authentication with an iris scan and a PIN. . . . . . . . . . . . 23
5 Data protection mediated by protocredential-based closed-loop authentication 40
6 Mobile authentication through native front-end . . . . . . . . . . . . . . . . 48
7 Mobile authentication to a web-based application . . . . . . . . . . . . . . . 54
8 Shared database containing shared session records. . . . . . . . . . . . . . . 56
9 Creation of shared login session by application with native front-end. . . . . 58
10 Creation of shared login session by web-based application. . . . . . . . . . . 60
11 PBB bundled into same package as an Android native application front-end . 71
12 PBB implemented as browser extension in traditional PC . . . . . . . . . . . 72

4



List of Tables

1 Security posture of protocredential plus passcode. . . . . . . . . . . . . . . . 26
2 Security posture of private key encrypted under passcode. . . . . . . . . . . . 29
3 Security posture of key pair plus independent passcode. . . . . . . . . . . . . 30
4 Security posture of smart card with key pair gated by PIN. . . . . . . . . . . 32
5 Security posture of smart card with key pair gated by PIN and strong-enough

tamper resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Security posture of OTP plus passcode . . . . . . . . . . . . . . . . . . . . . 34

1 Introduction

User authentication on the Internet is widely acknowledged to be broken.
Ordinary passwords have many vulnerabilities and drawbacks. They are hard to remem-

ber and easy to guess [1]; they are often reused [2], allowing malicious web sites to capture
them and use them to impersonate the user on other sites; they are vulnerable to phish-
ing attacks; and databases of hashed passwords, which sometimes are not even salted [3],
are targets for hackers who can mount offline dictionary attacks after breaking in. In the
enterprise, employees are often required to change their passwords regularly, which impacts
productivity and causes resentment [4]. Calls for the demise of the password can be heard
[5, 6].

Third-party login, where the user is redirected to an identity provider that requests the
user’s password, is an invasion of the user’s privacy, since the identity provider is informed
of the user’s logins to relying parties. Social login, where the identity provider is a social
network that grants the relying party access to the user’s account and receives information
from the relying party about the user’s activities, is even more invasive. Identity providers
and social networks claim that they increase security because the user has to remember
fewer passwords, but security is arguably decreased, because prompting for a password after
redirection facilitates phishing attacks [7, 8].

Security questions, whether posed automatically or by a human operator, provide little
security because their answers can usually be found among the wealth of personal information
that is collected and published by social networks, collected by advertising networks and
potentially available to hackers, and directly collected by hackers using spyware. Forcing
users to provide answers to such questions at many different sites further increases the
likelihood that an adversary will obtain the answers.

A one-time password (OTP), numeric [9, 10] or graphic [11], is sometimes used instead
of a long term password, or in conjunction with a long term passcode, which may be a short
PIN or a higher entropy password, for two-factor authentication. A numeric OTP can be
generated by a hard or soft token in the user’s possession, or sent to the user in a text or voice
message. But the inconvenience caused to the user by having to obtain and use the OTP
buys only limited additional security. OTPs are not easy to guess and are not vulnerable to
reuse, but they share other vulnerabilities with ordinary passwords, and have vulnerabilities
of their own. OTPs are vulnerable to phishing attacks like ordinary passwords; the attacker
who phishes an OTP has to use it while it is valid, but the validity period usually lasts several

5



minutes. Just as databases containing password hashes can be breached, so can databases
containing seeds used to generate OTPs, and a breach of a database containing OTP seeds
may allow the adversary to generate the OTPs herself; at least one such breach has actually
occurred [12, 13, 14]. An adversary may be able to intercept an OTP sent in a text or
voice message, since text and voice messaging do not provide strong end-to-end security. No
matter how the OTP is obtained, an adversary may be able to observe both the OTP and
the long term passcode used in conjunction with the OTP over the user’s shoulder.1 After
capturing the OTP and the long term passcode, the adversary may be able to block the
user’s Internet connection (e.g. if the connection goes through a WiFi access point set up by
the adversary, which masquerades as a legitimate public access point) and use the OTP and
long term passcode while it is valid. Also, authentication by OTP plus long term passcode
is vulnerable to a man-in-the-middle attack by an adversary who succeeds in spoofing a TLS
server certificate, which is difficult but not unheard of, as discussed below in Section 4 below.

Strong authentication technology exists, but is not being widely deployed.
Secure authentication can be achieved using public key cryptography, by demonstrating

knowledge of the private key component of a key pair. This is the method that underlies
web authentication with TLS client certificates [15], WebID [16], BrowserID/Persona [17],
and Origin-Bound Certificates [18]. But public key cryptography has failed to achieve broad
adoption for user authentication. In the US, it is rarely used outside the Federal Govern-
ment, which requires its agencies to use PIV cards [19] containing public key certificates
and their associated private keys for authentication of federal employees and contractors to
information systems. One reason for the lack of adoption is the failure of browser vendors
and standards bodies to create an identity ecosystem where cryptographic credentials can
be used conveniently and securely.

Biometrics do not provide strong security by themselves, and they raise privacy concerns.
But they do strengthen security when used as a third authentication factor in addition to a
cryptographic key and a passcode; and research in the last ten or fifteen years has addressed
most of the privacy concerns. Yet biometrics are rarely used for user authentication on the
Internet.

Mobile devices have created additional obstacles for user authentication.
The shortcomings of passwords are amplified on mobile devices. It is difficult to enter

a password accurately on a small touchscreen keyboard, and repeated mistakes may result
in an account lockout that requires the password to be reset by relying on alternative and
even less secure authentication methods such as security questions. Entering digits and
punctuation symbols requires switching keyboards; this, combined with the difficulty of
typing on a tiny keyboard, discourages users from choosing high-entropy passwords. To aid
in typing, characters are echoed by the touchscreen keyboard as they are being typed, thus
defeating the security provided by a password input box that echoes characters as dots and
making it easy for an attacker to observe the password by looking over the user’s shoulder
as it is being typed.

1Especially on a smart phone or tablet whose touchscreen keyboard echoes characters as they are being
typed, as discussed below.

6



Authentication based on possession of a key pair also faces an additional difficulty on a
mobile device, viz. the problem of how to protect the private key if the device is lost or stolen.
Today’s mobile devices do not have internal tamper resistant modules, and it is undesirable,
for usability reasons, to store the private key in external tamper-resistant hardware, such as
a smart card or fob that interacts with the mobile device. A traditional means of protecting
a key pair without tamper resistance is to encrypt the private key under a key-encryption key
derived from a password; but that requires entering a high-entropy password each time the
private key needs to be decrypted, which is not practical on a small touchscreen keyboard,
as discussed above. One could think of using the data protection mechanism available on
the iPhone and iPad since iOS 4, based on a hardware encryption key [20]; but that data
protection technique has proved to be ineffective [21, 22]. One could also think of relying
on a remote data wipe offered by a Mobile Device Management (MDM) product; but an
adversary who captures the device can easily circumvent that countermeasure by placing the
device in a Faraday cage.

On the other hand, however, mobile devices have brought us a new computing paradigm,
featuring native applications that can be developed quickly in high-level object-oriented
languages by taking advantage of a rich framework of classes made available by the operating
system. In this new software architecture, native applications are insulated from each other
by sandboxing, but can communicate with each-other and web-based applications via novel
inter-application communication mechanisms, available on Android and iOS. We shall see
how, by changing the role played by the browser, this new software architecture makes it
possible to circumvent a major obstacle to the deployment of cryptographic and biometric
authentication.

All of this has led us to rethink user authentication. We have identified a useful distinction
between closed-loop and open-loop authentication, defined the concept of a protocredential,
and articulated a comprehensive approach to user authentication based on these concepts
that provides both security and user convenience.

We say that authentication is closed-loop when the same party that issues or registers
a credential is later responsible for verifying possession of the credential at authentication
time. Closed-loop authentication is very commonly used. Authentication to a web site by
username and password without third party involvement is one example. Another example
is third-party login using double-redirection protocols such as SAML Browser SSO [23],
Shibboleth [24], OpenID [25], OAuth [26] or OpenID Connect [27], where a relying party
redirects the browser to an identity provider who authenticates the user before redirecting
the browser back to the relying party.2

On the other hand, we say that authentication is open-loop when the party that issues
or registers the credential is not the party that later verifies the credential (although it may
assist with verification, e.g. by providing the status of a certificate in response to an OCSP
[28] request). Examples of open-loop authentication include submission of a traditional X.509
public key certificate [29] together with proof of knowledge of the corresponding private key,
and presentation of a privacy-enhancing credential such as a U-Prove token [30, 31, 32] or

2Some of these protocols use POST redirection achieved by using JavaScript code to submit a POST
request, instead of or in addition to GET redirection, which uses an HTTP status code such as 302.

7



an Idemix anonymous credential [33, 34].
A protocredential is a data structure stored in the user’s device that can be used to

regenerate a credential in conjunction with user input. The protocredential contains one
or more stored secrets and serves as a primary authentication factor, while the user input
supplies a set of one or more non-stored secrets, such as a PIN or a biometric sample, which
serve as additional authentication factors.

In this paper we are concerned with protocredentials that regenerate credentials compris-
ing uncertified3 key pairs pertaining to public key cryptosystems; a protocredential can also
be used to regenerate a symmetric secret for closed-loop authentication, but that results in
a weaker security posture, as discussed in Section 4.1 below.

We propose to use a protocredential-based authentication technique for multifactor closed-
loop authentication that provides crucial benefits for mobile devices that can be easily lost
or stolen. An adversary who gains access to the user’s device and is able to read the pro-
tocredential cannot impersonate the user without the non-stored secrets. Furthermore, the
adversary cannot mount an offline guessing attack against the non-stored secrets, nor against
cryptographic parameters derived from the non-stored secrets, because all sets of non-stored
secrets, or at least most of them, yield well-formed credentials when combined with the pro-
tocredential; those credentials can only be tested against an online party, which can limit
the number of guesses. Additional security benefits are discussed in Section 4.

Two-party closed-loop cryptographic authentication is a perfect solution for replacing
passwords on the web. But whereas cryptographic closed-loop authentication provides full
privacy when only two parties are involved, it provides less privacy than open-loop au-
thentication when an authoritative third party is relied upon to assert user attributes, be-
cause that third party observes the authentication transactions in closed-loop authentication.
Protocredential-based authentication is intended for multifactor closed-loop authentication,
not for open-loop authentication or one-factor closed-loop authentication. However, we have
devised a data protection technique mediated by protocredential-based authentication that
can be used to protect credentials used in open-loop authentication or one-factor closed-loop
authentication when a device containing them is captured by an adversary.

Research on privacy-preserving biometrics has produced several techniques for biometric
authentication that can shield the user’s biometric features from an adversary who captures
the user’s device or breaches the user database. We explain how some of these techniques,
for example [36, 37, 38], can allow a biometric sample to be used for protocredential-based
authentication.

A recent paper [39] has documented how difficult it is to implement, document and use
a cryptographic API. We propose a flexible architecture for both closed-loop and open-loop
user authentication that insulates application developers from the dangers of cryptographic
APIs by encapsulating the complexities of cryptographic (and biometric) computations in
a Prover Black Box (PBB) located in the user’s device and a Verifier Black Box (VBB)
located online. The architecture was originally designed for mobile devices, where it takes
advantage of the inter-application communication mechanisms of Android and iOS, but it

3We use the term uncertified to refer to a public key not bound to the user’s identity or attributes by a
public key certificate, or to a key pair whose public key component is not so bound. The term raw public
key has been used to refer to an uncertified public key [35].

8



can be adapted for web-based applications accessed from traditional personal computers
(PCs), by means of browser extensions.

The rest of the paper is organized as follows:

• In Section 2 we describe protocredential-based authentication, in general terms and in
the particular case where a passcode such as a PIN is used to regenerate the uncertified
key pair from the credential. We provide specific key-pair regeneration techniques
for DSA, ECDSA, and RSA credentials, as well as a generic but often less efficient
technique applicable to any public key cryptosystem.

• In Section 3 we explain how privacy-preserving biometrics can be used for protocredential-
based authentication.

• In Section 4 we analyze the security of protocredential-based two-party authentica-
tion and compare it to the security provided by alternative approaches to two-party
authentication.

• In Section 5 we explain how protocredential-based authentication can be used to pro-
vide effective data protection, contrasting our approach with the data protection mech-
anism available on iOS. We also show how data protection provides a form of single
sign-on (SSO).

• In Section 6 we explain how open-loop authentication provides more privacy than
closed-loop authentication when a third-party is relied upon to assert user attributes,
we describe the privacy features provided by public key certificates, U-Prove tokens
and Idemix credentials, and we explain how credentials used for open-loop authenti-
cation can be securely stored without tamper resistance by relying on data protection
mediated by protocredential-based authentication.

• In Section 7 we describe the authentication architecture that we are proposing for
mobile devices, showing how it supports web-based applications and applications with
a native front-end; one-factor and multifactor authentication; as well as two-party
closed-loop authentication, third-party closed loop authentication including social lo-
gin, and open-loop authentication with public key certificates, U-Prove tokens and
Idemix anonymous credentials. We also show how login sessions are implemented in
the architecture, and how shared login sessions provide a second form of SSO.

• In Section 8 we describe the security provided by the mobile architecture.

• In Section 9 we show how the mobile authentication architecture of Section 7 can be
adapted for use on traditional PCs by means of browser extensions.

• In Section 10 we discuss the privacy benefits provided by different types of credentials
in the framework of our approach and the privacy implications of the proposed use of
biometrics.

9



• In Section 11 we recapitulate and argue that, by focusing on mobile devices, our ap-
proach to authentication has the potential to enable widespread adoption of crypto-
graphic and biometric techniques for authentication on the Internet.

2 Protocredential-Based Authentication

A protocredential can be used to implement multifactor closed-loop authentication, with
possession of the credential serving as one authentication factor, and the non-stored secrets
supplied by the user serving as additional factors.4 In two-party multifactor closed-loop
authentication, the protocredential is used to regenerate a credential that authenticates the
user to an application back-end5 as a returning user. In third-party multifactor closed-loop
authentication, the regenerated protocredential authenticates the user to an identity or at-
tribute provider, which in turn conveys the user’s identity or attributes to an application
back-end playing the role of relying party.6 This section is concerned with credential re-
generation and use in the context of two-party authentication. Credential regeneration and
use is identical in the third-party case, with the identity or attribute provider substituted
for the application back-end. How identity or attributes are conveyed to a relying party in
third-party closed-loop authentication is discussed in Section 7.

2.1 Overview

Figure 1 illustrates the data structures used in two-party protocredential-based authentica-
tion. The user’s device is shown with rounded corners to suggest a smart phone or a tablet,
but the technique is applicable to any device, including traditional laptops and desktops.

Multifactor authentication is achieved by using one or more non-stored secrets supplied
by the user to regenerate the uncertified key pair and thus enable the mobile device to
authenticate to a mobile application back-end. Use of one non-stored secret, such as a PIN
or a biometric sample, amounts to two-factor authentication, one factor being possession of
the mobile device containing the protocredential, the other factor being the knowledge of
the non-stored secret or the ability to produce it. Use of both a PIN and a biometric sample
amounts to three-factor authentication.

The application maintains user accounts. The user accounts may be kept, for example,
in a relational database, which may be internal to the application as illustrated in the figure,

4In this paper we are only concerned with user authentication, so the non-stored secrets are supplied by
the user; but the approach could also be used for authentication of autonomous devices, using non-stored
secrets produced by Physical Unclonable Functions (PUFs).

5By “application back-end” we mean the back-end of a mobile application, which the user accesses through
a native front-end, or a web-based application, whose front-end consists of JavaScript and HTML code hosted
by a web browser running on a mobile device or a traditional PC, or a web service accessed through an API,
or so on. The mobile architecture of Section 7 supports two-party closed-loop authentication, as well as
third-party closed-loop authentication, and open-loop authentication.

6By “identity” we mean we mean one or more attributes that intentionally identify the user in a partic-
ularly context. We also use the more specific term “identifier” to refer to a single attribute that uniquely
identifies the user.

10



User
data

User record 
handleHash of public 

key

User record 
handle

Device record 
handle

User's 
device

Application
back-end

Database

Table of device 
records

Table of user 
records

Device record 
handle

Key-pair 
related 

parameters

Non-stored-
secret related 
parameters

Device record 
handle, public 
key, proof of 
knowledge of 
private key

Protocredential
Device record User record

Non-
stored 

secret(s)

Consecutive 
failure counter

Figure 1: Multifactor two-party authentication using a protocredential.

or external and shared by multiple applications, as in the case of an enterprise directory
shared by multiple enterprise applications.

The database contains user records and device records. Each user record is uniquely
identified by a user-record handle, and each device record by a device-record handle; we
use the word handle instead of the database term primary key to avoid confusion between
database keys and cryptographic keys.

In addition to the device-record handle, each device record contains:

• A user-record handle that identifies the record of the user who owns the device. Multi-
ple device records may reference the same user record, since a user may use, e.g., both
a smart phone and a tablet.

• The hash of the public key component of an uncertified key pair that the device uses
to authenticate to the application back-end. Different key pairs are used for different
applications to ensure unlinkability across applications.

• A counter of failed authentication attempts, which serves as a countermeasure against
an attack by an adversary who captures the device, reads the protocredential, and
tries to regenerate the uncertified key pair by guessing the non-stored secrets or cryp-
tographic parameters derived from the non-stored secrets. When the counter reaches
a low limit, such as 3, 5 or 10, the device record is deleted or disabled.

A user record may contain user identifiers, user attributes, and any other data pertaining
to the user. The database may contain session records (not shown in the figure), each session
record being used to keep track of a login session on a particular device and referring to the
corresponding device record via its device-record handle.

11



The mobile device authenticates to the application back-end using a credential that
consists of a device-record handle and an uncertified key pair. The device contains a proto-
credential that comprises the device-record handle, cryptographic parameters related to the
key pair, and cryptographic parameters related to the non-stored secrets. The key pair is
regenerated at authentication time from the cryptographic parameters stored in the proto-
credential and the non-stored secrets provided by the user.

The device-record handle plays a role similar to the role that the username plays in a
username-and-password credential: it makes a device-identity claim by identifying a partic-
ular device record in the database. We emphasize that the claimed device identity is relative
to the database, and cannot be correlated across applications that use different databases.

The key-pair related parameters depend on the cryptosystem being used. For example,
in the case of an RSA key pair, the key-pair related parameters are λ = LCM(p− 1, q − 1)
where p and q are the factors of the modulus and LCM(p − 1, q − 1) is the least common
multiple of p− 1 and q− 1, as well as p and q themselves if the Chinese Remainder Theorem
(CRT) is used to improve signing performance. (See Section 2.6.4 below.) When a PIN is
used as the only non-stored secret there is one parameter related to the non-stored secret, a
salt used to compute a randomized hash of the PIN.

In general terms, authentication proceeds as follows. The non-stored secrets and the
parameters in the protocredential are used to regenerate the key pair as described below in
Section 2.6. The device establishes a secure connection to the application back-end, which
it uses to send the device-record handle and the public key component of the key pair and
demonstrate knowledge of the private key. (By secure connection we mean a channel provid-
ing confidentiality, message integrity, and destination authentication, e.g. a TLS connection.
A secure connection has a source and a destination, but it carries bidirectional traffic. The
term “source” refers to the endpoint that initiates the connection—the “client” in a TLS
connection—and the term “destination” to the other endpoint—the “server” in a TLS con-
nection. In this case the source of the connection is the device, and the destination is the
application back-end.) The application back-end uses the device-record handle to locate the
device record, computes the hash of the public key, and verifies that the computed hash
agrees with the hash stored in the device record. It then uses the user-record handle in the
device record to locate the user record and obtain user data.

If the device record cannot be located or is disabled, or the hashes do not agree, or the user
record cannot be located or is disabled, then authentication fails, the counter of consecutive
failed attempts is incremented, and if the counter has reached its limit, the device record is
deleted or marked as disabled.

The public key and its hash must be kept secret to prevent an offline brute-force attack
by an adversary who tries to regenerate the key pair by guessing the non-stored secrets
or cryptographic parameters derived from the non-stored secrets after having captured the
device and read the protocredential. (Since the public key must be kept secret, the reader
may ask whether a symmetric secret could be used instead of a key pair. A symmetric secret
could indeed be used, but the resulting security posture would be substantially weaker, as
discussed below in Section 4.1.)

The device demonstrates knowledge of the private key by performing a private key op-
eration on a challenge. From now on, for simplicity, we shall only consider public key
cryptosystems that provide digital signatures, such as DSA, ECDSA or RSA; a private key

12



operation on a challenge is then a signature on that challenge. The challenge includes a
nonce sent by the application back-end and, if the secure connection is a TLS connection,
the TLS server certificate used by the application back-end in the TLS handshake. (If a
different kind of secure connection is used, some equivalent data presented by the back-end
for authentication during connection establishment is included in the challenge instead of
the TLS server certificate.)

The secure connection protects the confidentiality of the public key and prevents man-in-
the-middle attacks. If the secure connection is a TLS connection with server authentication,
a man-in-the-middle attack is prevented even if the attacker is able to use a spoofed TLS
server certificate signed by a compromised CA [40], or by a rogue or fictitious CA trusted
by the browser. The middleman can relay the nonce from the back-end to the device, and
the signature on the challenge from the device to the back-end; but the challenge signed by
the device includes the spoofed server certificate, while the back-end expects a signature on
a challenge that includes its own legitimate certificate.

An alternative to including the nonce and the certificate in the challenge, in the case
of a TLS connection, is to include the TLS master secret.7 However this would make it
impractical for the application back-end to verify the challenge if the TLS connection is
terminated at a reverse proxy.

2.2 Two-Factor Authentication with Protocredential and PIN

Figure 2 illustrates the particular case where there is one non-stored secret, which is a
passcode such as a PIN entered by the user.

A randomized hash of the passcode is computed using a salt, which is included in the
protocredential as a non-stored-secret related parameter and is itself a stored secret. The
randomized hash can be computed using a key derivation function (KDF) such as HKDF
[41], or the PRF algorithm of TLS [15, §5], or PBKDF2 [42], as discussed below at the end
of Section 4.2. The randomized hash is used to regenerate the key pair, playing the role of
the variable c of Sections 2.6.1, 2.6.2, 2.6.3 and 2.6.4 below.

2.3 Credential Revocation

The credential used by a device can be revoked by deleting or disabling the device record.

2.4 Preserving Access to the User’s Account

The device records pointing to a given user record are alternative means available to the
user for accessing her account; if one device is lost and/or the credential used by the device
is revoked, the user can continue accessing her account from another device. Additional
authentication means may also be available. For example, the application may generate a

7Including the master secret and the TLS server certificate in the challenge would be equivalent to TLS
client authentication with an uncertified public key as specified in [35], except for the fact that the public
key is sent in the clear in [35], while, in our approach, it is sent encrypted after the TLS connection has been
established. Providing confidentiality for client credentials has been considered several times by the TLS
working group (it was first proposed in August 2000 by the first author of this paper) but never adopted.

13



Proof of 
knowledge 
of private 

key

Randomized hash 
of passcode

Public 
key

Device record handle

Key-pair related parameters

Non-stored-secret related parameter

User's 
device

Application
back-endProtocredential

Rando-
mized 

hashing

Key pair 
regene-
ration

Device 
record 
handle

Salt

Private key

Signature 
compu-
tation

Pass-
code,
e.g.
PIN

c

Figure 2: Two-factor authentication with a PIN.

random high-entropy master password when the user account is created, which the user may
print and store in a safe place as a last-resort means of accessing the account. The user could
also have an ordinary username-and-password credential for accessing the account from a
desktop. Data supporting each of such additional authentication means (such as a password
hash and salt) may kept in a separate database record pointing to the user record, analogous
to a device record, or in the user record itself. Having multiple authentication means, it
is easy to recover from the loss of any one of them, simply by using an alternative one.
This obviates the need for ad-hoc recovery methods such as security questions posed by the
system or by a help desk, which impinge on the user’s privacy and are a weak link in the
security chain.

2.5 Device Registration

A device may be registered as a means of accessing a user account, either as the account is
created, or after the account has been created. During the registration process, the device
obtains non-stored secrets from the user, such as a PIN and/or a biometric sample, and
uses them to generate an uncertified key pair. Then the device sends the public key to the
application back-end over a secure connection and demonstrates knowledge of the private
key. Finally the device creates a protocredential containing a device record handle and
parameters produced by the key generation process, which will be later used to regenerate
the key pair at authentication time in conjunction with non-stored secrets provided anew
by the user. The device record handle may be created by the application back-end and sent
to the device, or it may be created by the device and sent to the back-end; in the latter
case, the possibility of duplicate record handles in the database can be ignored if the device
handle is a random high-entropy string.

14



If the account already exists when the device is registered, the user must authenticate
as the owner of the account. This is preferably done by supplying a short-lived device
registration code acquired after authenticating on a desktop or laptop, or on a different mobile
device; the code may be, for example, a random 16-decimal-digit code with a validity period
of one minute.8 It can also be done by authenticating with a long term non-cryptographic
credential such as a username-and-password credential or a master password.

2.6 Credential Regeneration

A credential used in protocredential-based authentication consists of a device-record handle
and an uncertified key pair. Credential regeneration amounts to regeneration of the key
pair using parameters stored in the protocredential, including at least one secret parameter,
and non-stored secrets supplied by the user. There is a generic credential regeneration
algorithm that is applicable to any public key cryptosystem, but is often inefficient. We
describe the generic algorithm first, then we describe specific efficient algorithms for the
three cryptosystems that are most commonly used for cryptographic user authentication:
DSA, ECDSA and RSA; DSA and ECDSA are NSA Suite B cryptosystems [43].

2.6.1 Generic Algorithm

A key pair of any public key cryptosystem is generated by an algorithm that uses random
inputs. Those random inputs are provided by a random number generator or an entropy
accumulator.9 If instead we use a pseudo-random number generator whose output is deter-
mined by a seed, then the same key pair can be regenerated later by providing the same
seed.

Therefore the following is a generic approach to credential regeneration from a protocre-
dential, applicable to any public key cryptosystem:

• Initial key pair generation:

1. Obtain the non-stored secrets from the user.

2. Generate one or more random high-entropy strings that will serve as non-stored-
secret related parameters, and will be stored secrets kept in the protocredential.

3. Derive a pseudo-random value c from the non-stored secrets and the non-stored-
secret related parameters, as described in Section 2.2 for the case where a passcode
such as a PIN is the only non-stored secret, in Section 3.3 for the case where a
biometric sample is the only non-stored secret, and in Section 3.4 for the case

8On a mobile device it is best to use a numeric code, since it is much easier to enter digits on a numeric
touchscreen keypad than mixed alphanumeric characters on small touchscreen keyboard.

9An entropy accumulator can be viewed as a deterministic random bit generator [44] that is reseeded
from any number of sources of entropy whenever new entropy becomes available from those sources. A
“blocking” entropy accumulator estimates the amount of entropy that it has received and the amount that it
has “spent”, and blocks the caller if no entropy is left, until more is obtained. A non-blocking accumulator
produces pseudorandom output as needed without keeping track of the entropy that has been received and
spent. Linux and other Unix-like systems provide a blocking entropy accumulator at /dev/random, and a
non-blocking one at /dev/urandom.

15



where there are two non-stored secrets, one being a biometric sample and the
other being a PIN.

4. Initialize a deterministic pseudo-random number generator with c as the seed.

5. Run the key pair generation algorithm for the cryptosystem using the determin-
istic pseudo-random number generator as the source of randomness.

6. Obtain or generate the device record handle as described above in Section 2.5.

7. Create a protocredential comprising the non-stored-secret related parameters, and
the device record handle.

• Subsequent key pair regeneration:

1. Obtain anew the non-stored secrets from the user. If a biometric sample is one
of the non-stored secrets, the authentication sample provided by the user for key
pair regeneration will not be identical to the reference sample provided by key
pair generation; but the value c derived in the next step will be the same if the
two samples are not too different, as explained in Section 3.2.

2. Obtain the non-stored-secret related parameters from the protocredential.

3. Derive the pseudo-random value c from the newly obtained non-stored secrets
and the non-stored-secret related parameters in the same manner as during initial
generation.

4. Initialize the same deterministic pseudo-random number generator used during
initial generation, with c as the seed.

5. Run the key pair generation algorithm for the cryptosystem using the determin-
istic pseudo-random number generator as the source of randomness.

This generic method is often inefficient because generating a key pair is computationally
costly; for example, generating an RSA key pair includes generating the prime factors p
and q. A big performance gain may often be achieved by retaining in the protocredential
some intermediate results produced during initial generation, so that they do not have to be
recomputed. In the case of RSA, for example, we retain λ = LCM(p − 1, q − 1), or p and
q if the Chinese Remainder Theorem (CRT) is to be used to improve signing performance.
In the case of DSA and ECDSA, the intermediate results that we retain are the domain
parameters [45], which are public parameters that may (or may not) be common to a group
of public keys. If the domain parameters are fixed, and their generation is not part of key pair
generation, then the specific regeneration methods described below for DSA and ECDSA are
essentially equivalent to the generic method (but simpler).

2.6.2 DSA

Using the notations of the Digital Signature Standard (DSS) [45, §4], the DSA cryptosystem
comprises the following parameters: a prime modulus p, a prime q that divides p − 1, a
generator g of the cyclic subgroup of order q of the group ((Z/pZ)∗,×), an integer x in
the range 1 ≤ x ≤ q − 1, and y = gx mod p; x is a private parameter; p, q, g and y

16



are public parameters, of which p, q and g are domain parameters. The private key is x.
Sometimes the public key is considered to include all the public parameters [46, §11.5.1]
(p, q, g, y), sometimes it is considered to be just y [45, §4], excluding the domain parameters.
For our purposes, the public key consists of those public parameters that the device sends
to the application back-end and are hashed into a field of the device record; it will thus be
(p, q, g, y) unless the mobile device and the application operate within a domain where the
same domain parameters p, q and g are used by all mobile devices and configured into the
application.

During initial key pair generation and construction of the protocredential, the domain
parameters are generated as specified in [45, Appendix A], unless they are fixed; one or
more non-stored secrets are obtained from the user; one or more non-stored-secret related
parameters are generated as random high-entropy strings; x and y are computed from the
non-stored secrets and the non-stored-secret related parameters; the device record handle is
obtained and generated as described in Section 2.5; and the protocredential is created, com-
prising the device-record handle, the domain parameters, and the non-stored-secret related
parameters.

During credential regeneration, non-stored secrets are obtained anew from the user, and x
and y are computed from the non-stored secrets and the non-stored-secret related parameters.
The resulting credential consists of the device record handle, the private key x, and the public
key, which is (p, q, g, y) or simply y if the domain parameters are configured in the application
back-end.

The following process is used to compute x and y during initial generation as well as
during regeneration:

1. N being the bitlength of q, derive a pseudo-random value c of bitlength N + 64 from
the non-stored secrets and the non-stored-secret related parameters as described in
Section 2.2 for the case where a passcode such as a PIN is the only non-stored secret,
in Section 3.3 for the case where a biometric sample is the only non-stored secret, and
in Section 3.4 for the case where there are two non-stored secrets, one being a biometric
sample and the other being a PIN. (We follow [45, §B.1.1] in making c be 64 bits longer
than q. The purpose of this is to minimize the bias in the distribution of x caused by
the mod operation in the following step. If c were roughly uniformly distributed over
the strings of length N , x would be substantially more likely to belong to [1, 2N − q]
than to [2N − q + 1, q − 1].)

2. Compute x = (c mod (q − 1)) + 1, so that 1 ≤ x ≤ q − 1.

3. Compute y = gx mod p.

2.6.3 ECDSA

Using the notations of the DSS [45, §6] and the Certicom white paper [47], the ECDSA
cryptosystem comprises the private key d, the public key Q, and the domain parameters
q, FR, a, b, σ, G, n and h, where q is the size of the field, FR is an indication of the
field representation, a and b are the coefficients used in the curve equation, σ is the domain
parameter seed, used for public key validation, G is the point of the curve used as the

17



generator of a cyclic group, n is the order of G, h is the cofactor, d is an integer in the
interval [1, n− 1], and Q = dG.

As in the case of DSA, the protocredential comprises the device-record handle, the domain
parameters unless they are configured into the application, and the non-stored-secret related
parameters. Credential generation and regeneration are as in the case of DSA, mutatis
mutandis. The following process is used to compute d and Q during initial generation as
well as during regeneration:

1. N being the bitlength of n, derive a pseudo-random value c of bitlength N + 64 from
the non-stored secrets and the non-stored-secret related parameters as described in
sections 2.2, 3.3 and 3.4.

2. Compute d = (c mod (n− 1)) + 1, so that 1 ≤ d ≤ n− 1.

3. Compute Q = dG. (The multiplicatively-written operation dG involving the integer d
and the point G is the one induced by the additively written operation in the group of
points of the elliptic curve.)

2.6.4 RSA

With the notations used in the DSS [45, §5]10 and in sections 8.2 and 11.3 of [46], the
parameters of the RSA cryptosystem include the prime factors p and q, the modulus n = pq,
the decryption/signature exponent d, and the encryption/verification exponent e; p, q and
d are private parameters while n and e are public parameters. The public key is (n, e). The
private key is often said to be d; but signing requires (n, d), or (p, q, d) if the CRT is used,
so the private key may also be said to be (n, d) or (p, q, d) depending on the circumstances.
We shall also use the additional private parameter λ = LCM(p − 1, q − 1), and we let l be
the bitlength of n.

Key-pair regeneration is more complicated for RSA than for DSA or ECDSA for two
reasons:

1. d must be relatively prime with λ, so that the encryption exponent e can be computed
as the inverse of d modulo λ, e = d−1 (mod λ).

2. d should not be too small, to avoid attacks against small decryption exponents; the
DSS [45, §B.3.1] requires d to have at least l/2 bits.11

These requirements can be met by using the following process for initial key-pair generation,
after obtaining one or more non-stored secrets from the user and generating one or more
non-stored-secret related parameters:

1. Generate p and q as described in [45, §B3].

10The DSS specifies the use of RSA as a signature scheme, in addition to specifying DSA and ECDSA.
11A small encryption exponent attack allows the adversary to compute the private key from the public key.

Since our approach calls for keeping the public key secret, it provides some protection against such attacks.
But allowing vulnerable small decryption exponents is tantamount to using a symmetric secret rather than
a key pair, which results in a weaker security posture as explained in Section 4.1.

18



2. Compute λ = LCM(p− 1, q − 1).

3. Derive a pseudo-random value c of bitlength l+64 from the non-stored secrets and the
non-stored-secret related parameters as described in sections 2.2, 3.3 and 3.4.

4. Compute c′ = (c mod (λ− 1)) + 1, so that 1 ≤ c′ ≤ λ− 1.

5. Compute c′′ = GCD(c′, λ).

6. Compute the decryption exponent d as d = c′/c′′.

7. If the bitlength of d is not greater than l/2, start over at step 1.

8. Compute the encryption exponent e as e = d−1 (mod λ).

The probability of having to start over at step 7 depends on how c, p and q are generated,
but we argue in Appendix A.1 that it is likely to be negligible.

The protocredential includes the device-record handle, the key-pair related parameter λ,
and the non-stored-secret related parameters; it also includes p and q if the CRT is used to
improve signing performance. At authentication time, after obtaining anew the non-stored
secrets from the user, the key-pair is regenerated by running again steps 3–8 of the key-pair
generation process, except that authentication fails at step 7 if the bitlength of d is not
greater than l/2.

The key-pair regeneration process includes two expensive operations: a run of the eu-
clidean algorithm to compute c′′, and a run of the extended euclidean algorithm to compute
e. It would be tempting to include c′′ in the protocredential to avoid its computation dur-
ing key-pair regeneration. But since c′′ is derived from the non-stored secrets, that would
facilitate an offline attack by an adversary who has captured the device and obtained the
protocredential; for example, if a PIN is the only non-stored secret, it would help the attacker
guess that PIN.

A good way of eliminating the run of the euclidean algorithm to compute c′′ is to check
during initial key-pair generation that c′ and λ have no large prime factor in common, e.g. no
common prime factor greater than 100, starting over at step 1 if the condition is not met; the
list of small factors of λ can be kept in the protocredential, and during key-pair regeneration
we can then compute d by repeatedly dividing c′ by elements of the list until it is no longer
divisible by any of them. The probability of having to start over during initial generation
depends on the probability distributions of c′ and λ. However, it should be similar to the
probability of two independently generated random numbers having a common prime factor
greater than 100. We show in Appendix A.3 that this probability is less than 0.2%. This
means that it is very unlikely that there will be multiple restarts. It also means that, at
authentication time, an adversary who has obtained the protocredential and is guessing sets
of non-stored secrets will find that only 0.2% of the guesses fail to produce a well-formed key
pair (actually, fail to produce a key pair at all, because e cannot be computed from d and
λ). The remaining 99.8% of the guesses will produce a well-formed key pair that can only
be tested online and will be subject to a small limit on the number of online guesses.

19



3 Using Biometrics for Protocredential-Based Authen-

tication

3.1 Security, Privacy and Usability Concerns with Biometrics

Biometric authentication allows an individual to demonstrate her identity by exhibiting a
physical feature, such as the likeness of her face, the pattern of ridges on the skin of a finger,
or the texture and/or pigmentation of on of her irises. This can be a very strong form of
authentication when there is assurance of liveness, i.e. assurance that the biometric sample
submitted for authentication belongs to the individual seeking authentication. Assurance of
liveness is relatively easy to obtain in person-to-person authentication, e.g. when a shopper
shows a photo ID while making an in-store credit card purchase, or when a US government
employee submits to a fingerprint scan in the presence of a guard to gain entry to a secure
building. But assurance of liveness is difficult to achieve for unattended person-to-machine
authentication, and even more difficult to achieve for remote authentication, when a biomet-
ric sample is acquired by a device in possession of the user, who may be the adversary.

When there is no assurance of liveness, security must rely on the relative secrecy of
biometric features, which depends on the circumstances. It would not be wise to rely on a
fingerprint as an authentication factor for authentication to an application back-end from a
smart phone that may have been captured by an adversary, since the phone will be covered
with fingerprints of the legitimate user; but it may be reasonable to use an iris scan.

Biometric authentication also raises privacy concerns. If no precautions are taken, the
use of biometric features for authentication to an application could be linked not only to
other online uses, but also to the offline everyday activities of the user. Unlinkability is
therefore a stronger requirement for biometric than non-biometric authentication.

Confidentiality of the user’s biometric features is also a strong requirement, for three
reasons. First, the linking of the user’s biometric features to the user’s identity could link
the user’s identity to both the user’s online and offline activities. Second, it would allow an
adversary to impersonate the user vis-a-vis an application that relied exclusively on biometric
features for authentication. Third, since raw biometric features are not revocable, the loss
of the a biometric feature as a secure authentication factor would be irreversible.

Much work has been done to address these privacy and security concerns using techniques
that combine biometrics, error correction and cryptography [36, 48, 49, 37, 50, 38, 51]. An
overview can be found in [52] and a survey in [53]. A common starting point for all these
techniques is the observation that, although raw biometric data is linkable and not revocable,
a randomized derivative of biometric data may be unlinkable and revocable.

Privacy risks remain, however. For example, if malware is present in a mobile device while
the device is being used by the legitimate user, such malware may be able to surreptitiously
acquire raw biometric data from the legitimate user.

Yet another concern with biometrics is the usability drawbacks of non-negligible false
rejection rates. Soldiers, for example, may not want to use biometric authentication on a
mobile device during combat operations, when false rejection may have dire consequences.

All these concerns mean that biometric authentication should be used sparingly. But
they do not negate the fact that biometrics add a unique dimension to security by asking the

20



user to demonstrate, as is often said, “something that the user is” in addition to “something
that the user knows” and “something that the user has”. Biometrics have a role to play as
a second or third authentication factor when extra security is required.

We propose to incorporate biometrics into protocredential-based authentication authen-
tication using a popular approach that has been codified in the ISO/IEC 24745 standard
[54, Figure 5]. The approach consists of deriving a key, sometimes called a biometric key,
from a genuine biometric sample and a string that plays the role of auxiliary data. The
auxiliary data is itself derived at registration time (a.k.a. enrollment time) from a random
string and a reference sample that is discarded. Biometric samples that are similar enough
to the reference sample consistently produce the same biometric key. (The biometric key
may just be the random string, in which case the biometric key is said to be “locked” by
the reference sample, and “unlocked” by the authentication sample.) The auxiliary data is
not a traditional biometric template containing a description of biometric features derived
from the reference sample. It is supposed to be infeasible to derive any information about
biometric features from the auxiliary data.

3.2 Consistently Producing the Biometric Key

One method of consistently producing the same biometric key from genuine but varying bio-
metric samples is to view the samples as noisy data [55] and use error correction techniques.
For example, an error correction codeword C can be created by adding redundancy to the
random string, and the auxiliary data can be computed by bitwise x-oring the codeword
with a suitably processed reference sample R:

A = C ⊕R.

When an authentication sample S is obtained, it is x-ored with the auxiliary data to produce

(C ⊕R)⊕ S = C ⊕ (R⊕ S)

Since R and S are similar, D = R ⊕ S only has a few 1 bits, and its effect when x-ored
with C is to flip a few bits of C, the same effect that could be produced by transmitting
C over a noisy channel. Error correction can therefore be applied to recover the random
codeword C from C ⊕ D. The random string can in turn be recovered from the codeword
and serve as the biometric key. This method and closely related ones are used, among others,
by Juels et al. [36], Dodis et al. [37], and Hao et al. [38]. We find the work of Hao et al.
particularly promising for authentication on mobile devices such as smart phones and tablets
because it uses an iris scan, which could be taken with a device camera and may be deemed
relatively secret, and because it claims a false rejection rate (FRR) of only 0.47% with a
false acceptance rate of 0%.

3.3 Two-Factor Authentication with Biometrics

Any method of producing a biometric key from a genuine biometric sample and auxiliary
data can be combined with our credential regeneration technique. Figure 3 illustrates how
the combination can achieve two-factor authentication, one factor being possession of the

21



Proof of 
knowledge 
of private 

key

Randomized
hash of
biometric key

Public 
key

Device record handle

Key-pair related parameters

Non-stored-secret related parameters

User's 
device

Application
back-endProtocredential

Biometric 
key 

generation

Rando-
mized 

hashing

Key pair 
regene-
ration

Device 
record 
handle

Salt

Bio-
metric 
key 

Private key

Signature 
compu-
tation

Iris
image

Auxiliary 
data

c

Figure 3: Two-factor authentication with an iris scan.

device that contains the protocredential, the other factor being the genuine biometric sample,
e.g. an iris image.

There is one non-stored secret, viz. the iris sample. The auxiliary data is included in the
protocredential as a non-stored-secret related parameter, and is itself a stored secret. The
iris sample is combined with the auxiliary data to produce the biometric key. A randomized
hash of the biometric key is computed using a salt, which is included in the protocredential
as a second non-stored-secret related parameter and is itself a stored secret. The randomized
hash is used to regenerate the key pair, playing the role of the variable c of Sections 2.6.1,
2.6.2, 2.6.3 and 2.6.4.

The purpose of the randomized hashing is to extend the bitlength of the biometric key
and make its distribution roughly uniform before using the resulting hash to regenerate the
key pair. Suppose for example that the biometric key is produced by the method of Hao et
al. [38], and the cryptosystem being used is RSA with a 2048 bit modulus. The bitlength of
the biometric key is 140 bits, and the randomized hashing extends it to 2048+64 = 2112 bits.

3.4 Three-Factor Authentication

Figure 4 illustrates how a method of producing a biometric key from a genuine biometric
sample and auxiliary data can be combined with our credential regeneration technique to
achieve three-factor authentication, one factor being possession of the device that contains
the protocredential, a second factor being an iris image as above, and the third factor being
a PIN. At registration (a.k.a. enrollment) time, the PIN is used to encrypt the auxiliary
data. A simple way of doing this is to x-or the auxiliary data with a randomized hash
of the PIN of same bitlength as the auxiliary data, computed using a salt (Salt 1 in the
figure), which is included in the protocredential as a non-stored-secret related parameter.

22



Proof of 
knowledge 
of private 

key

Public 
key

Device record handle

Key-pair related parameters

Non-stored-secret related parameters

User's 
device

Application
back-endProtocredential

PIN

Encrypted 
auxiliary 

data
Salt 1

Biometric 
key 

generation

Rando-
mized 

hashing

Rando-
mized 

hashing
Xor

Key pair 
regene-
ration

Device 
record 
handle

Salt 2

Biometric 
key 

Private
key

Signature 
compu-
tation

Auxiliary data
Iris

image

c

Figure 4: Three-factor authentication with an iris scan and a PIN.

At authentication time, the user supplies the PIN and the iris image. The randomized
hash of the PIN with the salt is computed and x-ored with the encrypted auxiliary data to
decrypt it. The decrypted auxiliary data is then combined with the iris image to produce
the biometric key. A randomized hash of the biometric key is computed using a second salt
(Salt 2 in the figure), which is also included in the protocredential as a non-stored-secret
related parameter and is itself a stored secret, and the randomized hash is used to regenerate
the key pair, playing the role of the variable c of Sections 2.6.1, 2.6.2, 2.6.3 and 2.6.4.

4 Security Analysis of Two-Party Protocredential-Based

Authentication

In the following security analysis we assume that no malware is running in the device while
the device is in the legitimate user’s possession; otherwise no security can be expected, no
matter what authentication technique is used. We do consider cases in which the adversary
captures the device and installs malware on the device to read the protocredential. Our
authentication methods provide protection in those cases, as long as the legitimate user does
not use the device after it has been captured without first doing a factory reset.

We assume that an adversary who captures the device is able to read the protocredential
contained in the persistent storage of the device (the flash memory of a smart phone, tablet,
or Mac Air laptop, or the disk of a traditional laptop or desktop). We assume that the
implementation will regenerate the key pair from the secrets stored in the protocredential

23



and the non-stored secrets supplied by the user immediately before use, and will erase it
from virtual memory immediately after use, so that it is not present in the device when the
device is captured by the adversary.

A discussion of side-channel attacks, such as observing the electromagnetic emissions of
the device, and of countermeasures against such attacks, is outside of the scope of this paper.

4.1 Secrets and Their Purpose

Protocredential-based authentication relies on three secrets or sets of secrets:

1. One or more non-stored secrets such as a PIN or a biometric sample or both, supplied
by the user.12

2. One or more stored secrets included in the protocredential such as salts used to generate
randomized hashes, biometric auxiliary data, or the prime factors of an RSA modulus.

3. The hash of the public key stored in the device record.

The stored and the non-stored secrets are both needed to regenerate the uncertified
key pair credential. The need to know the stored secrets included in the protocredential
prevents an offline guessing attack against the non-stored secrets or against the cryptographic
parameters derived from the non-stored secrets by an adversary who breaches the database
and obtains the hash of the public key:

• In two-factor authentication with a PIN, without the need to know the salt it would
be easy to crack a 4-digit or 6-digit PIN by brute force.

• In multifactor authentication with a biometric sample, the need to know the auxiliary
data and the need to know the salt used to compute a randomized hash of the biometric
key are two separate barriers that prevent a brute force guessing attack against the
biometric key. Without any of those barriers, an adversary with great computing power
might be able to crack the biometric key, which has much less entropy than a biometric
sample; in the system of Hao et al. [38]), for example, a biometric sample has 147 bits
of entropy, but the biometric key may have as little as 44 bits of entropy if the auxiliary
data is known.

Conversely, the purpose of keeping secret the hash of the public key stored in the device
record is to prevent an offline attack against the credential by an adversary who captures
the device and reads the protocredential stored in the device.

Of course if the hash of the public key is to be a secret, the public key must be kept
secret as well, which seems paradoxical. If the public key has to be secret, why not use a
symmetric secret rather than a key pair for authentication? A symmetric secret could be
used, but the security posture would be weaker from a viewpoint of defense in depth:

12As we said above in footnote 4, the non-stored secrets could be supplied by a PUF, but we are not
considering autonomous devices in this paper.

24



• The device could present the symmetric secret to the application back-end as a bearer
token13 and the back-end would compute its hash and compare it with a hash stored
in the device record. But then an attacker who defeated the confidentiality provided
by the secure connection and obtained the secret could impersonate the user.

• Alternatively, the symmetric secret could be stored in the clear in the device record,
and the device could demonstrate knowledge of the secret by using it as a symmetric
signature key. But then the secret would have to be stored in the database, and an
attacker who breached the database and obtained the symmetric secrets stored in the
device records of all the users could impersonate any user.

It could be objected to our approach that the party that controls the application back-
end knows the public key, and could thus mount an offline attack to obtain the private
key. However, that would require capturing the device and extracting the protocredential.
Furthermore, the private key could only be used to impersonate the user vis-a-vis the appli-
cation itself, or vis-a-vis other applications that share the same database. The concern in
such case is loss of non-repudiation; but we argue that, if non-repudiation of a transaction
is needed, it should be achieved by a signed description of the transaction itself, rather than
by non-repudiable authentication of the connection over which the transaction is conducted.

Notice that only the hash of the public key is stored in the device record, not the public
key itself. One reason for this, of course, is that the hash is shorter. There is no security
reason for not storing the public key when the cryptosystem used for authentication is DSA
or ECDSA; however, there is a security reason when the cryptosystem is RSA. If the RSA
public key were stored in the database, an adversary who breached database security and
furthermore captured a device and read its protocredential would be able to compute the
private key from the public key and the private parameter λ without having to mount an
offline attack.

4.2 Security Posture of Authentication with a Key Pair Regener-
ated from a Protocredential and a Passcode

Table 1 summarizes the security posture of two-factor protocredential-based authentication
using a key pair regenerated from a protocredential and a passcode such as a PIN, from a
point of view of defense in depth. Each cell in the table shows to what extent the authentica-
tion method remains secure, in the sense of resisting user impersonation, when an adversary
is able to achieve a variety of security breaches, or combinations of breaches. Specifically,
columns 2, 3 and 4 and row B refer to different breaches, and each cell in the table refers to
the case where the breach referenced by its column, if any takes place, but not the breaches
referenced by other columns; and the breach referenced by its row, if any, takes place after
the breach referenced by the column, if any, when the order matters.

• Cells in column 2 refer to cases where the adversary has breached the confidentiality
of the database and read the hash of the public key stored in the device record.

13A bearer token is a secret that authenticates a party that presents it without requiring any further
evidence. A password is a bearer token. A session cookie is a bearer token. A certificate is not a bearer
token, since it only authenticates a party that is able to prove knowledge of the associated private key.

25



1. Adversary
cannot breach
database or

network
security

2. Adversary
breaches
database

confidentiality

3. Adversary
breaches

connection
confidentiality

4. Adversary
spoofs

back-end
certificate

A. Adversary
cannot read

device storage

Secure Secure Secure Secure

B. Adversary
captures

device, reads
its storage

Secure Security
depends on
passcode
entropy

Security
depends on
passcode
entropy

Security
depends on
passcode
entropy

Table 1: Security posture of protocredential plus passcode.

• Cells in column 3 refer to cases where the adversary has breached the confidentiality
of the secure connection from the device to the application back-end and passively
observed connection traffic, including the public key. Such a breach could happen, for
example, if the back-end is hosted in an infrastructure-as-a-service cloud, the secure
connection is a TLS connection that is terminated at a reverse proxy, the adversary is
a cloud tenant, and a cloud security breach allows the adversary to read the clear-text
traffic that the reverse proxy forwards to one or more web servers of the application
back-end.

• Cells in column 4 refer to cases where the secure connection is a TLS connection and
the adversary is able to spoof the TLS server certificate used by the application back-
end. A spoofed certificate could be obtained from a compromised CA, or from a rogue
or fictitious CA whose root certificate has been installed in a root certificate store
within the device, e.g. as a result of a prior social engineering attack. We also assume
that the adversary is able to divert the underlying TCP connection in order to conduct
a TLS handshake with the spoofed certificate.

• Cells in row B refer to cases where the adversary has been able to capture the user’s
device and read its storage, including the protocredential.

The table shows how authentication remains secure, even with low passcode entropy, if
the adversary achieves any single one of the four security breaches being considered.

26



An adversary who captures the device and reads its storage without having previously
breached database or network security (case B1) cannot authenticate without knowledge of
the passcode. Furthermore, as pointed out in Section 2.1, the adversary cannot mount an
offline guessing attack against the passcode, because most or all passcodes yield well-formed
credentials when combined with the protocredential; the credentials can only be tested online
against the application back-end, which limits the number of guesses.

An adversary who breaches database or network security in cases A2–A4 can obtain the
hash of the public key (in case A2) or the public key itself (in cases A3–A4) but cannot use
that information to mount an offline guessing attack against the passcode without knowing
the stored secrets contained in the protocredential. Of course knowledge of the public key
by itself does not allow the adversary to authenticate without knowledge of the private
key, this being an essential benefit of public key cryptography. Furthermore, case A4 is
protected against a man-in-the-middle attack because the TLS certificate of the application
back-end is included in the challenge signed by the device, as explained in Section 2.1. By
contrast authentication with username and password or with an OTP coupled with a PIN
or password, is vulnerable to a man-in-the-middle attack in that case.

If the adversary captures the device and obtains the protocredential after breaching
database or network security (cases B2–B4), then she can mount an offline guessing attack
against the passcode. Each passcode guess can be tested by regenerating the credential
from the protocredential and the guess, and checking whether the public key component of
the credential agrees with the hash of the public key found in the database (in case B2)
or the public key obtained from the network (in cases B3–B4). Authentication security
(i.e. prevention of user impersonation) can still be achieved if the passcode has high enough
entropy to withstand the offline guessing attack.

If authentication security in cases B2–B4 is a requirement, then the randomized hash of
the passcode should be computed using a password-based key derivation function such as
PBKDF2 [42] with sufficient iterations, in order to help withstand an offline attack. However,
if the probability that an adversary will be able to capture the device after breaching database
or network security is deemed negligible, a key derivation function that is not purposefully
slow, such as HKDF [41], or the PRF algorithm of TLS [15, §5], should be used instead
of PBKDF2 to reduce the amount of computation required. Reduced computation means
reduced latency and reduced power consumption; and in mobile devices, reduced power
consumption means increased battery life.

If the passcode has sufficient entropy, a man-in-the-middle attack is prevented in case B4
as in case A4.

4.2.1 Countermeasures against Back-End Spoofing

Column 4 refers to cases where the connection to the back-end is a TLS connection and the
adversary is able to divert the underlying TCP connection to itself (which is relatively easy
to do using for example a rogue WiFi access point [56]) and use a spoofed TLS certificate to
conduct the TLS handshake successfully. As explained above in Section 2.1, a man-in-the-
middle attack against the user authentication process is prevented in such cases by including
the server certificate in the challenge signed by the device, which keeps the back-end from
accepting the user credential if forwarded by a middleman. However, the adversary may still

27



be able to spoof the back-end using the spoofed TLS certificate. Even though that does not
allow user impersonation, spoofing the back-end can do much damage; for example, the user
can be lured into entering confidential data into the spoofed back-end, thus delivering it to
the attacker.

Back-end spoofing can be prevented altogether by using a secondary, non-cryptographic,
means of server authentication such as showing a secret image and/or phrase that the user is
trained to expect from the legitimate application back-end. This secondary authentication
should take place only after the user’s device has successfully authenticated by signing a
challenge that includes the TLS server certificate of the back-end, ruling out a man-in-the-
middle attack.

Secondary server authentication is used today by Bank of America using SiteKey [57].
The secondary authentication takes place after the user’s device has authenticated as a
registered device, presumably by presenting one or more bearer tokens stored in the browser
as cookies, or stored in the persistent storage provided by HTML5 or by a Flash plug-in
or a Silverlight plug-in. However, because device authentication relies on bearer tokens,
secondary server authentication does not help prevent man-in-the-middle attacks [58].

4.3 Comparison with Other Security Postures

We now compare the protocredential-plus-passcode authentication method to five authenti-
cation methods that are similar to our method and/or popular. A summary can be found
below in Section 4.3.6.

4.3.1 Encrypted Private Key

Table 2 shows the security posture of two-factor authentication using a key pair whose private
key component is encoded as specified by PKCS #8 [59] and related or similar formats, and
encrypted under a symmetric data-encryption key derived from a passcode. This kind of
two-factor authentication is often used, for example, to manage cloud-hosted virtual servers
over SSH.

The security posture of this approach is weaker than that of our passcode-plus-protocred-
ential method in case B1, because an adversary who reads the device storage and obtains
the encrypted private key can mount an offline attack against the passcode, testing each
passcode guess by decrypting the private key and checking if the result of the decryption
is properly formatted.14 The user must therefore choose a high-entropy passcode (a short

14The PKCS #8 structure is encoded in ASN.1 notation, typically using the Distinguished Encoded Rules
(DER) as recommended by [59], and may contain other cryptographic parameters in addition to the private
key. It typically includes the public key or a certificate containing the public key. To test each passcode the
adversary derives a data-encryption key from the passcode, uses the derived key to decrypt the encrypted
structure, uses an ASN.1 parser to decode the structure, verifies that the decoded structure is as specified
by PKCS #8 and, if the decoded structure contains a public key, verifies that the private key matches the
public key. For a passcode other than the correct one, the test will fail with very high probability even if
there is no public key in the structure. (It is likely to fail at the very first step, ASN.1 parsing.) A private
key encrypted by itself without first encoding it in ASN.1 or in any other format that would add structure
(and hence redundancy) to the plaintext, with additional cryptographic parameters left in the clear, could
be considered a protocredential and used with our authentication method. The public key would have to be

28



1. Adversary
cannot breach
database or

network
security

2. Adversary
breaches
database

confidentiality

3. Adversary
breaches

connection
confidentiality

4. Adversary
spoofs

back-end
certificate

A. Adversary
cannot read

device storage

Secure Secure Secure Secure

B. Adversary
captures

device, reads
its storage

Security
depends on
passcode
entropy

Security
depends on
passcode
entropy

Security
depends on
passcode
entropy

Security
depends on
passcode
entropy

Table 2: Security posture of private key encrypted under passcode.

PIN is out of the question). This makes this method impractical on mobile phones, because
entering a high-entropy passcode on the small touchscreen keyboard of a mobile phone is
cumbersome. The security posture is the same as that of our passcode-plus-protocredential
method in the other cases.15

omitted and treated as a shared secret between the device and the application back-end. After decrypting the
private key, the public key could be computed from the private key and additional cryptographic parameters,
and sent to the back-end along with the proof of knowledge of the private key and the device record handle.
Alternatively, in cases where the public key could not be computed (e.g. in the RSA case if the only additional
parameter were the modulus) the public key would not be sent the back-end. The back-end would then have
to store the public key instead of a hash of the public key in the device record, and retrieve the public key
from the database using the device record handle in order to verify the proof of knowledge.

15In particular, this method is resistant to a man-in-the-middle attack in cases A4 and B4 if knowledge
of the private key is demonstrated by using the private key to sign a challenge that includes a TLS server
certificate. SSH does not use TLS, of course, but when the client authenticates with a key pair it signs a
hash that includes the server’s Diffie-Hellman ephemeral public key and the server’s long term RSA public
key, which similarly prevents a man-in-the-middle attack. The security considerations section of the SSH
specification [60, §9.3.4] misses this point. It warns that that the protocol is vulnerable to a man-in-the-
middle attack in the usual case where the server public key is not validated, failing to make the distinction
between client authentication with a bearer token, which allows the man-in-the-middle attack, and client
authentication with a key pair, which does not.

29



1. Adversary
cannot breach
database or

network
security

2. Adversary
breaches
database

confidentiality

3. Adversary
breaches

connection
confidentiality

4. Adversary
spoofs

back-end
certificate

A. Adversary
cannot read

device storage

Secure Secure Secure Secure

B. Adversary
captures

device, reads
its storage

Somewhat
secure

Security
depends on
passcode
entropy

Not secure Not secure

Table 3: Security posture of key pair plus independent passcode.

4.3.2 Passcode Independent of Key Pair

Table 3 shows the security posture of two-factor authentication using a key pair, plus an
independent passcode that is verified separately by the application back-end. The key pair
authenticates the device and the passcode authenticates the user.

In the cases where the adversary does not capture the device (A1–A4) the method is
secure in the sense of not allowing user impersonation. However, although not apparent in
the table, the security posture in cases A2 and A3 is weaker than that of the methods of
Sections 4.2 and 4.3.1. In case A2, a database security breach allows the adversary to obtain
the salted hashes of the passcode associated salts for all users. The adversary can then
mount an offline attack against the passcodes, which many will not withstand. In case A3, a
breach of network confidentiality allows the adversary to obtain the passcode. In either case,
the adversary may be able to exploit the passcode if the user has used it for other purposes.
Case A4 is further discussed below together with case B4.

If the adversary captures the device and reads its storage, thus obtaining the private key
in the clear, but has not previously breached the security of the database or the network
(case B1), she needs the passcode to authenticate, and she cannot mount an offline guessing
attack against the passcode. But an independent passcode is vulnerable to phishing attacks
and attacks that exploit passcode reuse, so the adversary may have obtained the passcode
before capturing the device; we thus rate the authentication method in this case as only
“somewhat secure”.

If, before obtaining the private key, the adversary has breached database confidentiality

30



(case B2) and obtained the salted hash of the passcode and associated salt, she can mount
an offline guessing attack against the passcode; if that attack succeeds, she can authenticate
with the private key and the passcode.

If, before obtaining the private key, the adversary has has breached connection confiden-
tiality (case B3) and obtained the passcode, she can authenticate.

If the secure connection is a TLS connection and the adversary is able to spoof the
TLS server certificate of the application back-end and divert the underlying TCP connection
(cases A4–B4), the adversary may try to spoof the back-end or mount a man-in-the-middle
attack. In case A4 the latter can be prevented by including the TLS server certificate in the
challenge that the device signs with the private key, and the former by further using secondary
non-cryptographic server authentication to the user as explained above; to avoid passcode
capture, the passcode should be sent only after successful secondary server authentication.
In case B4, where the adversary reads the private key from the device storage, a man-in-the-
middle attack cannot be prevented.

4.3.3 Smart Card with Key Pair Programmatically Enabled by a PIN

Yet another way of implementing two-factor authentication with a key pair and a passcode,
typically a PIN, is to let the device verify the passcode and programmatically allow the use
of the key pair if the passcode is correct. This approach is used in devices that provide
some degree of tamper resistance, such as PIV cards [19]. The device stores the passcode
or, preferably, a cryptographic hash of the passcode, for the purpose of verification.

The security posture is as shown in Table 4. The authentication method is secure if the
adversary does not capture the device or is not able to break its tamper resistance (cases
A1–A4).

On the other hand, if the adversary captures the device and is able to read its storage
(cases B1–B4), she can obtain the private key in the clear and use it to authenticate.16

Cases B1–B4 are made less likely to occur by making the device or some of its storage
tamper resistant. Table 5 illustrates the security posture when the tamper resistance is
assumed to be strong enough to be unbreakable by the attacker.

The table does not consider the case where the adversary captures the device but cannot
break the tamper resistance. Security is achieved in that case because the program that
checks if the passcode is correct can limit the number of guesses.

4.3.4 OTP

There are many OTP-based authentication methods. The OTP may be generated by a
fob such as a SecurID Token [9], or by an application running on the user’s device using
for example the HOTP algorithm [10], which works by incrementing a counter at regular
intervals and computing the HMAC signature of the counter with the secret seed. The
OTP may also be generated by asking the user to remember a set of image categories and

16She does not need the passcode to authenticate to the application back-end, but she may want to obtain
the passcode for use in other attacks, in case the user uses the same passcode for multiple purposes; to that
end, the attacker is able to mount an offline guessing attack against the passcode using the hash of the
passcode stored in the device.

31



1. Adversary
cannot breach
database or

network
security

2. Adversary
breaches
database

confidentiality

3. Adversary
breaches

connection
confidentiality

4. Adversary
spoofs

back-end
certificate

A. Adversary
cannot read

device storage

Secure Secure Secure Secure

B. Adversary
captures

device, reads
its storage

Not secure Not secure Not secure Not secure

Table 4: Security posture of smart card with key pair gated by PIN.

presenting the user with a time-varying grid of images, from which the user selects those
that belong to the memorized categories; the one-time password is the concatenation of the
characters that label those images in the grid [11]. In other variations, the OTP is sent to
the user by text or voice messaging [61]. An OTP is often used in conjunction with a long
term passcode, which may be a short PIN or a higher entropy password. Table 6 shows the
security posture of an OTP used in conjunction with a passcode, in the most common and
arguably most secure case where the OTP is generated by a fob. In that case the user’s
computing device does not store any data that is used in the authentication process, so the
second row of the table is concerned with cases where the adversary captures the fob rather
than the user’s computing device.

In case A2, a database breach may allow the adversary to obtain the secret seeds used to
generate the OTPs of all the users, as well as the salts and salted hashes of their passcodes.
The adversary will then be able to impersonate users whose passcodes do not have high
enough entropy. At least one such breach has actually occurred [12, 13, 14].

In case A3, an adversary who is able to breach connection confidentiality is able to see
both the OTPs and the passcodes. However, if the same OTP is submitted twice during the
validity period, the application back-end may reject the second submission. In that case an
adversary who passively sniffs the connection will not be able to impersonate the user, unless
she is able to block the connection before the OTP and the passcode reach their destination,
or she is able to submit the sniffed OTP and password through a faster channel so that they
reach the application back-end before the OTP and passcode sent by the user. So OTP plus

32



1. Adversary
cannot breach
database or

network
security

2. Adversary
breaches
database

confidentiality

3. Adversary
breaches

connection
confidentiality

4. Adversary
spoofs

back-end
certificate

A. Adversary
cannot read

device storage

Secure Secure Secure Secure

B. Adversary
captures

device, reads
its storage

Case prevented
by tamper
resistance

Case prevented
by tamper
resistance

Case prevented
by tamper
resistance

Case prevented
by tamper
resistance

Table 5: Security posture of smart card with key pair gated by PIN and strong-enough
tamper resistance.

33



1. Adversary
cannot breach
database or

network
security

2. Adversary
breaches
database

confidentiality

3. Adversary
breaches

connection
confidentiality

4. Adversary
spoofs

back-end
certificate

A. Adversary
has no access

to fob

Secure Security
depends on
passcode
entropy

Usually secure Not secure

B. Adversary
captures fob

Somewhat
secure

Security
depends on
passcode
entropy

Not secure Not secure

Table 6: Security posture of OTP plus passcode

34



passcode is usually secure in case A3.
In case A4, an adversary who spoofs the back-end certificate and diverts the underlying

TCP connection is able to mount a man-in-the middle attack.
If the adversary captures the fob but is not able to breach database or network security

(case B1), she needs the passcode to authenticate. But since the passcode is sent to the
authentication back-end, it is vulnerable to phishing attacks, passcode reuse, etc.; so we rate
the authentication method in this case as only “somewhat secure”.

Case B2 is as A2, because capturing the fob does not help the adversary with guessing
the passcode.

If, before capturing the fob, the adversary has breached connection confidentiality (case
B3) and obtained the passcode, she can authenticate.

In case B4 the adversary can mount a man-in-the-middle attack as in case A4. Further-
more, after capturing the passcode as a result of the man-in-the-middle attack, she can use
it later in conjunction with the captured fob to authenticate, without having to mount a
man-in-the-middle attack again.

4.3.5 Ordinary Password

The security posture of authentication by username and password cannot be summarized in
a table similar to the above.

Capturing the device does not matter, unless the password is stored on the device, e.g.
by a browser.

Breach of database confidentiality is devastating because it exposes the passwords of
all the users of the application to offline attack. If passwords are hashed and salted, the
adversary must mount a separate offline attack for each password; but many if not most
of the passwords will not be strong enough to withstand the attack. By contrast, with
our protocredential-plus-passcode authentication method of Section 4.2, after breaching the
database the adversary can only mount offline attacks after capturing user devices and
reading their protocredentials.

Breach of connection confidentiality allows the adversary to capture the password and
impersonate the user. By contrast, in protocredential-plus-passcode authentication, the
passcode is not sent to the authentication back-end, and breach of connection confidentiality
can only reveal the public key, which only matters if the adversary later captures the device
and reads the protocredential.

If the device accesses the application over a TLS connection and the adversary is able to
spoof the TLS server certificate and divert the underlying TCP connection she can mount
a man-in-the-middle attack. Furthermore, after capturing the password as a result of the
man-in-the-middle attack, she can use it later to authenticate, without having to mount a
man-in-the-middle attack again.

Passwords are vulnerable to phishing attacks. By contrast, in protocredential-plus-
passcode authentication, phishing attacks are not a threat because neither the passcode
nor the private key are sent to the database back-end.

A big security problem with passwords is password reuse. Many users use the same
password for many different sites. A malicious site can use the password submitted by the
user at that site to impersonate the user at other sites. A site with weak security may

35



allow hackers to obtain the passwords of its users through breaches of database or network
confidentiality, and hackers can then use those passwords to impersonate users at other sites,
no matter how strong the security of those other sites. By contrast, in our protocredential-
plus-passcode authentication method, passcodes are not sent to the application back-end,
so passcode reuse is not an issue unless a passcode used as second factor is also used as an
ordinary password elsewhere. Even in that case, an adversary who obtains the passcode by
harvesting it at a site where it is used as an ordinary password can only use it in conjunction
with a protocredential after capturing the device that contains the protocredential.

Passwords are vulnerable to shoulder surfing, i.e. to being observed as they are being
typed, particularly in mobile devices where characters are prominently displayed by the
keyboard as they are typed. In protocredential-plus-passcode authentication the passcode
can be observed as well, but the adversary can only use the passcode for authentication to
the application back-end after capturing the device that contains the protocredential.

4.3.6 Summary

To recapitulate, our method of credential regeneration from a protocredential and a passcode
eliminates the vulnerability to attacks based on password reuse that affect ordinary authen-
tication by username and password. It is also resistant to phishing attacks and breaches of
the back-end database, a substantial advantage over both ordinary passwords and one-time
passwords.

These benefits are simply a consequence of the use of public key cryptography for au-
thentication; but our method also features a stronger security posture than other methods
based on public key cryptography, in cases where the adversary is able to capture the user’s
device.

In such cases our method protects the credential without tamper resistance, whereas
the method of storing the private key in the clear and making its use programmatically
conditional on a passcode (Section 4.3.3, Table 4), often used in smart cards, requires tamper
resistance.

Furthermore our method provides protection against an adversary who reads the device
storage even when the passcode is a low-entropy PIN, whereas the method of encrypting the
private key (Section 2, Table 2) requires a high entropy passcode for protection against such
an adversary.

Our method allows the user to protect herself, by choosing a high entropy passcode,
against an adversary who captures the device and reads its storage after breaching network
security, whereas the method of using a key pair and an independent passcode separately
verified by the application back-end (Section 4.3.2, Table 3) provides no security in that
case.

4.4 Security and Privacy Provided by Two-Party Protocredential-
Based Authentication with Biometrics

As we saw in Section 3.1, the usage of biometrics for authentication establishes three security
and privacy requirements: security of the authentication process, unlinkability of uses of
biometric features, and confidentiality of the biometric features. In Section 4.4.1 we discuss

36



how these requirements are met by the two-factor authentication method of Section 3.3.
Then in Section 4.4.2 we discuss how the use of a PIN as a third authentication factor
described in Section 3.4 strengthens the security posture. Comparison with an open-loop
biometric authentication approach suggested by Boyen [50] can be found in Section 6.2.

4.4.1 Security and Privacy Provided by Two-Factor Authentication with Bio-
metrics

Security of the Authentication Process. Security of biometric authentication is a
concern at two different levels.

First, as pointed out above in Section 3.1, biometric features are only relatively se-
cret. This is addressed by our two-factor authentication method simply by virtue of using
two factors. A biometric sample is not useful without the auxiliary data included in the
protocredential that is stored in the user’s device; so, to use a biometric sample obtained
surreptitiously, an adversary must capture the device and read the protocredential.

Second, the biometric key has relatively low entropy if the auxiliary data is known, as we
saw above in Section 4.1. So an adversary who captures the device and obtains the auxiliary
data may try to mount an offline brute force guessing attack against the biometric key. But
our method prevents an offline attack against the biometric key just like it prevents an offline
attack against a PIN in two-factor non-biometric authentication, by the fact that most or all
candidate biometric keys produce well-formed key pairs, and therefore testing of candidates
cannot be done offline as long as the adversary does not obtain the public key or a hash of
the public key by breaching database or network security.

Unlinkability of Uses of Biometric Features. In the two-factor biometric authentica-
tion method of Section 3.3 and Figure 3, the biometric sample (the iris image in the figure)
is seen by the user’s device but not by the application back-end. The back-end only sees the
regenerated public key. Therefore an adversary controlling the application back-end cannot
link the authentication transaction to any biometric sample that may have been obtained
offline. Furthermore authentication transactions the use the same biometric sample cannot
be linked because they use different key pairs regenerated from the same sample. Note,
however, that code running on the device may have access to the biometric sample. See
Section 8.3.

Confidentiality of Biometric Data. In traditional biometric authentication, the user’s
biometric sample is compared to a template derived from a reference sample at enrollment
time; but that requires storing the template in a device or a database, which puts the user’s
biometric data at risk of being captured. If the template is present in a device carried by
the user, it must be stored in tamper-resistant storage. But while some smart cards may
provide a certain amount of tamper-resistance, today’s smart phones and tablets do not.

Our two-factor biometric authentication method, on the other hand, does not compare a
biometric sample to a template. Instead of a template, it uses auxiliary data that is computed
at enrollment time by x-oring a reference sample with a random codeword. Because the
codeword contains redundancy, the auxiliary data leaks some amount of information about

37



the reference sample, from an information-theoretic viewpoint.17 However, no methods are
known for relating the leaked information to the user’s biometric features.

4.4.2 Additional Security Provided by Three-Factor Authentication

The main purpose of using a PIN in addition to a biometric key as described in Section 3.4 is
to implement three-factor authentication. But the PIN also provides two additional security
benefits. First, the PIN adds its entropy to the entropy of the biometric key, for protection
against an adversary who has both captured the protocredential and breached database or
network security; this is because the biometric key has low entropy only if the attacker knows
the auxiliary data, and the PIN encrypts the auxiliary data. Second, the PIN eliminates
the leakage of information about the reference sample from the auxiliary data, again by
encrypting the auxiliary data.

5 Data Protection Mediated by Protocredential-Based

Authentication

Protocredential-based authentication is motivated by the lack of effective data protection
on today’s mobile devices. The purpose of storing a protocredential rather than a full-
fledged credential in the user’s device is to protect the credential against an adversary who
captures the user’s device. In this section we show how, besides protecting that credential,
protocredential-based authentication can be used to implement effective data protection
for any data stored on the device, including credentials used for open-loop and one-factor
closed-loop authentication, which cannot be readily protected by the credential regeneration
technique.

5.1 State of the Art of Data Protection

Two methods are used today to protect data stored in a computer device in case the device
is lost or stolen. One is to store the data in tamper resistant storage, the other is to encrypt
the data.

Tamper resistance is rarely used in ordinary computing devices such as smart phones,
tablets, laptops or desktops, because it would increase the cost of the device. An exception
is the use of an NFC secure element within a smart phone to store credit card data used in
some payment applications. However the tamper resistance strength of such secure elements
is unspecified, and, to our knowledge, none has been certified by NIST as tamper resistant
(FIPS 140-2 physical level 3 or 4 [62]).

Encryption is used much more frequently. Corporate laptops are often protected with
full-disk encryption combined with pre-boot authentication. Since iOS 4, data stored in the
iPhone and other iOS devices is encrypted under a hierarchy of keys derived in part from a
PIN or a password that the user enters to unlock the phone.

17No information would be leaked if the reference sample were x-ored with a random string rather than
a random codeword; but of course the result would not be useful because it could not be error-corrected as
discussed in Section 3.2.

38



The simplest way of encrypting data at rest is to use a symmetric key derived from a
passcode, such as a PIN, a password, or a passphrase. But an attacker who gains physical
access to the device and can extract the encrypted data from the device can mount an offline
passcode-guessing attack, trying passcodes until one is found that produces a key which
successfully decrypts the data. Withstanding an offline passcode-guessing attack requires a
high-entropy passcode.

Requiring the user to enter a high-entropy password to boot a laptop may be reasonable,
but requiring a user to enter one each time he or she unlocks a smart phone is impractical due
to the difficulty of entering high-entropy passwords on a small touchscreen keyboard. In iOS,
Apple addressed this difficulty by using a hardware key in addition to a PIN to derive the
key hierarchy and protect the PIN. The hardware key is hardcoded in a hardware encryption
chip and cannot be extracted by a casual attacker. However, various ways have been found of
running custom code on an iOS device (with the primary purpose of jailbreaking the device),
and custom code can make use of the hardware key even though it cannot extract it. By
making use of the hardware key it is possible to mount an offline attack against the PIN
using the processor in the phone. The processor is relatively slow, but most people lock the
iPhone with a 4-digit PIN, and an exhaustive brute-force attack against a 4-digit PIN takes
only 40 minutes on the device [63].

5.2 Effective Data Protection Using Protocredential-Based Au-
thentication

For effective data protection we propose to encrypt the data under a random high-entropy
symmetric data-encryption key; but rather than encrypting the data-encryption key under
a key-encryption key derived from a password, which would make it vulnerable to offline
attack by an adversary who captures the device, we propose to store it outside the device,
entrusting it to a key storage service accessible over a network. The key storage service
could be a web application accessible over the Internet or, if the device is a mobile device
connected to a carrier network, it could be provided by the carrier and accessible through
the carrier network. To retrieve the data-encryption key the device authenticates to the key
storage service with an uncertified key pair regenerated from a protocredential and one or
more non-stored secrets provided by the user, such as a PIN, a biometric sample, or both.
As discussed above, such a key pair is not vulnerable to an offline attack by an adversary
who captures the device.

Figure 5 illustrates the technique.
The protected data is encrypted under a data-encryption key k, which is kept by the

key storage service. The service has a database containing stored-key records, one for each
key stored by the service, each record containing a stored-key record handle, the hash of
the public key component of the key pair, the key stored in the record,18 and a counter
of consecutive failed authentication attempts. The figure shows a record containing the
data encryption key k. The stored-key record plays the role that the device record plays in
the general case of protocredential-based authentication illustrated in Figure 1. Since the

18The key is stored in the clear, but it can be protected against a breach of database security by one or
both of the mechanisms described below in sections 5.3 and 5.4.

39



User's device

Key 
storage 
service

Database

Stored-key 
record handle

Key-pair related 
parameters

Non-stored-secret 
related parameters

Stored-key record handle, 
public key, proof of knowledge 

of private key

Protocredential

Non-
stored 

secret(s)

Hash of public 
key

Data encryption 
key k

Stored-key 
record handle

Table of stored-
key records

Stored-key record

Consecutive 
failure counter

Data encryption key k

Encrypted
Data k

Figure 5: Data protection mediated by protocredential-based closed-loop authentication

purpose of the database is to store particular keys rather than to authenticate the user, there
need not be user records.

The device authenticates to the key storage service using a key pair regenerated from
a protocredential and from one or more non-stored secrets such as a PIN or an iris image
supplied by the user, as described in Sections 2 and 3. The protocredential contains a stored-
key record handle referring to the stored-key record that contains the data encryption key
k, key-pair related parameters, and parameters related to the non-stored-secret secrets.

To authenticate, the device sends to the key storage service the stored-key record handle,
the public key component of the key pair, and a proof of knowledge of the private key
component of the key pair, over a secure connection. The secure connection may be provided
by the carrier within the carrier network, or it may be a TLS connection made by the device
to the key storage service over the Internet. In the latter case the proof of knowledge may
consist of a signature on a challenge including a nonce sent by the key storage service and
the TLS server certificate used in the TLS handshake. The counter of failed authentication
attempts is used as described in Section 2.1 for the general case. After the device has
successfully authenticated, the data encryption key k is retrieved over the secure connection.

The user can be prompted for the non-stored secrets, and the data encryption key k can
be retrieved from the key storage service, either when the device is unlocked, or later when
the key is needed to decrypt the data.

5.3 Using Multiple Storage Services

Shamir’s secret sharing technique [64] can be used to divide the data encryption key k into
N pieces that are kept by N different key storage services, in such a way that the device
can reconstruct k from any K of those N pieces, but any set of K − 1 pieces reveals no

40



information about k. This increases security, because even if K − 1 servers collude they
cannot reconstruct k. It also increases reliability, because the device can reconstruct k even
if N−K services are down. And it may increase performance, because the device can request
all N pieces and use the first K that arrive.

5.4 Using a Protokey

When using one or more storage services, security can be further increased by entrusting a
protokey to those services, rather than the data encryption key itself; the data encryption
key is then derived from the protokey and the same non-stored secrets that are used to
regenerate the authentication key pair from the protocredential.

When the protokey is retrieved using the two-factor non-biometric authentication method
of Section 2.2, i.e. when the authentication key pair is regenerated from a passcode such as
a PIN, the data encryption key can be obtained by x-oring the protokey with a randomized
hash of the passcode (using a different salt for randomization than the one used for computing
the randomized hash of the passcode for key pair regeneration). When the protokey is
retrieved using the multifactor biometric authentication methods of sections 3.3 and 3.4, i.e.
when the authentication key pair is regenerated from a biometric key, the data encryption
key can be obtained by x-oring the protokey with a randomized hash of the biometric key
(again, using a different salt than the one used for computing the randomized hash of the
biometric key for key pair regeneration).

This prevents an adversary who captures the device and breaks into the database of
the key storage service, if one service is used, or to the databases of a sufficient number
of services, if Shamir secret sharing is used, from obtaining the data encryption key and
immediately decrypting the data. When a protokey is used, the adversary has to mount a
successful offline attack to guess the passcode or the biometric key in addition to capturing
the user’s device and breaking into the database(s).

The data encryption key could also be computed as a randomized hash of the passcode
or the biometric key using the protokey as a salt. But this would result in a weaker security
posture because it would allow the adversary to mount the offline attack without capturing
the device if the encrypted data is available outside the device, e.g. in a back-up of device
data stored in a PC.

5.5 Credential Protection and SSO Based on Data Protection

The proposed data protection technique can be used to protect the same kind of data that
is protected in mobile devices today by traditional techniques, such as email messages or
confidential enterprise data; or to protect all the data on a device, just as disk encryption
can be used to protect all the data in a laptop.

It can also be used to protect credentials used in open-loop authentication and one-factor
closed-loop authentication, which cannot be used in protocredential-based authentication.
Credentials used in open-loop authentication include public key certificates and privacy-
enhancing credentials such as U-Prove tokens and Idemix anonymous credentials.

Protecting multiple credentials by this method amounts to a form of single sign-on (SSO)
based on data protection. After the device authenticates to the key storage service(s) and

41



retrieves the data encryption key, all the credentials protected by the data encryption key
can be used without further user intervention. Enterprise SSO can be implemented by
protecting the cryptographic credentials used by all enterprise applications under the same
data encryption key. Global SSO can be implemented by encrypting all the credentials in
the device besides the one used to authenticate to the key storage service(s); in the case of a
mobile device, the user may be prompted for the non-stored secrets and the data encryption
key may be retrieved when the device is unlocked.

A second form of SSO based on shared login sessions is discussed below in Section 7.5.

6 Open-Loop Authentication

From a privacy viewpoint, closed-loop authentication is not well suited for demonstrating
to a relying party that a user possesses an identity or attribute asserted by a third-party.
In closed-loop authentication, the third-party is responsible for verifying possession of the
credential; therefore it has to participate in the authentication protocol; and by participating
in the protocol, it usually learns the identity of the relying party. That impinges on the user’s
privacy if the user does not fully trust the third party.19 In open-loop authentication, on the
other hand, the relying party is responsible for verifying possession of the credential, so the
third-party does not need to be involved in the authentication process and does not need to
be informed of the identity of the relying party.20 Hence open-loop authentication provides
more privacy than closed-loop authentication when a third party plays the role of identity
or attribute provider.

Open-loop authentication typically uses purely cryptographic credentials, but credentials
with a biometric component have been considered as well.

6.1 Cryptographic Open-Loop Authentication

Cryptographic open-loop authentication may use credentials that provide a broad range of
privacy features. X.509 public key certificates [29] provide the basic feature that a certificate
issuer is not informed of how the certificate is used. Microsoft’s U-Prove tokens [30, 31, 32]
also provide issue-show unlinkability, which means that even if the token issuer colludes
with a relying party, they cannot tell whether the token presented to the relying party is
the same token that was issued to a particular user. IBM’s Idemix anonymous credentials
[33, 34] further provide multi-show unlinkability, which means that even if two relying parties
collude they cannot determine if a credential presented to one of them is the same credential
presented to the other. Another privacy feature of some types of credentials used in open-
loop authentication is selective disclosure. Structured certificates [67, 68] bind a public key
to the root of a tree of hashes of attributes, allowing the user to choose what attributes are

19It is possible to hide the identity of the relying party from the third-party behind the browser [65] or a
trusted proxy [66] at the expense of greatly increased complexity.

20In the case of a public key certificate, the certificate issuer becomes indirectly involved if it assists in the
authentication process by providing the status of a certificate in response to an OCSP [28] request. It may
then be able to identify the relying party by observing the IP address from which the OCSP request is sent.
Certificate revocation lists (CRLs) are preferable to OCSP for the sake of privacy.

42



disclosed when the certificate is presented.21 U-Prove also allows the user to choose which
of the attributes in a U-Prove token are disclosed when the token is presented. Idemix goes
a step further, allowing the user not only to disclose a subset of the attributes in an Idemix
anonymous credential, but also allowing the user to prove properties of attributes, such as
being greater or less than a numeric constant, without disclosing those attributes.

6.2 Biometric Open-Loop Authentication

In [50, §8], Boyen suggests an authentication method that can be characterized as biometric
open-loop authentication. Couching his method in our terminology, a biometric key is pro-
duced from a biometric sample and auxiliary data, and used to regenerate a key pair (Boyen
does not explain how) which is used for authentication, as in our protocredential-based
approach.

A key difference with our approach is that the public key is certified by a trusted party
that may be viewed as a certificate authority (CA), and is publicly available. The public key
certificate together with the private key and the auxiliary data can be viewed as a certified
biometric credential. This makes Boyen’s method a three-party authentication method, and,
because the CA is not responsible for verifying the credential, an open-loop authentication
method.

Another key difference is that Boyen lacks the concept of a protocredential. Nothing is
stored in the user’s machine, and the auxiliary data is considered public data. Since both the
public key and the auxiliary data are publicly available, anybody can mount an offline attack
at any time against the biometric key that is used to regenerate the key pair, using only
publicly available data. Since the biometric key is entropy-poor, as we saw in Section 4.4.1,
Boyen’s method does not provide strong security.

The exposure to offline attack could be partially remedied by storing the auxiliary data
in the user’s device as we do, and keeping it secret. However, that would still leave the
biometric key vulnerable to an offline attack by an adversary who captures the device and
reads the auxiliary data. This could be remedied by protecting the auxiliary data with the
data protection method of Section 5.

Another security problem with Boyen’s method is that it amounts to one-factor unat-
tended biometric authentication. We saw in Section 3.1 that biometrics only provide strong
security when there is assurance of liveness, which is difficult to achieve in unattended au-
thentication. Biometrics should only be for used unattended authentication in conjunction
with at least one other factor, as in our methods of sections 3.3 and 3.4.

There is also a privacy problem with Boyen’s method. The user has to disclose a biometric
reference sample to the CA, so that the CA can verify that the public key in the certificate
derives from the user’s biometrics. This problem is inherent in the fact that Boyen’s method
is an open-loop authentication method. In our closed-loop methods of sections 3.3 and 3.4,
on the other hand, the user does not reveal any biometric sample to any party other than
her own device.

21To our knowledge, structured certificates have not yet been implemented or used anywhere. We mention
them here because they have the remarkable property of providing selective disclosure without the mathe-
matical complexity of systems such as U-Prove and Idemix, and the difficulties related to revoking credentials
and preventing fraudulent credential sharing in those systems.

43



7 Mobile Authentication Architecture

Before the advent of mobile computing, users accessed web sites and applications mostly
via browsers installed in personal computers. Naturally, most proposals for cryptographic
authentication were browser centric, and the few that were not failed to gain traction. Unfor-
tunately, browser vendors and standards bodies failed to create an identity ecosystem where
cryptographic credentials could be deployed and used conveniently and securely. Use of
SSL client certificates, which date back to 1995, remained confined to very specific contexts,
such as the authentication of US government employees and contractors to the information
systems of Federal agencies. More sophisticated privacy-enhancing credentials were never
deployed.

But the computing landscape has changed with mobile computing. Many web applica-
tions are now accessible via a native application front-end. User or device authentication is
then a private matter between the native front-end and the application back-end, without
browser involvement. (Even though the native front-end and the application back-end are
conceptually part of the same application, the back-end cannot trust the front-end since the
front-end is under user control. Therefore the front-end must authenticate to the back-end.)

This by itself is not enough to enable widespread use of cryptographic authentication, for
two reasons. First, there are web-based applications without a native front-end, and even
if an application offers both a native front-end and web-based access, the user may prefer
web-based access to avoid or delay downloading the native front-end. Second, as illustrated
in [39], it is difficult to integrate cryptographic functionality in an application because of the
complexity of cryptographic APIs.

But mobile computing has brought a second innovation: a URL-based inter-application
communication mechanism that allows native applications to interact with each other within
a mobile device. In this section we propose a mobile authentication architecture that allows
an application to offload the complexities of cryptographic and biometric authentication to
a Prover Black Box (PBB) located in the user’s device and a Verifier Black Box (VBB)
located in the cloud. The PBB authenticates to the VBB, the VBB creates a record of the
authentication transaction, which we call the authentication object, and the VBB provides
the PBB with a bearer token that refers to the object, which we call the authentication token.
The PBB delivers the authentication token to the application back-end (via the browser or
the native application front-end), which uses it to obtain the hash of a public key, or user
attributes, or an access token (in the case of social login) from the VBB. The VBB may be
part of the application back-end, in which case it is the non-VBB portion of the back-end
that receives the authentication token and uses it to obtain the authentication data from
the VBB.

We hope that the proposed architecture will enable the broad deployment of crypto-
graphic authentication on mobile devices by removing the stumbling block of browser adop-
tion. How about authentication on desktops and laptops? We show below in Section 9
how the mobile authentication architecture that we are proposing can be adapted for use in
traditional personal computers via browser extensions. But maybe it is best to wait until
traditional desktops and laptops are replaced with new personal computers that adopt the
same computing paradigm as mobile computers, including inter-application communication
mechanisms such as those available today in Android and iOS.

44



7.1 Configurations and Use Cases

The proposed architecture is very flexible. Many different kinds of credentials are supported.
Credentials can be stored in the PBB or regenerated from protocredentials stored in the
PBB. There may be one PBB in the user’s device used by all applications, or several PBBs,
each used by a different application or group of applications. The VBB may be part of an
application back-end or it may be provided by a third-party identity or attribute provider
or by a social network that supports social login functionality. When the VBB is part of the
application back-end, it may provide purely cryptographic functionality, or it may access the
device and user records stored in the database of the application back-end, in which case we
say that the VBB is database aware.

This flexibility makes it possible to support a broad variety of use cases, including:

• Authentication to consumer applications, with shared PBB and global SSO.
The PBB is a native application. It can be used by any application, whether web-based
or having a native front-end. The PBB contains a different uncertified key pair for
each application. Each application back-end has its own VBB, which may be a virtual
cryptographic appliance made available in an infrastructure-as-a-service cloud. All the
credentials in the PBB are encrypted under the same data encryption key, preferably
using the data protection scheme of Section 5. They are decrypted when the mobile
device is unlocked and used without further user interaction, thus providing global
SSO.

• Multifactor login to high-security consumer application having a native
front-end. The consumer application could be used, e.g. for mobile banking or for
patient access to a health care institution. The PBB is dedicated to the application.
(In Android it may be bundled in the same package as the application, as discussed
below in Section 8.3.) It contains a protocredential and prompts the user for a PIN and
or a biometric sample to regenerate the credential, which is deleted after login.22 The
VBB may be specific to the application, or shared by different applications deployed
by the same organization, and may or may not be database aware.

• Bring-your-own-device (BYOD) access to enterprise applications with en-
terprise SSO. Enterprise applications, both web-based and with native front-ends,
share an enterprise PBB implemented as a native application, and an enterprise VBB,
which is database aware. The enterprise PBB contains a single protocredential. When
required by one of the enterprise applications, the PBB prompts the user for a PIN
and/or a biometric sample, regenerates the credential, authenticates the user, and cre-
ates a login session, which is shared by all the enterprise application, thus implementing
enterprise SSO.

• Social login. A social network supplies the PBB and the VBB. The PBB may be
built into in a native front-end of the social network, or it may be a separate na-
tive application. It contains a single credential or protocredential. Any application,

22Subsequent authentication during the login session is up to the application. It could be implemented
using a bearer token analogous to a login session cookie.

45



whether web-based or with a native front-end, can ask the PBB for limited access to
the user’s account at the social network. The PBB asks the user’s consent and, in the
protocredential case, prompts the user for a PIN and/or a biometric sample to regen-
erate the credential. After cryptographic authentication of the PBB to the VBB, the
application back-end uses the authentication token received from the PBB to obtain
an access token from the VBB, which grants the requested limited access to the user’s
account. The application may use the access token to obtain the user’s identity and/or
attributes by accessing the user’s account at the social network.

• Third-party closed-loop authentication using a trusted personal data repos-
itory service (PDRS) with a shared PBB. The PBB is a native application
containing multiple credentials or protocredentials of different types used for differ-
ent purposes. One credential or protocredential is intended for third-party closed-loop
authentication with a PDRS freely chosen by the user. Any application, whether web-
based or with a native front-end, may ask the PBB to authenticate to a PDRS that
will supply requested user attributes, without specifying a particular PDRS. The PBB
locates the credential or protocredential for the user-selected PDRS and asks the user’s
consent to disclose the requested attributes to that PDRS. In the case of a protocreden-
tial, the PBB prompts the user for a PIN and/or a biometric sample to regenerate the
credential. The PBB authenticates to a VBB belonging to the PDRS, which obtains
the requested attributes from the personal data repository maintained by the PDRS
and delivers them to the application back-end upon presentation by the back-end of
the authentication token.23

• Open-loop authentication with proof of age using an Idemix anonymous
credential. The PBB is a native application containing multiple credentials or proto-
credentials of different types used for different purposes. One credential or protocre-
dential is an Idemix anonymous credential issued by a party that is trusted to know the
user’s date of birth (e.g., in the US, the department of motor vehicles of some state).
The credential contains the date of birth and may also contain a variety of other at-
tributes. An application, either web-based or with a native front-end, that displays
content unsuitable for children asks the PBB to prove that the user is at least thirteen.
The PBB looks for an appropriate credential, finds the Idemix credential, and uses it to
prove to a VBB belonging to the application that the user is at least thirteen, without
revealing the user’s date of birth, nor any other attributes, nor any information that
may link the authentication transaction to the issuance of the credential or to other
authentication transactions. The VBB stores the derived boolean attribute “age at
least thirteen” in the authentication object and delivers it to the application back-end
upon presentation of the authentication token.

• Authentication with Multiple Public Key Certificates. A candidate applies
for a job online (in the US), presenting a public key certificate issued by the Social
Security Administration that provides the candidate’s Social Security Number (SSN),

23The social login use case above could also allow the user to freely choose among social networks that
would implement a standard API for providing access to a user’s account with delegated authorization.

46



and a public key certificate issue by a state that contains the same data as a driver’s
license. The PBB is a native application containing various credentials, including the
SSN certificate and the driver’s license certificate. The enterprise application that
collects job applications asks the PBB to present the two certificates. The PBB sends
the certificates to a VBB supplied by the enterprise application and demonstrates
knowledge of the associated private keys. The VBB stores the attributes supplied by
the two certificates in the authentication object and later delivers them to the non-VBB
portion of the application back-end upon presentation of the authentication token.

7.2 Communication between Native Applications

Mobile operating systems including iOS and Android provide inter-application communi-
cation facilities that allow native applications to send messages to each other. A native
application can ask the operating system to deliver a URL to another native application.
There are two kinds of URLs, which we shall call web URLs and native URLs. A web URL
uses the scheme http or the scheme https. The operating system delivers it to the default
browser and causes the default browser to send an HTTP GET request targeting the URL
over a network. A native URL identifies a native application installed on the same device.
The operating system delivers it to the native application, which does not forward it to the
network.

Both iOS [69] and Android [70] implement native URLs using custom schemes, a custom
scheme identifying the native application to which the message is to be sent. As in an
HTTP GET request, a native URL is both the address and the contents of the message.
The native application parses it to extract parameters, usually encoded in a so-called query-
string portion of the URL.

An important aspect of this communication method is how it interacts with the HTTP
redirection mechanism. When a browser receives an HTTP redirection response to a request
that it has sent over a network, if the URL specified by the redirection is a native URL, the
browser sends that URL to the native application identified by the URL, via the operating
system.

7.3 Native Authentication Protocol

Figure 6 shows in general terms the process by which a native application front-end on
a mobile device authenticates to the application back-end, offloading the complexities of
cryptographic and biometric authentication to a PBB and a VBB.

We use the term endpoint to refer to a metaphorical “point” of a web server or native
application that can receive HTTP POST requests, HTTP GET requests, or native URL
messages. Each endpoint has a URL that does not have a query string. An HTTP POST
request is addressed to the endpoint URL, with request parameters passed in the body of
the request. An HTTP GET request or a native URL message is addressed to the endpoint
URL augmented with a query string consisting of a question mark (“?”) followed by one
or more parameters separated by ampersands (“&”), each parameter being encoded as a

47



Mobile device

Application
back-end

Native
front-end

PBB VBB

5

2

3

1

4

6

7

Authn spec
[URL of CAE]
[URL of CBE]

[TID]

Credential presentation
[URL of CBE]

Authn token

Status
Authn token
[URL of DRE]
[TID]

Authn token
[URL of DRE]

Authn token
[URL of CBE]

Authn data

Authn token

[URL of CBE]

Authn data

PBB = Prover Black Box
VBB = Verifier Black Box
Authn = Authentication
Authn spec = Specfication of credentials
                      and/or attributtes and/or access
TID = Transaction ID

AOE DRE

CBE

CAE

CBE = Callback endpoint
AOE = Authentication Offloading Endpoint
CAE = Cryptographic authentication endpoint
DRE = Data retrieval endpoint

Square brackets […] indicate optional parameters

Figure 6: Mobile authentication through native front-end

48



parameter name followed by an equal sign (“=”) and a parameter value.24 The PBB has an
authentication offloading endpoint (AOE in the figure) where the native front-end sends an
authentication offloading request, and the native front-end has a callback endpoint (CBE)
where the PBB sends a reply to the offloading request. The VBB has a cryptographic
authentication endpoint (CAE) where the PBB sends a cryptographic authentication request,
and a data-retrieval endpoint (DRE) from which the application back-end retrieves user data
upon presentation of the authentication token.

The PBB may contain any number of credentials used for closed-loop one-factor authen-
tication, protocredentials used for closed-loop multifactor authentication, and credentials
used for open-loop authentication.

If the PBB contains several protocredentials used for two-factor biometric authentication
as described in Section 3.3, they may share the same Auxiliary Data shown in Figure 3,
so that the user has to enroll a reference biometric sample only once. The auxiliary data
produces the same biometric sample for all those protocredentials, but should be randomized
with different salts when used in conjunction with different protocredentials. Similarly, if the
PBB contains several protocredentials used for three-factor authentication as described in
Figure 3.4, they may share the same Auxiliary Data and Salt 1 of Figure 4, but they should
be randomized with a different Salt 2.

The authentication process comprises seven steps, indicated by circled numbers in the
figure.

Step 1

The native front-end asks the PBB to authenticate to the VBB. The request may specify
one or more credentials to be used by name. Credential names are unique URIs chosen by
the credential issuers. The request may also specify authentication data to be delivered by
the VBB to the application back-end, such as user attributes. Attributes are also named
by unique URIs, but there need not be a consistent global nomenclature for attributes:
different standards for naming attributes may be developed for different contexts or by
different communities.

The native front-end may specify what attributes should be supplied by what credentials,
or may specify attributes without specifying credentials. In the latter case the PBB may use
credential metadata to choose credentials that may deliver the attributes.

For social login, the native front-end may specify the scope of access to the user’s account
at the social network that the application wishes to obtain.

The request is sent as a native URL message to the AOE of the PBB, with parameters
specifying:

1. One or more credentials to be used, and/or the authentication data to be delivered,
and/or the scope of access to be obtained in the case of social login.

2. Optionally, the VBB to be used, specified by the URL of its CAE. In third-party
closed-loop authentication the VBB is part of the third party, and the native front-end

24More accurately, an endpoint could be defined as the procedure, or event listener, that is invoked when
the HTTP request or native URL message is received; the request parameters are passed to that procedure.

49



may choose not to specify the VBB to be used, allowing the PBB to choose the VBB
of a third party which the PBB has a credential or protocredential, the CAE of that
VBB being available as credential metadata. Freedom of choice of the third party is a
matter of privacy, as discussed below in Section 10.

3. Optionally, the URL of the CBE of the native front-end to which a response is to be
returned. The URL of the CBE may be omitted in two-party authentication, when it
should be recorded in the credential metadata when the credential or protocredential
is created.

4. Optionally a transaction ID (TID) that the native front-end may use internally to
remember the context of the authentication transaction.

Step 2

The PBB asks the user’s consent to use the requested credentials or disclose the requested
identity or attributes, if necessary, as explained below in Section 8.2; for social login, it
asks the user’s consent to grant access to the user’s account at the social network to the
application, to the extent requested by the native front-end. Then the PBB prepares the
credentials needed to satisfy the user’s request. If one of the credentials is an uncertified
key pair that must be regenerated from a protocredential, the PBB prompts the user for the
non-stored secrets needed to regenerate the credential, such as a passcode and/or a biometric
sample. Finally, the PBB establishes a TLS connection to the CAE of the VBB, which it
uses to present the credentials to the VBB. In third-party closed-loop authentication, where
the same credential and the same VBB are used by multiple relying parties that do not trust
each other, the PBB also sends the URL of the CBE, which is needed by the VBB to prevent
an attack described below in Section 8.1.

The CAE of the VBB authenticates itself with a TLS server certificate. The certificate
may be backed by a certificate chain terminating at a root certificate that can be found in
a root certificate store provided by the operating system or by the PBB. Alternatively, the
certificate may be trusted because the certificate itself or a hash of the certificate may be
known to the PBB or may be associated with a particular credential used for closed-loop
authentication; in that case, the certificate may be self-signed.

Presenting an uncertified key-pair credential to the VBB means sending the device record
handle and the public key, and signing a challenge with the private key. When the key
pair is used for closed-loop authentication to a third-party identity or attribute provider,
presentation of the credential also includes sending the names of the user attributes that the
PBB wants the VBB to include in the authentication data.25 When the key pair is used
for social login, presentation of the credential also includes specifying the desired scope of
access.

Presenting a public key certificate means sending to the VBB the certificate and possibly
a certificate chain backing the certificate, and signing a challenge with the associated private
key.

25We consider the specification of the desired attributes as being part of credential presentation by analogy
with the presentation of a credential that supports selective disclosure.

50



Presenting a U-Prove token or an Idemix anonymous credential means constructing and
sending a proof of possession of the credential that discloses the requested attributes, while
keeping others hidden. Construction of the proof takes as input a challenge that includes a
VBB nonce.26

In all the above kinds of credential presentation, a man-in-the-middle attack is prevented
by the fact that the PBB verifies the TLS server certificate presented by the VBB during the
TLS handshake. Additional security can be provided by hashing the TLS server certificate
into the challenge(s) that are used to demonstrate possession of the credential(s). A man-
in-the-middle attack is then prevented even if the adversary has successfully used a spoofed
TLS certificate during the TLS handshake, as explained above in Section 2.1.

Step 3

The VBB generates a random high-entropy one-time27 authentication token and creates
in its own internal volatile memory a short-lived authentication object, retrievable by the
authentication token, where it stores the URL of the CBE, if it was sent by the PBB, and
authentication data.

If a public key certificate was presented by the PBB, the VBB includes the attributes
conveyed by the certificate in the authentication data.

If a selective-disclosure credential was presented by the PBB, the VBB includes the
disclosed attributes in the authentication data.

In two-party closed-loop authentication to a purely cryptographic VBB, using an uncerti-
fied key pair (possibly regenerated from a protocredential), the authentication data consists
only of the hash of the public key component of the uncertified key pair and the device
record handle. In two-party closed-loop authentication to a database-aware VBB, the VBB
uses the device record handle received from the PBB to look up the device record and verify
that the hash contained in the record is the hash of the public key received from the PBB;
if that is the case, it obtains user data from the user record referenced by the device record
and stores the user data in the authentication object as authentication data.

In third-party closed-loop authentication to an identity or attribute provider the VBB
is part of the provider. The VBB uses the device record handle obtained from the PBB to
identify a device record and a user record in the database of the provider. Then it places
the attributes specified by the PBB in the authentication object as authentication data.

In social login the VBB is part of the social network. The VBB uses the device record
handle obtained from the PBB to identify a device record and a user record in the database
of the social network. Then it creates an access record specifying the scope of access provided
and an access token that serves as an access record handle, and stores the access token in
the authentication object as authentication data.

After creating the authentication object, the VBB sends the one-time authentication
token to the PBB through the TLS connection.

26In U-Prove, the challenge is called a message and consists of a nonce sent by the verifier before the
proof is constructed. In Idemix, the challenge is a hash of several components, including a nonce sent by the
verifier.

27The token is used only once because it may leak in a “Referer” header, as explained in the security
analysis (Section 8).

51



Step 4

If authentication was successful in step 3 the PBB sends a native URL message to the
CBE of the native front-end, with parameters including a status code indicating success,
the authentication token, and the optional TID, if one was sent in step 1. In third-party
closed-loop authentication the relying party may not know the URL of the DRE of the VBB;
the URL is recorded in the credential metadata and included in the message as an additional
parameter.

Step 5

The native front-end authenticates to the online back-end, without cryptography, by sending
the authentication token over a secure connection. The secure connection is a matter internal
to the application. It may be implemented as a TLS connection from the front-end to the
back-end, with TLS server authentication. The TLS server certificate may be self-signed,
known to the native front-end, and updatable as needed in the native front-end by the same
mechanism used to update the native front-end software. If the URL of the DRE of the
VBB was received in step 4, it is sent to the back-end along with the authentication token.

Step 6

The application back-end (or its non-VBB portion, if the VBB is part of the application back-
end) establishes a TLS connection to the DRE of the VBB with server authentication.28 The
application back-end uses the connection to send the one-time authentication token to the
VBB in the body of an HTTP POST request. In third-party closed-loop authentication,
where the same credential and the same VBB are used by multiple relying parties that do
not trust each other, the back-end also sends the URL of the CBE, to identify itself to the
VBB and thus prevent an attack described below in Section 8.1. The back-end knows the
URL of the CBE because the CBE belongs to the native front-end of the application.

Step 7

The VBB uses the one-time authentication token to find the authentication object in volatile
memory. If the URL of a CBE is present in the authentication object, the VBB checks that
the same URL was received in step 6. If the object is found and the check succeeds or is not
applicable, the VBB responds to the HTTP POST request by sending the authentication
data found in the object, then it deletes the authentication object.

In two-party closed-loop authentication with a purely cryptographic (not database aware)
VBB, the authentication data consists only of the device record and the hash of the public
key. The application back-end uses the device record handle to locate the device record,
verifies that the hash of the public key coincides with the one stored in the record, locates

28When the VBB is part of the application back-end, the communication between the the non-VBB portion
of the back-end and the VBB is a matter internal to the application, and a secure connection other than a
TLS connection could be used. In particular, if the connection is made over an intranet deemed secure, a
TCP connection could be used without TLS protection. If a TLS connection is used, the DRE may use a
self-signed certificate, known to the non-VBB portion of the back-end.

52



the user record from the device record, and obtains any desired user data from the user
record.

After the user has authenticated, the application may want to create a login session.
Section 7.5 below describes a method for implementing shared login sessions that provide a
form of single sign-on. If sessions are not shared, session implementation is a matter internal
to the application. One way of implementing non-shared sessions is by letting the application
back-end create a session record containing a random high-entropy session token that serves
as session record handle. The back-end sends the session token to the native front-end, which
uses it for intra-session authentication very much like a session cookie is often used today
for intra-session authentication on the web.

7.4 Web-based Authentication Protocol

Figure 7 shows the process of authenticating to a web-based application on a mobile device.
Instead of the native front-end of Figure 6, the application uses as its front-end a web
browser running on the mobile device, which displays HTML pages and runs JavaScript
code pertaining to the application. The application back-end is accessible through one or
more web servers. The callback endpoint is now located on the application back-end.

The web-based authentication process is similar to the one described in Section 7.3 for
the case of an application with a native front-end (the “native process”). Neither the PBB
nor the VBB need to be aware of which process is being used. In this section we explain the
differences between the two processes.

The web-based authentication process comprises six steps, indicated by circled numbers in
the figure. It is initiated as a result of an HTTP request sent by the browser to the application
back-end, e.g. an HTTP request that requires authentication and is not accompanied by a
login session cookie.

In step 1, the application back-end issues an HTTP redirection response to the HTTP
request,29 redirecting the browser to a native URL that targets the AOE of the PBB, with
the same parameters as in the request sent by the native front-end to the PBB in step 1 of
the native process, except that:

• The URL of the CBE, if included, is a web URL instead of a native URL, since the
CBE is now in the cloud. More specifically, it is a URL that uses the https scheme;
use of the http scheme is not allowed.

• The TID is now compulsory, and must be a random high-entropy string. The reason
for this is that the TID now plays a security role, explained below in Section 8.1,
in addition to helping the application remember the context of the authentication
transaction.

The HTTP response also sets a cookie in the browser containing the TID, for reasons ex-
plained below in Section 8.1.

Steps 2 and 3 are the same as in the native process.
Step 4 replaces steps 4 and 5 of the native process. If step 3 was successful, the PBB

constructs a callback URL by augmenting the URL of the CBE (received in step 1) with

29Specifically, a response with an HTTP status code equal to 302.

53



Mobile device

Web-based
application

Browser

PBB VBB

1

2

3

4

5

6

Authn token
[URL of CBE]

Authn spec
URL of CBE
URL of CAE

 TID
TID Cookie

CAE

CBE

AOE DRE

Authn spec
[URL of CAE]
[URL of CBE]

TID

Credential presentation
[URL of CBE]

Authn token

Status
Authn token
[URL of DRE]
TID

Status
Authn token

[URL of DRE]
TID

TID Cookie

Authn data

Authn token

[URL of CBE]

Authn data

PBB = Prover Black Box
VBB = Verifier Black Box
Authn = Authentication
Authn spec = Specfication of credentials
                      and/or attributtes and/or access
TID = Transaction ID

CBE = Callback endpoint
AOE = Authentication Offloading Endpoint
CAE = Cryptographic authentication endpoint
DRE = Data retrieval endpoint

Square brackets […] indicate optional parameters

Figure 7: Mobile authentication to a web-based application

54



a query-string that comprises parameters including a status code indicating success, the
authentication token, the now-compulsory TID, and the URL of the DRE of the VBB in the
case of third-party closed-loop authentication.

The PBB asks the operating system of the mobile device to deliver the callback URL to
its destination. Since the callback URL is a web URL, the operating system delivers it as
a message to the default browser. This causes the browser to send an HTTP GET request
to that URL, adding to the request a cookie HTTP header that contains the TID set as a
cookie in step 1.

In step 5, the application back-end checks that the status parameter indicates success
and the TID parameter in the callback URL coincides with the TID in the cookie header.
The TID check protects against Login CSRF as discussed below in Section 8.1. If both
checks succeed, the application back-end sends an HTTP POST request with the one-time
authentication token and the URL of the callback endpoint (without a query string) to the
data retrieval endpoint of the VBB as in step 6 of the native process.

Step 6 includes all of the tasks performed at step 7 of the native process.
Section 7.5 below describes a method for implementing shared login sessions, which pro-

vides a form of single sign-on among a group of applications that may include both web-
based applications and applications with a native front-end. Non-shared sessions can be
implemented using session cookies as is usually done today for web-based applications on
both mobile devices and traditional PCs.

7.5 SSO Based on Shared Login Sessions

In Section 5.5 we discussed a kind of SSO based on data protection. The proposed mobile
architecture provides a second kind of SSO based on shared login sessions, that has some
performance and security advantages. The first kind is well suited for global SSO and for
enterprise SSO with devices dedicated to enterprise use. The second kind is well suited for
enterprise SSO in a bring-your-own-device (BYOD) context.

The second kind of SSO allows a group of applications, including both web-based ap-
plications and applications with a native front-end, to share a common login session. The
applications in the group share a dedicated PBB that contains one uncertified key pair pro-
tocredential for multifactor closed-loop authentication. They also share a database and a
database-aware VBB. The URL of the CAE of that VBB can be configured into the PBB so
that it does not need to be included as a parameter in each authentication offloading request
to the PBB.30

The technique used for providing shared login sessions is similar to two-party closed-loop
authentication techniques and third-party closed-loop authentication techniques, but cannot
be properly classified as either. We refer to it as groupwise closed-loop authentication.

Figure 8 shows the shared database. It contains a table of user records and a table of
device records that refer to user records, as in Figure 1. In addition it contains a table of
shared session records, which represent login sessions. Each shared session record contains
a one-time session token, a reusable session token, a device record handle that references

30Multiple database-aware VBBs could be used, all accessing the same enterprise database; in that case
the CAE could be specified by each authentication offloading request.

55



User data

User record handle

Hash of public key

User record handle

Device record handle

Shared database

Table of device records Table of user records

Device record User record

Consecutive failure counter

Reusable session token

Device record handle

One-time session token

Table of shared session records

Shared session record

Expiration time

Figure 8: Shared database containing shared session records.

a device record, and an expiration time. Each of the session tokens is a record handle,
which uniquely identifies the shared session record and can be used to retrieve it efficiently.
The one-time session token is used the first time that one of the web-based applications in
the group uses the shared session record, after which it is erased from the record.31 The
shared session record is created by the VBB after successful cryptographic authentication.
The VBB sends the one-time and reusable session tokens in the shared session record to the
PBB, which retains one or both of them in a session object.

A shared session record may be deleted before or after its expiration time is reached.
The shared session it represents and the one-time and reusable session tokens it contains are
deemed to have expired when the expiration time is reached or the session record is deleted,
or either the device record referenced by the session record or the user record referenced by
the device record are deleted or invalidated.

An application does not request cryptographic authentication explicitly. Instead a web-
based application requests a one-time session token or an application with a native front-end
requests a reusable session token, and the PBB performs cryptographic authentication if it
cannot satisfy the request with an existing session token that has not expired.

7.5.1 Shared Session Usage by a Native Front-End

Figure 9 shows the process that takes place when an application with a native front-end
requests a reusable session token from the PBB. The PBB contains a protocredential. As in
Figure 6, the native front-end has a callback endpoint (CBE), the PBB has an authentication
offloading endpoint (AOE) and the VBB has a cryptographic authentication endpoint (CAE).

31The token is used only once because it may leak in a “Referer” header, as explained in the security
analysis (Section 8).

56



The AOE is used by the native front-end to request a reusable session token, which triggers
cryptographic authentication if no login session is in progress. The token is sent to the CBE
of the native front-end.

The application back-end uses the reusable session token to obtain user data from the
shared database; so the VBB need not store authentication data, and the data retrieval
endpoint (DRE) of Figure 6 is not needed. The VBB does not need the URL of the CBE
either, for reasons discussed below in Section 8.2.2, so there is no use for the authentication
object of Figure 6.

In step 1, the native front-end sends a native URL request to the AOE of the PBB,
with parameters including the URL of the CBE, an optional TID used as in the process of
Section 7.3, and an optional expired reusable session token. The purpose of including the
token is to inform the PBB that it has expired and a more recent one is needed, so that the
PBB does not have to keep track of session expiration.

The PBB has a session object in volatile memory that may contain a reusable session
token. If the session object contains a reusable session token different from the expired
reusable session token included in the request as a parameter, if any, then steps 2, 3 and 4
are skipped, and at step 5 the PBB sends a native URL message to the callback endpoint
of the native front-end with parameters comprising a successful status, the reusable session
token found in the session object, and the TID if one was received at step 1. If there is no
reusable session token in the session object, or there is one that coincides with the expired
reusable session token that was included in the request as a parameter, the process continues
at step 2.

In step 2, the PBB interacts with the user to obtain the non-stored secrets, such as a
passcode and/or a biometric sample, needed to regenerated an uncertified key pair from the
protocredential. Then it establishes a secure connection to the VBB and performs crypto-
graphic authentication, sending the device record handle and the public key and signing a
challenge as described in Section 2.1.

In step 3, the VBB verifies the signature and checks that the device record handle refer-
ences a valid device record that itself references a valid user record. If so, the VBB generates
a random high-entropy one-time session token and a random high-entropy reusable session
token, and creates a session record in the shared database containing those tokens as well as
the device record handle and an expiration time.

In step 4, the VBB sends the one-time session token and the reusable session token to
the PBB over the secure connection.

In step 5, if cryptographic authentication was not skipped, the PBB places the two tokens
in the session object before sending a native URL message to the callback endpoint of the
native front-end with parameters comprising a successful status, the reusable session token,
and the TID if one was received at step 1.

The native front-end stores the reusable session token in volatile memory and uses it
repeatedly for intra-session authentication to the application back-end; this is shown as
step 6 in the figure. Each time the back-end receives the token, it uses it to locate the session
record, the device record referenced by the session record, and the user record referenced by
the device record; this is shown as step 7 in the figure. If the back-end cannot find a session
record containing the reusable session token, or the expiration time in the record has been
reached, or the device or user records have been deleted or invalidated, then intra-session

57



Mobile device

Application
back-end

Native
front-end

PBB

VBB

6

2

4

1

5

3

URL of CBE
[Expired
reusable

session token]
[TID]

One-time session token
Reusable session token

Status
Reusable
session token
[TID]

Reusable session token

Device
validation

Shared session
record creation

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID

AOE

CBE

CAE

CBE = Callback endpoint
AOE = Authentication Offloading Endpoint
CAE = Cryptographic authentication endpoint

Shared
database

Session 
object

Protocredential

One-time session token

Reusable session token

Device record 
handle, public 
key, proof of 
knowledge of 
private key

Reusable session 
token validation

7

Square brackets […] indicate optional parameters
Dashed arrows indicate repeated actions

Figure 9: Creation of shared login session by application with native front-end.

58



authentication fails, the reusable session token is deemed to have expired, and the native
front-end sends a second reusable session token request to the PBB, containing the expired
reusable session token.32

7.5.2 Shared Session Usage by a Web-Based Application

Figure 10 shows the process that takes place when a web-based application requests a one-
time session token. It is similar to the process described in Section 7.5.1 by which an
application with a native front-end obtains a reusable session token (the “native process”).

The process is initiated as a result of an HTTP request sent by the browser to the
application back-end that requires authentication.

In step 1, the application back-end issues an HTTP redirection response to the HTTP
request,33 redirecting the browser to a native URL that targets the AOE of the PBB, with
parameters including the URL of the CBE, a TID, and optionally either an expired one-time
session token or an expired reusable session token. (Different parameter names are used
for the two kinds of token.) The redirect request sets a cookie containing the TID in the
browser. See sections 7.4 and 8.1 regarding the usage of the TID parameter and cookie.

If the session object in the PBB is populated by a one-time session token and a reusable
session token, and no expired session token was included in the request as a parameter, or a
one-time session token was included but it is not the one in the session object, or a reusable
session token was included but it is not the one in the session object, then steps 2, 3 and 4
are skipped, and at step 5 the PBB sends the one-time session token in the session object to
the application back-end via the browser as a parameter of an HTTP GET request, together
with a successful status parameter an a parameter containing the TID; the browser adds
the TID cookie to the request; the PBB erases the one-time session token from the session
object after sending it. Otherwise the process continues at step 2.

Steps 2, 3 and 4 are the same as in the native process.
In step 5, if cryptographic authentication was not skipped, the PBB places the one-time

and reusable session tokens received from the VBB in the session object before sending the
one-time session token in the session object to the application back-end via the browser as
a parameter of an HTTP GET request, together with a successful status parameter and a
parameter containing the TID; the browser adds the TID cookie to the request.

At step 6, the application back-end uses the one-time session token to locate the session
record, retrieve the reusable session token, and then erase the one-time session token from
the record. The application back-end checks that the session record has not expired and the
device record handle in the session record points to a valid device record that contains a user
record handle pointing to a valid user record. If the session record cannot be found or any
of the checks fails, the one-time session token is deemed to have expired, and the application
back-end sends a second one-time session token request to the PBB, containing the expired
one-time session token, by means of an HTTP redirect response to the HTTP GET request

32If the device or user records have been deleted or invalidated, the cryptographic authentication triggered
by the second reusable session token request will fail after the user is needlessly prompted for the non-stored
secrets. For a more user friendly failure in those cases, the native front-end may let the user know that the
device registration or the user account are no longer valid and not send the second request.

33Specifically, a response with an HTTP status code equal to 302.

59



Mobile device

Application
back-end

Browser

PBB

VBB

8

2

4

1

5

3

URL of CBE
[Expired

one-time or 
reusable

session token]
TID

One-time session token
Reusable session token

Status
One-time
session token
TID

Cookie with reusable
session token for

intra-session authentication

Device
validation

Shared session
record creation

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID

AOE

CBE

CAE

CBE = Callback endpoint
AOE = Authentication Offloading Endpoint
CAE = Cryptographic authentication endpoint

Shared
database

Session 
object

Protocredential

One-time session token

Reusable session token

Device record 
handle, public 
key, proof of 
knowledge of 
private key

One-time session token 
is used to obtain 

reusable session token

6

Square brackets […] indicate optional parameters; dashed arrows indicate repeated actions

9

Reusable
session token 
validation

Status
One-time session token

TID, TID Cookie

URL of CBE
[Expired one-time or

reusable session token]
TID, TID Cookie

Cookie with reusable
session token

7

Figure 10: Creation of shared login session by web-based application.

60



received from the PBB.34 Otherwise, at step 7, the application back-end sets a secure session
cookie in the browser, containing the reusable session token as its value, and with (implicit
or explicit) domain and path attributes broad enough so that all web-based applications in
the group receive the cookie.

The session cookie is used as usual for intra-session authentication. The browser auto-
matically sends the cookie along with HTTP requests targeting web-based applications in
the group; this is shown as step 8 in the figure.

The back-end of an application that receives the cookie uses the reusable session token in
the cookie to locate the session record, the device record referenced by the session record, and
the user record referenced by the device record; this is shown as step 9 in the figure. As in the
native process, if the back-end cannot find a session record containing the reusable session
token, or the expiration time in the record has been reached, or the device or user records
have been deleted or invalidated, then intra-session authentication fails and the reusable
session token is deemed to have expired. In that case the application back-end sends a one-
time session token request to the PBB, containing the expired reusable session token in the
cookie, by means of an HTTP redirect response to the HTTP GET request that brought the
cookie.35

It should be noted that, when the web-based application finds that the reusable ses-
sion token has expired, it sends a one-time session token request that contains the expired
reusable session token, not an expired one-time session token. The purpose of sending the
expired reusable session token is to allow the PBB to decide whether a new cryptographic
authentication is needed. If there is a reusable session token in the session object that
coincides with the expired reusable session token in the request, then the shared session
referenced by the token is the latest one, and it has expired; therefore a new cryptographic
authentication is needed, and, as specified above, one is initiated (steps 2, 3 and 4 are not
skipped). Otherwise, if the session object contains a one-time session token (in which case
it must also contain a reusable session token) then, as specified above, steps 2, 3 and 4 are
skipped and the one-time session token is sent to the application back-end (and erased from
the session object). In some corner cases there may be no one-time session token in the
session object even though there is a reusable session token in the session object different
than the expired reusable session token in the request; this could happen, e.g., if a web-based
application has received a one-time session token but has failed to set a cookie. In those
cases, a cryptographic authentication is initiated.

34As noted with respect to the native process, if the device or user records have been deleted or invalidated,
the cryptographic authentication triggered by the one-time session token request will fail after the user is
needlessly prompted for the non-stored secrets. For a more user friendly failure in those cases, the application
back-end may respond to HTTP GET request from the PBB with an HTML page informing the user that
the device registration or the user account are no longer valid.

35As noted with respect to the native process, and earlier in this section, if the device or user records
have been deleted or invalidated, the cryptographic authentication triggered by the one-time session token
request will fail after the user is needlessly prompted for the non-stored secrets. For a more user friendly
failure in those cases, the application back-end may respond to the HTTP request that brought the cookie
with an HTML page informing the user that the device registration or the user account are no longer valid.

61



7.5.3 Benefits of SSO Based on Shared Sessions

SSO based on shared sessions is less flexible and more difficult to implement than SSO based
on data protection, but it has advantages for performance and security.

The performance advantage comes from the fact that full-fledged cryptographic authen-
tication is avoided while the common login session is in effect.

The security advantage comes from the fact that, in SSO based on data protection, the
symmetric key used for data encryption and decryption is available in the clear for a long
period of time. If an adversary captures the mobile device and is able to run custom code
on it, she may be able to obtain the key and use it to decrypt all the long term credentials
that are protected by it. By contrast, in SSO based on shared sessions, if all applications
share a protocredential for closed-loop authentication, the key pair regenerated from the
protocredential is only present on the device while cryptographic authentication is taking
place and the adversary will most likely be able to obtain only the short term session tokens.

7.6 Credential Creation

The PBB and the VBB encapsulate not only the complexities of cryptographic and biometric
authentication, but also the even greater complexities of credential creation. Credentials are
created by the PBB in conjunction with the VBB, with various degrees of VBB involvement
depending on the kind of credential.

Credential creation falls into two broad categories:

1. Device registration for closed loop authentication.

2. Issuance of cryptographic credentials by an authoritative identity or attribute provider
for use in open loop authentication.

7.6.1 Device Registration in the Mobile Architecture

Device registration was discussed in general terms in Section 2.5. In this section we are
concerned with how the registration process is implemented in the context of the proposed
mobile architecture. The details vary depending on whether the VBB is database aware or
not, and whether or not a dedicated PBB provides shared login sessions for a group of related
applications. We discuss the details for the case where the VBB is not database aware and
a general purpose PBB is used by applications unrelated to each other.

When user and device registration take place at the same time, the application sends
a request to a device registration endpoint of the PBB, either through a native front-end
or through a browser, using the inter-application communication mechanism of the mobile
device as in the authentication process. The PBB generates a key pair, after obtaining non-
stored secret(s) from the user if multifactor authentication is desired. The PBB also generates
a random high-entropy device record handle.36 The PBB establishes a secure connection to

36The device record handle could instead be created by the application back-end or the database man-
agement system, and sent to the PBB as part of the device registration request, but that complicates the
protocol unnecessarily. The risk of ending up with duplicate handles in the database when the PBB generates
the handle is negligible because of the high entropy of the handle.

62



the cryptographic authentication endpoint of the VBB, sends the public key and the device
record handle, and demonstrates knowledge of the private key. The VBB verifies the proof
of knowledge, creates an authentication object retrievable by an authentication token which
contains the hash of the public key and the device record handle as authentication data, and
sends the authentication token to the PBB. Note that the role of a database-unaware VBB
is exactly the same during registration as during authentication. A database-unaware VBB
appliance programmed for authentication can be used for registration without programming
additional registration functionality.

The PBB creates a credential for one-factor authentication, or a protocredential for mul-
tifactor authentication containing parameters produced by the key generation process that
will later be used to regenerate the key pair at authentication time in conjunction with non-
stored secrets provided anew by the user. The PBB also includes the device record handle
in the credential or protocredential.

The PBB sends the authentication token to the application back-end, either through the
native front-end or through the browser, using the inter-application communication mecha-
nism of the mobile device as in the authentication process. The application back-end uses
the authentication token to retrieve the hash of the public key and the device record handle
from the VBB, and creates a user record and a device record that references the user record
and contains the device record handle. The application may also create a login session as
described above in sections 7.3 and 7.4.

The application back-end populates the user record with self-asserted user data. The
user data may be obtained from the user during the login session. Alternatively, in the case
of an application with a native front-end, the front-end may have obtained the user data
before creation of the user and device records and sent it to the back-end along with the
authentication token.

A user may also register a device to be used for accessing an existing user account that
was created on a different mobile device or on a traditional PC. In that case the user must
demonstrate ownership of the account using a non-cryptographic credential, such as a short-
lived device registration code obtained on a different device as described above in Section 2.5,
a username-and-password credential, or a master password.

The user enters the non-cryptographic credential in the same interaction in which she
requests device registration. In the case of an application with a native front-end, the front-
end retains the non-cryptographic credential and sends a request to the device registration
endpoint of the PBB. The process continues as in the case where there is no preexisting user
record until the front-end receives the authentication token. Then the front-end sends the
non-cryptographic token and the authentication token together to the back-end. In the case
of a web-based application, the back-end receives the non-cryptographic credential directly
from the user in an HTTP POST37 request and sets it in the browser as the value of a cookie
as it sends an HTTP redirect response that conveys the device registration request to the
PBB. Then the back-end discards the non-cryptographic credential. The process continues
as in the case where there is no preexisting user record until the PBB sends an HTTP GET

37It must be a POST request because a GET request could expose the non-cryptographic credential to a
leak through a “Referer” header. A normal response to the request should be a redirect response (targeting
the credential registration endpoint of the PBB) which would not expose the credential. But an error
response will download an HTML page that may contain links.

63



request that conveys the authentication token to the back-end, to which the browser adds
the cookie containing the non-cryptographic credential.38 In either case, once the application
back-end has received the non-cryptographic credential and the authentication token, it uses
the authentication token to obtain the hash of the public key and the device record handle
from the VBB, and it uses the non-cryptographic credential to locate the existing user record.
Then it creates a device record containing the device record handle and the hash of the public
key, and it stores a reference to the existing user record in the device record.

7.6.2 Issuance of Cryptographic Credentials for Open-Loop Authentication

As discussed above in Section 6.1, cryptographic credentials used in open-loop authentication
include public key certificates, U-Prove tokens, and Idemix anonymous credentials. Such
credentials are issued by an authoritative identity or attribute provider after the user has
demonstrated possession of the attributes asserted by the credential. They are stored by the
PBB as full-fledged credentials; protocredentials are not used for open-loop authentication.

To demonstrate possession of the attributes to be included in a credential, the user may
first establish an anonymous account at an application supplied by the identity or attribute
provider, then provide evidence of possession of the attributes either online or by mail or in
person. The attributes are recorded in the user record of the initially-anonymous account,
either automatically or by an account administrator.

The application supplied by the identity or attribute provider includes a VBB that is
database aware and can access the user record. Once the verified attributes are present
in the user record, the credential is created as follows. The application sends a credential
creation request to the PBB, either through a native front-end or through a browser, using
the inter-application communication mechanism of the mobile device as in the authentication
process.

The PBB establishes a secure connection to the VBB and creates the credential in con-
junction with the VBB, in a manner dependent on the type of credential:

1. If the credential consists of a public key certificate and its associated private key,
the PBB generates the key pair, sends the public key to the VBB and demonstrates
knowledge of the private key. The VBB issues a certificate binding the public key to
the verified user attributes. The VBB sends the certificate to the PBB which stores it
together with the private key as a full-fledged credential.

2. An Idemix anonymous credential [33, 34] is jointly computed by the PBB and the VBB
using the Idemix Issuing Protocol [34, §6.1] and stored by the PBB as a full-fledged
credential.

3. A U-Prove token [30, 31, 32] is jointly computed by the PBB and the VBB using the
U-Prove Issuance Protocol [32, §2.4], and stored in the PBB as full-fledged credential.

38Thus the authentication token and the non-cryptographic credential are received by the back-end in the
same HTTP request. If no cookie were set and the back-end simply used the non-cryptographic credential
received in the POST request, the back-end would have to use some other way of linking the POST request
and the GET request as originating from the same device. Discarding the non-cryptographic credential after
setting the cookie is a countermeasure against a possible denial-of-service attack by storage exhaustion.

64



Once one or more public key certificates or privacy-enhancing credentials are installed in
the PBB, they can be used to provide evidence for the issuance of other such credentials by
other identity or attribute providers. We note, in particular, that Idemix makes it possible to
issue a credential upon presentation of one or more existing credentials, with privacy features
such as inclusion in the new credential of an attribute asserted by the existing credential
without learning the value of the attribute, or verification that two attributes of different
existing credentials have the same value without learning the value.

8 Security Analysis of the Mobile Authentication Ar-

chitecture

In this section we discuss the implications of using bearer tokens for the security of the pro-
posed mobile authentication architecture; then we carry out a case-by-case security analysis
according to whether and how the user is asked for consent before the use of a credential;
finally we discuss the risk of PBB spoofing.

8.1 Secondary Authentication with a Bearer Token

In Section 4 we saw that multifactor closed loop authentication with credential regeneration
from a protocredential provides very strong security, even against an adversary who captures
the device or breaches database or network security. But that strong security may be com-
promised by implementation errors due to the difficulty of using cryptographic APIs correctly
[39]. The mobile architecture of Section 7 reduces the risk of implementation errors by encap-
sulating cryptographic complexity in the PBB and the VBB, so that developers do not have
to use a cryptographic API. After the PBB executes a primary cryptographic authentication
to the VBB, the native front-end or the browser executes a secondary, non-cryptographic
authentication to the application back-end by presenting a bearer token resulting from the
primary authentication. The bearer token may be the authentication token of figures 6
and 7, or the one-time or reusable session tokens of figures 9 and 10.

Use of a bearer token has the following implications:

1. Confidentiality protection is needed for the bearer token as it travels in a loop, from
the VBB, to the PBB, to the native front-end or browser, to the application back-end,
and back to the VBB. Confidentiality is achieved by the use of secure connections
between machines, and by entrusting the token to the operating system within the
mobile device, as described in previous sections.

2. A bearer token that is included in the URL of an HTTP GET request may leak in
a “Referer” header to the target of a link included in a web page downloaded to
the browser in the HTTP response to the GET request. Hence such a bearer token
should not be used after the HTTP response has been sent. This is the reason why the
authentication token is a one-time token in Section 7.4, and the session token sent to the
CBE of a web-based application is a one-time token in Section 7.5.39 (“Referer” leaks

39The reason why a one-time authentication token is also used for an application with a native front-end

65



can be avoided by sending the authentication token in the body of an HTTP POST
request instead of a GET request. But that substantially complicates implementation.)

3. At each stage in the loop, the token must be sent to the correct destination. This is
discussed case-by-case below in Section 8.2.

4. In third-party closed-loop authentication, an application back-end playing the role of
relying party must be prevented from using a bearer token sent to it to impersonate
the user vis-a-vis another relying party. This requires making the authentication token
specific to each relying party. The VBB makes the token specific by recording the URL
of the CBE in the authentication object, and delivering the authentication data to the
application back-end only if the back-end uses the same URL to self-assert its identity
when presenting the token.

Misuse of a bearer token is not an issue in two-party authentication or when relying
parties can be assumed to trust each other, as in the case of a group of applications
that share login sessions, discussed in Section 7.5.

5. A web-based application must prevent a Login CSRF attack where malicious user (the
attacker) causes another user (the victim) to log in to the attacker’s account. The
attacker can carry out the attack by setting up an unrelated web site and luring the
victim into visiting the site and clicking on a link whose URL is the URL of the callback
endpoint augmented with a query string that contains the attacker’s bearer token. If
the victim does not realize that she is accessing the wrong account she may enter
confidential information that will be captured by the attacker. The attack is prevented
by setting the TID cookie as described in Section 7.4 and shown in figures 7 and 10.
The cookie causes the attack to fail because the attacker cannot inject the cookie into
the victim’s browser. Discussion of CSRF attacks in other settings can be found in
[71].

8.2 Case Analysis

Security in the proposed mobile architecture depends to a great extent on whether and how
the user is asked for consent before using a credential and disclosing attributes. The request
may specify the party to which the credential will be presented (the party that owns the
VBB) and/or the party to which attributes will be disclosed (the application), if different.
We distinguish four cases.

8.2.1 Two-Party Closed Loop Authentication

In this case there is no need to ask the user for consent. The URL of the CAE of the VBB
is recorded in the credential metadata when the credential is created and the PBB uses it
at authentication time to establish a secure connection to the VBB. The URL of the CBE
is also recorded in the credential metadata, and the PBB uses it at authentication time to
send the authentication token.

in Section 7.3 is so that the VBB does not have to be concerned with whether the application is web-based
or has a native front-end.

66



There are two security issues related to sending the bearer token to the CBE:

1. If the application has a native front-end, the URL of the CBE uses a custom scheme
that identifies the application. However, a malicious application may register the same
custom scheme.

In iOS, all applications are distributed through the Apple app store after they have
been inspected and approved by Apple. Security depends on the assumption that no
malicious applications are running on the phone.

In Android, the PBB can determine the package name of the application that handles
the scheme (i.e. receives messages that target URLs constructed with that scheme).
It should record the package name in the credential metadata when the credential is
created, and verify that it has not changed at authentication time.

2. If the application is web-based, the URL of the CBE uses the https scheme. In An-
droid, a malicious application may be able to register to receive messages that use the
https scheme. As a countermeasure, the PBB should record at credential time in the
credential metadata the package name of the application that handles https messages
(which we have been calling the default browser), verify that it has not changed at
authentication time, and warn the user if it has. No such countermeasure is needed in
iOS because applications cannot register the https scheme.

8.2.2 Shared Login Sessions

In Section 7.5 we saw how a form of SSO suitable for enterprise applications can be im-
plemented by allowing a group of applications to share login sessions, in what we called
groupwise closed-loop authentication. Since the goal is to provide SSO the user should not
be asked for consent each time she wants to access an application. So the PBB cannot rely
on the user to decide whether an application is a member of the group entitled to receive a
session token.

Instead, for web-based applications, the PBB can decide based on the hostname of the
URL of the CBE endpoint. As in the two-party case, in Android the PBB should check that
the package name of the application that handles https messages has not changed since the
credential was created.

For applications with a native front-end, however, the PBB cannot decide based on the
URL of the CBE with sufficient security, due to the fact that a malicious application may
register the custom scheme used in the URL of the CBE. In Android, the scheme registration
problem was addressed in the two-party case by recording in the credential metadata the
package name of the application handling the scheme; this is not possible in the group case,
however, since each application in the group uses a different scheme. In iOS we relied on
the vetting of applications by the Apple app store; but this may not be deemed a sufficient
basis for the security of enterprise applications in a BYOD context.

Instead, the PBB should limit the native applications that it accepts requests from. In
Android this can be achieved by using the same code-signing key pair to sign the PBB and
each application in the group, and using the signature-based permission mechanism to limit
access to the PBB to native applications signed by that key pair. In iOS, it can be achieved

67



by using the same team ID for the PBB and all the applications in the group, thus allowing
them to share keychain data; the PBB may then limit access to native applications that
demonstrate knowledge of a symmetric key stored in the key chain by using it to sign a
challenge.

8.2.3 Third-Party Closed-Loop Authentication

In third-party closed-loop authentication, the primary, cryptographic authentication is to an
identity or attribute provider, while the secondary, non-cryptographic authentication is to a
relying party. The URL of the CAE of the VBB is recorded in the credential metadata when
the credential is created, but the URL of the CBE is supplied to the PBB by the relying
party.

There is no need to ask the user for consent to perform the primary authentication, but
consent is needed before disclosing user attributes to the relying party (or allowing the relying
party to access the user’s account in the case of social login). When asking for consent, the
relying party must be identified to the user.

A web-based application can be identified based on information in the TLS certificate
presented by the CBE. When a relying party requests authentication for the first time,
the PBB should access the CBE and obtain the certificate before asking for consent. The
authentication token is sent to the CBE via the browser. As in the two-party case, the PBB
should verify that the package name of the application that handles https messages has not
changed since the credential was created.

In Android, when the URL of the CBE is native, the PBB can obtain from the operating
system the icon and human-readable label of the native application targeted by the URL, and
use them to identify the relying party to the user. In iOS there is no equivalent functionality
at present, so the user should be told that the relying party is a native application, without
specifying its identity.

8.2.4 Open-Loop Authentication

In open-loop authentication, the primary and secondary authentications are typically to
the same party, in the sense that the VBB is part of the application back-end, or at least
trusted by the back-end. However, security cannot rely on that assumption. For example,
an adversary could use a malicious application to make an authentication request to the
PBB specifying a CBE that the user trusts, but a VBB controlled by the adversary. If
the user gave consent to the authentication transaction based on the fact that she trusts
the CBE, the adversary would obtain user attributes when the PBB executes the primary
authentication to the VBB. Therefore when asking the user’s consent to authenticate and
disclose user attributes, the PBB should separately identify the party that owns the CAE
(of the VBB) and the party that owns the CBE (of the application), unless it can determine
that they are the same party.

The party that owns the CAE can be identified based on information in the TLS certificate
presented by the CAE. The PBB should obtain the certificate by making a connection before
asking for consent. The session resumption feature of TLS is likely to eliminate the need for

68



a second TLS handshake when the PBB makes a second connection to execute the primary
authentication transaction.

If the application is web-based, the PBB can similarly identify the party that owns the
CBE using information in the TLS certificate presented by the CBE. In Android, as in the
two-party and third-party closed-loop cases, the PBB should verify that the package name
of the application that handles https messages has not changed since the credential was
created.

If the application has a native front-end, the PBB should identify the native front-end
as in the third-party closed-loop case.

8.3 Risk of PBB Spoofing

In the mobile architecture security depends, of course, on using a legitimate PBB. An ad-
versary could spoof the PBB by tricking the user into installing a malicious application
that purports to be the legitimate PBB, or a seemingly unrelated malicious application that
registers the custom scheme of the AOE of the PBB.

In iOS, these risks are mitigated by the fact that all applications are distributed through
the Apple app store after they have been inspected and approved by Apple.

In Android, on the other hand, there is at present no way of verifying that a native
application is legitimate. In fact, malware is often distributed by embedding it in modified
versions of legitimate applications [72]. Android applications are signed, but the code-signing
certificate is typically self-signed. Symantec offers code-signing certificates [73], but Android
app stores do not provide a mechanism for making trust decisions based on the code-signing
certificate of an application and the CA who has issued the certificate; and the Android
operating system does not give an application access to the code-signing certificate of a
different application installed on the same mobile device.

Thus, in Android, for the time being, security depends on the user being careful and
installing a legitimate PBB rather than a fake one. This should not be a problem when the
PBB is used to provide cryptographic authentication for a group of enterprise applications
as described in Section 7.5, because the PBB can be supplied by the IT department; but it
may be a problem for consumer applications.

However, Android allows multiple applications to be bundled within the same package.
The problem can be solved for a consumer application by bundling the PBB in the same
package as the application, as illustrated in Figure 11. Figure 11 is the same as Figure 6,
except that:

1. The native front-end and the PBB are bundled into the same package.

2. The URL of the DRE is not shown as optionally being sent in steps 4 and 5 because
it is known to the application back-end.

3. The URL of the CBE is not shown as optionally being sent in step 1 because it is
recorded in the credential metadata.

4. The URL of the CBE is not shown as optionally being sent in steps 2 and 6 and stored
in the authentication object within the VBB because the PBB cannot be used for
third-party closed-loop authentication.

69



The URL of the CAE is shown is optional in step 1 of Figure 11 as in step 1 of Figure 6, but
for different reasons. In Figure 6 it was optional to allow the relying party in third-party
close-loop authentication to not specify the identity or attribute provider to be used. In
Figure 11 it is optional because the PBB is only used by one application, and thus the CAE
of the VBB could be configured in the PBB.

In particular, high security Android applications (used, e.g., for online banking or patient
access to a health care institution) should bundle the PBB to avoid using a fake PBB present
in the user’s device.40

Notice, however, that if the application uses biometric authentication, embedding the
PBB in the native front-end may allow the application to obtain the user’s biometric sample
at enrollment time and authentication time. This is a privacy drawback if the user trusts
the application less than it would a separate PBB application downloaded from a trusted
source.

9 Authentication on traditional PCs

Mobile devices have produced a new computer paradigm whose ingredients include gesture-
based interfaces, native apps downloadable from app stores, a native-app/web-based app
duality, sandboxing, and URL-based inter-app communication facilities. There is no doubt
that laptops and desktops will sooner or later migrate to the new paradigm. Migration is
beginning to happen as witnessed by the introduction of gestures in Mac computers and more
recently by the dual launch of Windows 8 and Windows RT.41 Once it has been completed
laptops and desktops will be able to take advantage of the authentication architecture of
Section 7. (Notice that the protocredential-based multifactor closed-loop authentication
technique of sections 2 and 3 is not specific to mobile devices and can be implemented on
traditional PCs today, by integrating cryptographic and biometric functionality directly into
browsers and applications.)

But if full migration takes time, it may be desirable to emulate some elements of the ar-
chitecture within traditional PC computing. In particular, web application developers would
benefit from being able to use the same authentication methods when a web application is
accessed through a browser running on a mobile device as when it is accessed through a
browser running on a traditional PC. We propose to make this possible by implementing
the PBB as a browser extension.42 A redirect HTTP response that would be forwarded to
a PBB implemented as native application in a mobile device is intercepted and handled by
the browser extension in a traditional PC. Figure 12 illustrates the technique.

An important benefit of this technique is that it can be implemented without in-depth
knowledge of browser internals. The only knowledge of browser software required is how an
extension can intercept an HTTP redirect response. The functionality of the PBB extension

40The high security application itself will remain vulnerable to spoofing, but a bank or health care insti-
tution should be able to provide out-of-band instructions to users on how to install its mobile application.

41It is unfortunate that, while Microsoft is championing the convergence of mobile and desktop computing,
neither Windows 8 nor Windows RT provide a mechanism for communication between native applications
equivalent to those of Android and iOS.

42Most browsers have facilities that allow developers to create functionality extensions, variously called
plug-ins, add-ons, helper objects, etc.

70



Android device

Application
back-end

Native
front-end

PBB VBB

5

2

3

1

4

6

7

Authn spec
[URL of CAE]

[TID]

Credential presentation

Authn token

Status
Authn token
[TID]

Authn token

Authn token Authn data

Authn token

Authn data

PBB = Prover Black Box
VBB = Verifier Black Box
Authn = Authentication
Authn spec = Specfication of credentials
                      and/or attributtes and/or access
TID = Transaction ID

AOE DRE

CBE

CAE

CBE = Callback endpoint
AOE = Authentication Offloading Endpoint
CAE = Cryptographic authentication endpoint
DRE = Data retrieval endpoint

Square brackets […] indicate optional parameters

Package

Figure 11: PBB bundled into same package as an Android native application front-end

71



Authn token

URL of CBE

Authn data

Traditional PC

Web-based
application

Browser

PBB VBB

1

2

3

4

5

6

Authn token
URL of CBE

Authn spec
URL of CBE
URL of CAE

 TID
TID Cookie

CAE

CBE

VAOE DRE

Authn spec
[URL of CAE]
URL of CBE

TID

Credential presentation
URL of CBE

Authn token

Status
Authn token
[URL of DRE]
TID

Status
Authn token

[URL of DRE]
TID

TID Cookie

Authn data

PBB = Prover Black Box
VBB = Verifier Black Box
Authn = Authentication
Authn spec = Specfication of credentials
                      and/or attributtes and/or access
TID = Transaction ID
Dev rec = Device record 

CBE = Callback endpoint
VAOE = Virtual Authentication Offloading               
          Endpoint
CAE = Cryptographic authentication endpoint
DRE = Data retrieval endpoint

Square brackets […] indicate optional parameters

Figure 12: PBB implemented as browser extension in traditional PC

72



is implemented separately and independently from the browser internals, and is identical to
the functionality of a PBB implemented as a native application in a mobile device.43

10 Privacy Considerations

Traditional passwords have an important benefit that is often overlooked: they can provide
full privacy. When a user logs in to a web site with username and password, if the username
was freely chosen by the user during registration (if it is not, e.g., a verified email address),
then the user can be anonymous, and no third party is informed of the login. This privacy
is lost in third-party login, using a protocol such as OpenID or OAuth, because the identity
provider is informed of the login [75]; often, the user is only offered a limited choice of
identity providers by the relying party, and is thus forced to surrender her privacy to an
identity provider that she may not trust.

Our method of two-party closed-loop authentication eliminates the security drawbacks of
logging in with username and password while preserving full privacy and anonymity. This is
so even when a biometric is used as a factor in multifactor authentication. (The privacy and
security implications of using a biometric were discussed above in Sections 4.4.1 and 4.4.2.)

Our method of third-party closed-loop authentication on mobile devices, in addition
to eliminating the vulnerability to phishing attacks inherent in password-based third-party
login, provides freedom of choice of identity or attribute provider, because the relying party
can specify the attributes it needs rather than the identity providers it supports.

Third-party closed-loop authentication should only be used in a limited number of cases.
It is convenient for social login and for implementing a trusted repository of self-asserted
personal data [76]. It should not be used for attributes for which the relying party requires
stronger evidence than self-assertion. Such attributes should be asserted by open-loop au-
thentication using public key certificates or anonymous credentials issued by authoritative
parties, without involvement of non-authoritative identity providers as middlemen.

Open-loop authentication with a public key certificate provides a great deal of privacy be-
cause the certificate issuer is not told how the certificate is used (although it may learn the
identity of the relying party from its IP address if OCSP is used for certificate revocation
checking). When the relying party only requires an attribute, such as age or nationality, that
does not uniquely identify the user, then an Idemix anonymous credential provides additional
privacy by preventing user tracking even if relying parties collude, and by preventing user
identification even if a relying party colludes with the credential issuer; a U-Prove token also
provides the latter feature.44

While our mobile architecture should make it easier to deploy privacy-enhancing creden-
tials, we do not underestimate the deployment difficulties that remain. We have discussed

43By contrast, we proposed earlier an authentication architecture for the NSTIC ecosystem [74] that
facilitated the use of cryptographic credentials, but required substantial modifications of browser software
and of the TLS protocol. No modification of browser internals or the TLS protocol are required by the
present approach.

44Notice that a privacy-enhancing credential that discloses an attribute that uniquely identifies the user
provides no more privacy than a public key certificate that binds a public key to that same attribute, since
disclosure of the attribute makes presentations of the credential linkable. .

73



some of these difficulties in the past in the Pomcor blog [77, 78, 79]. It is inherently diffi-
cult to revoke privacy-enhancing credentials. At this time Idemix does not provide a means
of revoking credentials. Instead, it provides an efficient protocol for updating a credential,
which facilitates issuing short-time credentials whose expiration time is postponed on a reg-
ular schedule. U-Prove credentials are not revocable by the issuer. The U-Prove Technology
Overview [31, §5.2] suggests issuing U-Prove tokens on-demand, including a nonce supplied
by the verifier as an attribute not seen by the issuer to ensure freshness. It is also inherently
difficult to prevent the fraudulent sharing of credentials.

The privacy implications of using a biometric sample have been discussed in several earlier
sections. To recapitulate: Neither biometric samples or biometric templates are stored in
the device nor in any database, and they are not presented to applications or to a certificate
authority. Uses of the same biometric for authentication to different applications are not
linkable. Malware running on the user’s device after an adversary has captured the device
cannot obtain data that can be related to the user’s biometric features. However malware
running on the device while the user is using it could prompt the user for a biometric sample,
and embedding the PBB in the native front-end of a web application may allow the front-end
to obtain a biometric sample.

11 Conclusion

We have defined the concept of closed-loop authentication, where the same party that issues
or registers a credential is later responsible for verifying possession of the credential, whereas
in open-loop authentication the party that issues or registers a credential is not directly
involved in the authentication process. Two-party authentication is necessarily closed-loop,
but a third party can assert the user’s identity or attributes either in open-loop, by issuing
a public key certificate or a privacy-enhancing credential such as a U-Prove token or an
Idemix anonymous credential, or in closed-loop, by communicating the user’s identity or
attributes to a relying party after verifying possession of the credential by the user. Open-
loop provides more privacy than closed-loop when a third party is involved, because the
third-party observes the authentication transactions in closed-loop authentication.

We have proposed a method of multifactor closed-loop authentication where an uncerti-
fied key pair is regenerated at authentication time from a protocredential stored in the user’s
device and one or more non-stored secrets, such as a passcode or a biometric sample, supplied
by the user; the verifier stores the hash of the public key in a database record and keeps it
secret. We have compared protocredential-based two-party authentication against five other
two-party authentication methods, and shown that it provides a stronger security posture
against an adversary who may be able to capture the protocredential or breach database or
network security.

The protocredential-based authentication technique cannot be used directly to imple-
ment open-loop or one-factor closed-loop authentication methods, but we have proposed a
data protection technique that can be used to protect credentials used in such methods.
Data is protected by encrypting it under a data-encryption key that is entrusted to a key
storage service or distributed over several services using Shamir’s secret sharing technique,

74



and protocredential-based two-factor authentication is used to retrieve the key. The data
protection technique can be used to implement global single sign-on by encrypting multiple
credentials used for one-factor closed-loop authentication under the same data-encryption
key, and to extend the security benefits of protocredential-based authentication to open-loop
authentication.

We have proposed an architecture for authentication on mobile devices that allows both
web-based applications and applications with native front-ends to offload both closed-loop
and open-loop authentication to a prover black box (PBB) and a verifier black box (VBB),
taking advantage of an inter-application communication mechanism available in Android and
iOS. The PBB and the VBB encapsulate the complexities of cryptographic and biometric
authentication, making its benefits easily available to application developers.

We have shown how the architecture allows a group of applications to share login ses-
sions, thus providing a second form of single sign-on, which is well suited for enterprise SSO
in a BYOD context. We have shown how the architecture can be adapted for use on tradi-
tional PCs using browser extensions, while waiting for the app-centric computing paradigm
introduced by mobile devices to fully migrate to desktops and laptops.

Skeptics may argue that many earlier attempts at using cryptography for user authenti-
cation have failed to displace passwords on the Internet. We respond by pointing out that
our approach removes many of the obstacles that have faced earlier approaches. The mo-
bile architecture can be used by web-based applications on mobile devices without browser
modification, and by applications with native front-ends without browser involvement. No
modifications of the TLS protocol are required. No special hardware is required. No tamper
resistance is required. And no knowledge of cryptography or biometrics is required from ap-
plication developers. We hope that the approach we are proposing will facilitate the broad
deployment of cryptographic and biometric authentication on the Internet.

A Appendices

A.1 Bit Length of the RSA Decryption Exponent

The algorithm for initial generation of an RSA key pair specified in Section 2.6.4 checks the
bitlength of d at step 7 and starts over if it is no greater than l/2. We argue here that this
is very unlikely.

Using the notations of Section 2.6.4, recall that d = c′/c′′, where c′ = (c mod λ− 1) + 1
and c′′ = GCD(c′, λ).

If c is roughly uniformly distributed over [0, 2l+64), then c′ is roughly uniformly distributed
over [1, λ−1]. This means that, l′ being the bitlength of λ, the bitlength of c′ is no less than
l′ − k with probability roughly 2k; for example, the bitlength of c′ is no less than l′ − 128
with negligible probability ≈ 2−128.

Recall that λ = (p− 1)(q − 1)/GCD(p− 1, q − 1). The bitlength of (p− 1)(q − 1) is the
bitlength l of the modulus. The bitlength of GCD(p−1, q−1) depends on the distributions of
p−1 and q−1, but is unlikely to be more a few bits. Indeed, we prove in Appendix A.2 that
the expected value of log2(GCD(u, u′)) is, somewhat surprisingly, less than 1 if u and u′ are
random numbers independently and uniformly distributed over [1, k] and [1, k′] respectively

75



(for any k, k′ > 0); p− 1 and q − 1 are not uniformly distributed over initial segments, but
their specific distributions should not make a big difference as long as they are independent.

Finally, d = c′/c′′ with c′′ = GCD(c′, λ), and c′′ is unlikely to be more than a few bits long
because c′ and λ are independently generated, based again on the result of Appendix A.2.

To recapitulate, the bitlength of (p− 1)(q − 1) is l, λ is likely to be no more than a few
bits shorter, c′ is no more than 128 bits shorter than λ with negligible probability ≈ 2−128,
and d is likely to be no more than a few bits shorter than c′. So d is very likely to be greater
than l/2 if l has one of the bitlengths specified for the RSA modulus in [45], viz. 1024, 2048
or 3072.

A.2 Size of the GCD of two Random Numbers

Let u and u′ be two random integers independently and uniformly distributed over [1, k] and
[1, k′] respectively (k, k′ ≥ 2). We want to prove the somewhat surprising result that the
expected value of

E = log2(GCD(u, u′))

is less than 1.
Let p be a prime number, and let prob(p, i), i ≥ 1, be the probability that pi divides

GCD(u, u′). We have

prob(p, i) ≤ 1

p2i
.

The expected value of log2 of the largest power of p that divides GCD(u, u′) is∑
i≥1

log2(p
i) · (prob(p, i)− prob(p, i+ 1))

= log2(p) ·
∑
i≥1

i(prob(p, i)− prob(p, i+ 1))

= log2(p) ·
∑
i≥1

prob(p, i)

≤ log2(p) ·
∑
i≥1

1

p2i

=
log2(p)

p2 − 1

So the expected value of log2(GCD(u, u′)) is

E =
∑
j≥1

log2(pj)

p2
j − 1

where pj is the j-th prime. Let

F (x) =
log2(x)

x2 − 1
.

so that

E =
1

ln 2

∑
j≥1

F (pj).

76



Let π(x) be the number of primes less than or equal to x and

g(x) = 1.25506
x

lnx
.

It is known [46, Fact 2.96] that π(x) < g(x) for x > 1. The function g(x) is monotonically
increasing for x ≤ e. Let h(x) be the inverse of the restriction of g to the interval [e,+∞), i.e.
the monotonically increasing function defined over the interval [g(e),+∞) by h(g(x)) = x.
Since g(e) < 4 and π(x) < g(x) we have, for j ≥ 4, j = π(pj) < g(pj) and h(j) < h(g(pj)) =
pj. Because h is monotonically decreasing over over the range of h we have, for j ≥ 4,

F (pj) < F (h(j))

and ∑
j≥5

F (pj) <
∑
j≥5

F (h(j)) <
∫ +∞

u=4
F (h(u)du.

Letting u = g(x) and du = g′(x)dx,∫ +∞

u=4
F (h(u)du =

∫ +∞

x=h(4)
F (x)g′(x)d

=
∫ +∞

x=h(4)

(lnx)− 1

(x2 − 1)lnx
dx

=
∫ +∞

x=h(4)

1

x2

1− 1

lnx

1− 1
x2

dx

<
∫ +∞

x=h(4)

1

x2
dx

=
[
−1

x

]+∞
h(4)

=
1

h(4)

Since g(5) = 3.8990 . . ., we have g(5) < 4, and 5 < h(4), and

1

h(4)
<

1

5
.

Therefore ∑
j≥1

F (pj) = F (p1) + F (p2) + F (p3) + F (p4) +
∑
j≥5

F (pj)

< F (2) + F (3) + F (5) + F (7) +
1

5
= 0.676...

and

E =
1

ln 2

∑
j≥1

F (pj)

= 0.975...

< 1.

77



A.3 Probability of two Random Numbers Having a Common Prime
Factor Greater than 100

The probability that two random numbers u and v independently and uniformly distributed
over intervals [1, N ] and [1, N ′] have a common prime factor belonging to a set P of prime
numbers is no greater than ∑

p∈P

1

p2
.

In particular, if pi is the i-th prime number, the probability that u and v have a common
prime factor greater than the j-th prime number is no greater than

∑
i>j

1

p2
i

=
∑
i>0

1

p2
i

−
∑

i<=j

1

p2
i

.

The value of ∑
i>0

1

p2
i

is the value of the prime zeta function for the argument 2, which is 0.452247... [80]. There
are 25 prime numbers less than 100, and

∑
i<=25

1

p2
i

= 0.450428....

Therefore the probability that u and v have a common prime factor greater than 100 is less
than 0.452248− 0.450428 = 0.0018 < 0.2%.

References

[1] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password Memorability and
Security: Empirical Results. IEEE Security & Privacy, 2004.
http://homepages.cs.ncl.ac.uk/jeff.yan/jyan_ieee_pwd.pdf.

[2] Joseph Bonneau. Measuring Password Reuse Empirically, February 2011.
http://www.lightbluetouchpaper.org/2011/02/09/

measuring-password-re-use-empirically/.

[3] Ian Paul. Update: LinkedIn Confirms Account Passwords Hacked, June 6, 2012.
http://www.pcworld.com/article/257045/update_linkedin_confirms_account_

passwords_hacked.html.

[4] Rich Newman. Why Some Password Security is a Waste of Time, February 5, 2012.
http://richnewman.wordpress.com/2012/02/05/

why-some-password-security-is-a-waste-of-time/.

[5] Zack Whittaker. Let’s get rid of usernames and passwords for good. November 23,
2009. http://www.zdnet.com/blog/igeneration/
lets-get-rid-of-usernames-and-passwords-for-good/2498.

78

http://homepages.cs.ncl.ac.uk/jeff.yan/jyan_ieee_pwd.pdf
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.pcworld.com/article/257045/update_linkedin_confirms_account_passwords_hacked.html
http://www.pcworld.com/article/257045/update_linkedin_confirms_account_passwords_hacked.html
http://richnewman.wordpress.com/2012/02/05/why-some-password-security-is-a-waste-of-time/
http://richnewman.wordpress.com/2012/02/05/why-some-password-security-is-a-waste-of-time/
http://www.zdnet.com/blog/igeneration/lets-get-rid-of-usernames-and-passwords-for-good/2498
http://www.zdnet.com/blog/igeneration/lets-get-rid-of-usernames-and-passwords-for-good/2498


[6] Mat Honan. Kill the Password: Why a String of Characters Cant Protect Us
Anymore. November 15, 2012.
http://www.wired.com/gadgetlab/2012/11/ff-mat-honan-password-hacker/.

[7] David P. Kormann and Aviel D. Rubin. Risks of the Passport Single Signon Protocol.
Computer Networks, 33:51–58, 2000. http://avirubin.com/passport.html.

[8] Ben Laurie. OpenID: Phishing Heaven, January 19, 2007.
http://www.links.org/?p=187.

[9] EMC. RSA SecurID Hardware Authenticators. http://www.emc.com/security/
rsa-securid/rsa-securid-hardware-authenticators.htm.

[10] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. HOTP: An
HMAC-Based One-Time Password Algorithm, December 2005.
http://tools.ietf.org/html/rfc4226.

[11] Confident Technologies Delivers Image-Based, Multifactor Authentication to
Strengthen Passwords on Public-Facing Websites. October 2010.
http://www.marketwire.com/press-release/

Confident-Technologies-Delivers-Image-Based-Multifactor-Authentication-Strengthen-Passwords-1342854.

htm.

[12] Arthur W. Coviello, Jr. Open Letter to RSA Customers.
http://www.rsa.com/node.aspx?id=3872.

[13] John Markoff. SecurID Company Suffers a Breach of Data Security. March 17, 2011.
http://www.nytimes.com/2011/03/18/technology/18secure.html.

[14] Elinor Mills. Attack on RSA used zero-day Flash exploit in Excel. April 5, 2011.
http://news.cnet.com/8301-27080_3-20051071-245.html.

[15] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2,
August 2008. http://tools.ietf.org/html/rfc5246.

[16] WebID Incubator Group. WebID - Universal Login and Identity for the Web. At
http://webid.info/.

[17] Mozilla. BrowserID Protocol Overview.
https://developer.mozilla.org/en-US/docs/Persona/Protocol_Overview.

[18] M. Dietz, A. Czeskis, D.S. Wallach, and D. Balfanz. Origin-Bound Certificates: A
Fresh Approach to Strong Client Authentication for the Web, 2012.

[19] NIST. PIV Standards & Supporting Documents.
http://csrc.nist.gov/groups/SNS/piv/standards.html.

[20] Apple Inc. iOS: Understanding data protection.
http://support.apple.com/kb/HT4175.

79

http://www.wired.com/gadgetlab/2012/11/ff-mat-honan-password-hacker/
http://avirubin.com/passport.html
http://www.links.org/?p=187
http://www.emc.com/security/rsa-securid/rsa-securid-hardware-authenticators.htm
http://www.emc.com/security/rsa-securid/rsa-securid-hardware-authenticators.htm
http://tools.ietf.org/html/rfc4226
http://www.marketwire.com/press-release/Confident-Technologies-Delivers-Image-Based-Multifactor-Authentication-Strengthen-Passwords-1342854.htm
http://www.marketwire.com/press-release/Confident-Technologies-Delivers-Image-Based-Multifactor-Authentication-Strengthen-Passwords-1342854.htm
http://www.marketwire.com/press-release/Confident-Technologies-Delivers-Image-Based-Multifactor-Authentication-Strengthen-Passwords-1342854.htm
http://www.rsa.com/node.aspx?id=3872
http://www.nytimes.com/2011/03/18/technology/18secure.html
http://news.cnet.com/8301-27080_3-20051071-245.html
http://tools.ietf.org/html/rfc5246
http://webid.info/
https://developer.mozilla.org/en-US/docs/Persona/Protocol_Overview
http://csrc.nist.gov/groups/SNS/piv/standards.html
http://support.apple.com/kb/HT4175


[21] Andrey Belenko. Overcoming iOS Data Protection To Re-Enable iPhone Forensics.
Presentation at BlackHat 2011. https://media.blackhat.com/bh-us-11/Belenko/
BH_US_11_Belenko_iOS_Forensics_WP.pdf.

[22] Jean-Baptiste Bedrune and Jean Sigwald. iPhone data protection in depth, May 2011.
Presentation at HITB 2011, http://conference.hackinthebox.org/
hitbsecconf2011ams/materials/D2T2%20-%20Jean-Baptiste%20Be%cc%81drune%

20&%20Jean%20Sigwald%20-%20iPhone%20Data%20Protection%20in%20Depth.pdf.

[23] J. Hughes et al. Profiles for the OASIS Security Assertion Markup Language (SAML)
V2.0. OASIS Standard, March 2005.
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.

[24] Tom Scavo and Scott Cantor. Shibboleth Architecture Technical Overview, Working
Draft 02, June 2005. http://shibboleth.internet2.edu/docs/
draft-mace-shibboleth-tech-overview-latest.pdf.

[25] OpenID Foundation. OpenID Authentication 2.0 Final, December 5, 2007.
http://openid.net/specs/openid-authentication-2_0.html.

[26] OAuth Working Group Documents. http://datatracker.ietf.org/wg/oauth/.

[27] OpenID Foundation. Welcome to OpenID Connect. http://openid.net/connect/.

[28] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol - OCSP, June 1999.
http://tools.ietf.org/html/rfc2560.

[29] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet
X.509 Public Key Infrastructure Certificate and CRL Profile, May 2008.
http://datatracker.ietf.org/doc/rfc5280/.

[30] Microsoft Corporation. U-Prove Home Page. http://www.microsoft.com/u-prove.

[31] Christian Paquin. U-Prove Technology Overview V1.1 Draft Revision 1, February
2011. There is no http URL for this document, but it can be downloaded by following
links from http://www.microsoft.com/u-prove.

[32] Christian Paquin. U-Prove Cryptographic Specification V1.1 Draft Revision 1,
February 2011. There is no http URL for this document, but it can be downloaded by
following links from http://www.microsoft.com/u-prove.

[33] J. Camenisch, P. Bichsel, and T. Gross. Idemix Blog.
http://idemix.wordpress.com/.

[34] Jan Camenisch et al. Specification of the Identity Mixer Cryptographic Library,
Version 2.3.4, February 10, 2012. Downloadable from
https://prime.inf.tu-dresden.de/idemix/.

80

https://media.blackhat.com/bh-us-11/Belenko/BH_US_11_Belenko_iOS_Forensics_WP.pdf
https://media.blackhat.com/bh-us-11/Belenko/BH_US_11_Belenko_iOS_Forensics_WP.pdf
http://conference.hackinthebox.org/hitbsecconf2011ams/materials/D2T2%20-%20Jean-Baptiste%20Be%cc%81drune%20&%20Jean%20Sigwald%20-%20iPhone%20Data%20Protection%20in%20Depth.pdf
http://conference.hackinthebox.org/hitbsecconf2011ams/materials/D2T2%20-%20Jean-Baptiste%20Be%cc%81drune%20&%20Jean%20Sigwald%20-%20iPhone%20Data%20Protection%20in%20Depth.pdf
http://conference.hackinthebox.org/hitbsecconf2011ams/materials/D2T2%20-%20Jean-Baptiste%20Be%cc%81drune%20&%20Jean%20Sigwald%20-%20iPhone%20Data%20Protection%20in%20Depth.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-latest.pdf
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-latest.pdf
http://openid.net/specs/openid-authentication-2_0.html
http://datatracker.ietf.org/wg/oauth/
http://openid.net/connect/
http://tools.ietf.org/html/rfc2560
http://datatracker.ietf.org/doc/rfc5280/
http://www.microsoft.com/u-prove
http://www.microsoft.com/u-prove
http://www.microsoft.com/u-prove
http://idemix.wordpress.com/
https://prime.inf.tu-dresden.de/idemix/


[35] P. Wouters et al. TLS Out-of-Band Public Key Validation, April 25, 2012. Internet
draft. Work in progress.
http://tools.ietf.org/html/draft-ietf-tls-oob-pubkey-03.

[36] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In Proceedings of the
6th ACM conference on Computer and communications security, CCS ’99, pages
28–36, New York, NY, USA, 1999. ACM.

[37] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing,
3(1):97–139, 2008.

[38] F. Hao, R. Anderson, and J. Daugman. Combining Cryptography with Biometrics
Effectively. IEEE Trans. Comput., 55(9):1081–1088, 2006.

[39] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. The most dangerous code in the world: validating ssl certificates in
non-browser software. In ACM Conference on Computer and Communications
Security, pages 38–49, 2012.

[40] Phillip Hallam-Baker. The Recent RA Compromise. March 23, 2011. http:
//blogs.comodo.com/it-security/data-security/the-recent-ra-compromise/.

[41] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation
Function (HKDF), May 2010. http://tools.ietf.org/html/rfc5869.

[42] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0,
September 2000. http://tools.ietf.org/html/rfc2898.

[43] NSA. Suite B Cryptography.
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml.

[44] Elaine Barker and John Kelsey. Recommendation for Random Number Generation
Using Deterministic Random Bit Generators, January 2012. NIST Special Publication
800-90A.

[45] NIST. Digital Signature Standard (DSS), June 2009. FIPS PUB 186-3,
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf.

[46] Alfred J. Menezes and Paul C. Van Oorschot and Scott A. Vanstone and R. L. Rivest.
Handbook of Applied Cryptography, 1997. http://cacr.uwaterloo.ca/hac/.

[47] D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve Digital Signature
Algorithm (ECDSA), 2001. Certicom whitepaper,
http://cs.ucsb.edu/~koc/ccs130h/notes/ecdsa-cert.pdf.

[48] Nalini K. Ratha, Jonathan H. Connell, and Ruud M. Bolle. Enhancing security and
privacy in biometrics-based authentication systems. IBM Systems Journal,
40(3):614–634, 2001.

81

http://tools.ietf.org/html/draft-ietf-tls-oob-pubkey-03
http://blogs.comodo.com/it-security/data-security/the-recent-ra-compromise/
http://blogs.comodo.com/it-security/data-security/the-recent-ra-compromise/
http://tools.ietf.org/html/rfc5869
http://tools.ietf.org/html/rfc2898
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://cacr.uwaterloo.ca/hac/
http://cs.ucsb.edu/~koc/ccs130h/notes/ecdsa-cert.pdf


[49] Ari Juels and Madhu Sudan. A fuzzy vault scheme. In In International Symposium on
Information Theory (ISIT, page 408. IEEE Press, 2002.

[50] Xavier Boyen. Reusable Cryptographic Fuzzy Extractors. In ACM CCS 2004, ACM,
pages 82–91. ACM Press, 2004.

[51] W. J. Scheirer and T. E. Boult. Bipartite biotokens: Definition, implementation, and
analysis. In in Proc. of IEEE/IAPR Int. Conf. on Biometrics, pages 775–785, 2009.

[52] Ann Cavoukian and Alex Stoianov. Biometric Encryption: A Positive-Sum
Technology that Achieves Strong Authentication, Security and Privacy, 2007.
Discussion paper of the Office of the Information and Privacy Commissioner of
Ontario, http://www.ipc.on.ca/images/Resources/bio-encryp.pdf.

[53] C. Rathgeb and A. Uhl. A Survey on Biometric Cryptosystems and Cancelable
Biometrics. EURASIP Journal on Information Security, 3, 2011.
http://jis.eurasipjournals.com/content/2011/1/3.

[54] ISO/IEC. Biometric Information Protection, 2011.

[55] P. Tuyls, B. Skoric, and T. Kevenaar, editors. Security with Noisy Data: Private
Biometrics, Secure Key Storage and Anti-Counterfeiting. Springer, 2007. ISBN
978-1-84628-983-5.

[56] P. Moceri and T. Ruths. Cafe Cracks: Attacks on Unsecured Wireless Networks.
http://www1.cse.wustl.edu/~jain/cse571-07/cafecrack.htm.

[57] Bank of America. Site Key Authentication, an Additional Layer of Online and Mobile
Banking Security. https://www.bankofamerica.com/privacy/
online-mobile-banking-privacy/sitekey.go.

[58] Stuart E. Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The Emperor’s
New Security Indicators. In IEEE Symposium on Security and Privacy, pages 51–65,
2007.

[59] S. Turner. Asymmetric Key Packages, August 2010.
http://tools.ietf.org/html/rfc5958.

[60] T. Ylonen. The Secure Shell (SSH) Protocol Architecture, January 2006.
http://tools.ietf.org/html/rfc4251.

[61] Google. Advanced sign-in security for your Google account. February 10, 2011.
http://googleblog.blogspot.com/2011/02/

advanced-sign-in-security-for-your.html.

[62] NIST. FIPS 140-1 and FIPS 140-2 Vendor List.
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401vend.htm.

82

http://www.ipc.on.ca/images/Resources/bio-encryp.pdf
http://jis.eurasipjournals.com/content/2011/1/3
http://www1.cse.wustl.edu/~jain/cse571-07/cafecrack.htm
https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/sitekey.go
https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/sitekey.go
http://tools.ietf.org/html/rfc5958
http://tools.ietf.org/html/rfc4251
http://googleblog.blogspot.com/2011/02/advanced-sign-in-security-for-your.html
http://googleblog.blogspot.com/2011/02/advanced-sign-in-security-for-your.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401vend.htm


[63] Vladimir Katalov. ElcomSoft Breaks iPhone Encryption, Offers Forensic Access to
File System Dumps, May 23, 2011. http://blog.crackpassword.com/2011/05/
elcomsoft-breaks-iphone-encryption-offers-forensic-access-to-file-system-dumps/.

[64] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.

[65] F. Corella and K. P. Lewison. Achieving the Privacy Goals of NSTIC in the Short
Term, May 2011. http://pomcor.com/whitepapers/NSTICWhitePaper.pdf.

[66] Anil John. Challenges in Operationalizing Privacy in Identity Federations - Part 2.
October 8, 2012. http://info.idmanagement.gov/2012/10/
challenges-in-operationalizing-privacy.html.

[67] Francisco Corella. Structured certificates and their applications to distributed
systems. Presented at the RSA Conference, San Jose, California, January 16-20, 2000.

[68] Francisco Corella. Method and apparatus for providing field confidentiality in digital
certificates, October 2004. US Patent 6,802,002.

[69] Apple Inc. iOS Programming Guide: Communicating with other Apps; Implementing
Custom URL Schemes.
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/

iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html#//

apple_ref/doc/uid/TP40007072-CH7-SW2.

[70] Google. IntentFilter. http:
//developer.android.com/reference/android/content/IntentFilter.html.

[71] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for Cross-Site Request
Forgery. In Proceedings of the 15th ACM Conference on Computer and
Communications Security, 2007.
http://www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf.

[72] Symantec. Protecting Android Applications with Secure Code-Signing Certificates.
https://www.symantec.com/content/en/us/enterprise/white_papers/b-code_

signing_for_android_WP.pdf.

[73] Symantec. Symantec Code Signing for Android.
http://www.symantec.com/verisign/code-signing/android.

[74] F. Corella and K. Lewison. A Proposed Architecture for the NSTIC Ecosystem, July
17, 2011. http://pomcor.com/whitepapers/ProposedNSTICArchitecture.pdf.

[75] Anil John. Challenges in Operationalizing Privacy in Identity Federations. September
30, 2012. http://info.idmanagement.gov/2012/09/
challenges-in-operationalizing-privacy.html.

[76] Personal Data Ecosystem Consortium (PDEC).
http://personaldataecosystem.org/.

83

http://blog.crackpassword.com/2011/05/elcomsoft-breaks-iphone-encryption-offers-forensic-access-to-file-system-dumps/
http://blog.crackpassword.com/2011/05/elcomsoft-breaks-iphone-encryption-offers-forensic-access-to-file-system-dumps/
http://pomcor.com/whitepapers/NSTICWhitePaper.pdf
http://info.idmanagement.gov/2012/10/challenges-in-operationalizing-privacy.html
http://info.idmanagement.gov/2012/10/challenges-in-operationalizing-privacy.html
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW2
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW2
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW2
http://developer.android.com/reference/android/content/IntentFilter.html
http://developer.android.com/reference/android/content/IntentFilter.html
http://www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf
https://www.symantec.com/content/en/us/enterprise/white_papers/b-code_signing_for_android_WP.pdf
https://www.symantec.com/content/en/us/enterprise/white_papers/b-code_signing_for_android_WP.pdf
http://www.symantec.com/verisign/code-signing/android
http://pomcor.com/whitepapers/ProposedNSTICArchitecture.pdf
http://info.idmanagement.gov/2012/09/challenges-in-operationalizing-privacy.html
http://info.idmanagement.gov/2012/09/challenges-in-operationalizing-privacy.html
http://personaldataecosystem.org/


[77] Francisco Corella. Pros and Cons of U-Prove for NSTIC, October 2011.
http://pomcor.com/2011/10/04/pros-and-cons-of-u-prove-for-nstic/.

[78] Francisco Corella. Pros and Cons of Idemix for NSTIC, October 2011.
http://pomcor.com/2011/10/10/pros-and-cons-of-idemix-for-nstic/.

[79] Francisco Corella. Credential Sharing: A Pitfall of Anonymous Credentials, December
2011. http://pomcor.com/2011/12/19/
credential-sharing-a-pitfall-of-anonymous-credentials/.

[80] WolframMathWorld. Prime Zeta Function.
http://mathworld.wolfram.com/PrimeZetaFunction.html.

84

http://pomcor.com/2011/10/04/pros-and-cons-of-u-prove-for-nstic/
http://pomcor.com/2011/10/10/pros-and-cons-of-idemix-for-nstic/
http://pomcor.com/2011/12/19/credential-sharing-a-pitfall-of-anonymous-credentials/
http://pomcor.com/2011/12/19/credential-sharing-a-pitfall-of-anonymous-credentials/
http://mathworld.wolfram.com/PrimeZetaFunction.html

	Introduction
	Protocredential-Based Authentication
	Overview
	Two-Factor Authentication with Protocredential and PIN
	Credential Revocation
	Preserving Access to the User's Account
	Device Registration
	Credential Regeneration
	Generic Algorithm
	DSA
	ECDSA
	RSA


	Using Biometrics for Protocredential-Based Authentication
	Security, Privacy and Usability Concerns with Biometrics
	Consistently Producing the Biometric Key
	Two-Factor Authentication with Biometrics
	Three-Factor Authentication

	Security Analysis of Two-Party Protocredential-Based Authentication
	Secrets and Their Purpose
	Security Posture of Authentication with a Key Pair Regenerated from a Protocredential and a Passcode
	Countermeasures against Back-End Spoofing

	Comparison with Other Security Postures
	Encrypted Private Key
	Passcode Independent of Key Pair
	Smart Card with Key Pair Programmatically Enabled by a PIN
	OTP
	Ordinary Password
	Summary

	Security and Privacy Provided by Two-Party Protocredential-Based Authentication with Biometrics
	Security and Privacy Provided by Two-Factor Authentication with Biometrics
	Additional Security Provided by Three-Factor Authentication


	Data Protection Mediated by Protocredential-Based Authentication
	State of the Art of Data Protection
	Effective Data Protection Using Protocredential-Based Authentication
	Using Multiple Storage Services
	Using a Protokey
	Credential Protection and SSO Based on Data Protection

	Open-Loop Authentication
	Cryptographic Open-Loop Authentication
	Biometric Open-Loop Authentication

	Mobile Authentication Architecture
	Configurations and Use Cases
	Communication between Native Applications
	Native Authentication Protocol
	Web-based Authentication Protocol
	SSO Based on Shared Login Sessions
	Shared Session Usage by a Native Front-End
	Shared Session Usage by a Web-Based Application
	Benefits of SSO Based on Shared Sessions

	Credential Creation
	Device Registration in the Mobile Architecture
	Issuance of Cryptographic Credentials for Open-Loop Authentication


	Security Analysis of the Mobile Authentication Architecture
	Secondary Authentication with a Bearer Token
	Case Analysis
	Two-Party Closed Loop Authentication
	Shared Login Sessions
	Third-Party Closed-Loop Authentication
	Open-Loop Authentication

	Risk of PBB Spoofing

	Authentication on traditional PCs
	Privacy Considerations
	Conclusion
	Appendices
	Bit Length of the RSA Decryption Exponent
	Size of the GCD of two Random Numbers
	Probability of two Random Numbers Having a Common Prime Factor Greater than 100


