
Strong and Convenient Multi-Factor Authentication on
Mobile Devices

Francisco Corella, PhD
fcorella@pomcor.com

Karen Lewison, MD
kplewison@pomcor.com

Revised September 6, 2012

Executive Summary
Authentication methods used today on mobile devices are both inconvenient and

insecure.
Ordinary passwords are difficult to type on small touch-screen displays that re-

quire switching keyboards for entering digits or punctuation. They provide even less
security on mobile devices than on desktops or laptops: a typing-feedback feature
prominently displays each character after it is typed, eliminating the security pro-
vided by password input boxes that display dots in lieu of characters; and users are
motivated to choose shorter and simpler passwords, which have less entropy.

One-time passwords are often used on mobile devices due to the lack of security
of ordinary passwords. Authenticating with a one-time password requires: entering a
PIN or a password to generate or request the one-time password; obtaining the one-
time password from a hard token, a soft token, a text message, or an email message;
and entering the one-time password. This is a very cumbersome procedure. One-time
passwords afford only relative security because they can be observed or intercepted
and they remain valid for several minutes.

We propose one-, two- and three-factor authentication methods for mobile devices
that provide strong security and are more convenient to use than one-time or ordinary
passwords. They are suitable both for enterprise and consumer use.

The proposed authentication methods are based on public key cryptography, but
they are easy to implement and deploy. They are easy to implement because all cryp-
tography is encapsulated in black boxes, so that developers do not have to program
any cryptographic operations. They are easy to deploy because they avoid the use of
certificates and do not require a public-key infrastructure.

In our one-factor authentication method the device uses a key-pair credential, and
the user does not have to provide any input. The device authenticates by demon-
strating knowledge of the private key. A hash of the associated public key is stored
in a device record, which is linked to a user record in an enterprise directory or user
database. If the device is lost or stolen, the key-pair credential can be revoked by
removing the device record from the database.

In our two- and three-factor authentication methods, the device also uses a key-
pair credential, but the key pair is not stored in the device; it is regenerated before
use from the additional authentication factor(s).

1

In the two-factor authentication method, the user provides a passcode such as
a PIN, which is used to regenerate the key pair. Because any passcode results in
a well-formed key pair, the user’s passcode is not exposed to an exhaustive offline
guessing attack by an attacker who steals the mobile device, opens it, and reads its
persistent memory.

In the three-factor authentication method, the user provides a passcode such as a
PIN and a biometric sample such as an iris image taken by the camera of the mobile
device. No biometric template is stored in the mobile device. Instead, the device
contains an auxiliary string that is used in conjunction with the biometric sample to
generate a biometric key. The biometric key is used in turn to regenerate the key pair.
The auxiliary string is encrypted by a key derived from the passcode for additional
security.

Although the proposed methods are motivated by the need to improve authenti-
cation on mobile devices, they can also be implemented on desktop or laptops using
browser extensions.

1 Introduction

Two methods are used today for user authentication on mobile devices: ordinary pass-
words, and one-time passwords. Both of them have security and usability drawbacks. An
alternative, public key certificates, provides strong security, but is difficult to deploy. In-
stead, we propose novel one-, two- and three-factor authentication methods based on public
key cryptography without certificates. These new methods provide strong security and are
easy to deploy and use.

1.1 Drawbacks of Current User Authentication Methods on Mo-
bile Devices

1.1.1 Ordinary Passwords

Passwords have well-known drawbacks for user authentication. They are hard to remember
and easy to guess [1]; they are often reused [2], allowing malicious Web sites to capture
them and use them to impersonate the user on other sites; they are vulnerable to phishing
attacks; and databases of hashed passwords, which sometimes are not even salted [3], are
targets for hackers who can mount offline dictionary attacks after breaking in. In the
enterprise, employees are often required to change their passwords regularly, which impacts
productivity and causes resentment [4].

Passwords on mobile devices have additional drawbacks. It is difficult to enter a pass-
word accurately on a small touch-screen keyboard; repeated mistakes result in an account
lockout that requires a password reset. Entering digits and punctuation symbols requires
switching keyboards. Users are likely to choose shorter, simpler, and therefore less secure
passwords because of the difficulty of typing and the inconvenience of switching keyboards.
To aid in typing, characters are magnified when typed, so an attacker can easily observe
the password by looking over the user’s shoulder as it is being typed.

2

Ordinary passwords on mobile devices are thus cumbersome to use while providing poor
security.

1.1.2 One-Time Passwords

Given the poor security provided by ordinary passwords on mobile devices, mobile applica-
tions with non-trivial security requirements use one-time passwords instead; but one-time
passwords are even more inconvenient for the user than ordinary passwords.

Traditionally one-time passwords have been generated by hardware tokens, and man-
ually copied by the user from the display of the token to a password input box. When
used on mobile devices, they can be generated instead by a native application running on
the device, often referred to as a “software token”. A software token avoids the cost of a
hardware token and the inconvenience of having to carry it. But using a software token
is still highly inconvenient. The user has to launch the software token application, enter a
PIN to generate the one-time password and copy the one-time password to the password
input box. There are alternative ways of producing a one-time password: it can be sent
to the user in an SMS message or an email message; or the user may obtain it by select-
ing images from a one-time grid; but it’s not clear that these alternative methods are less
inconvenient.

A one-time password is a two-factor authentication method, one factor being the PIN,
and the other the possession of the hardware token or the mobile device where the one-time
password is generated or received. One-time passwords provide more security than ordinary
passwords, but less security than other strong authentication methods such as public key
cryptography. They have limited entropy, they can be observed or intercepted, and they
remain valid for several minutes.

1.2 Drawbacks of Public Key Certificates

In theory, public key certificates are an attractive alternative for user authentication, be-
cause they provide strong security while requiring no user input when used as a one-factor
authentication method; however they have their own drawbacks:

• Relying parties must cope with the complexities of checking revocation using certifi-
cate revocation lists (CRLs) [5] or the Online Certificate Status Protocol (OCSP)
[6].

• A certificate issuer must set up a CRL distribution point or an OCSP service or both,
in addition to dealing with the complexities of issuing certificates.

• Developers dislike the ASN.1 encoding [7] of certificate data, which makes debugging
cumbersome.

• Users are burdened by the need to apply for, install, and renew certificates.

This may explain, at least in part, the poor support provided by browsers for SSL client
certificates, and some of the difficulties encountered by the US government when trying to

3

deploy PIV credentials for access to information systems, described in a recent GAO report
[8].

1.3 Our Solution: Public Key Cryptography Without Certifi-
cates

Our solution takes advantage of the security and ease of use of public key cryptography
while avoiding the drawbacks of user certificates.

Our solution aims at replacing passwords. A password is used to authenticate repeat
visits or transactions, establishing user continuity. A user registers a password and later
uses the password to demonstrate to an application that he or she is the same user who
registered the password with the application. The password does not demonstrate that the
user has a particular employee number, or a particular social security number, or any other
attribute that is asserted by a third-party authority. (Such attributes may be established
by other means in cases where they are needed. For example, a person may open a bank
account by visiting a branch and presenting physical third-party documentation, such as a
driver’s license. A web-access account may then be created for the user by a bank employee,
and the user may be given a temporary password.)

Similarly, our solution does not seek to prove attributes asserted by any third party. It
simply demonstrates user continuity, with no third party involvement. The user authenti-
cates to a mobile application that maintains user accounts. The mobile application may be
web-based, or it may consist of a native application that serves as a front-end to an online
back-end. A user may have multiple mobile devices, which he or she registers with the
application. Upon registration, a record for the mobile device is created in a database or
directory where the application maintains user accounts, and it is associated with the user’s
account. The device record stores a cryptographic hash of a public key. Upon subsequent
authentication, the mobile device submits the public key and demonstrates knowledge of
the associated private key. The application computes the hash of the public key, verifies
that it coincides with the hash stored in the device record, and uses the associated user
account to identify the user. No certificates are needed, which greatly facilitates the task
of the application developer.

Furthermore, all cryptography is encapsulated in two black boxes: a prover black box
(PBB), which runs on the mobile device, and an online verifier black box (VBB). The PBB
may be implemented as a library linked into native application code, or as a separate native
application, or as a browser extension for use by web-based applications. The VBB may be
implemented as a physical or virtual server appliance, or hosted on an application server.

Our solution comes in three versions, which provide one-factor, two-factor and three-
factor authentication.

In one-factor authentication, the one factor is possession of a mobile device that contains
a mobile credential consisting of a handle that identifies the device record and a key pair,
the hash stored in the device record being the hash of the public key component of that
key pair. In multi-factor authentication, the first factor is again a mobile device containing
a mobile credential, but the mobile credential comprises data that yields a key pair when
combined with additional authentication factors, rather than the key pair itself.

4

In two-factor authentication the second factor is a passcode such as a PIN. The passcode
could be used to decrypt the private key component of the key pair, or the entire key pair;
but that would make the passcode vulnerable to an offline attack by an attacker who steals
the device and reads its persistent memory. Instead, the passcode is used to regenerate the
key pair from the mobile credential, as explained below in Section 2.3.

In three-factor authentication, an auxiliary string needed to derive a so-called biometric
key from a biometric sample such as an iris image, is x-ored with a randomized extended
hash of a passcode, of same length as the auxiliary string. The biometric key is used to
regenerate the key pair from the mobile credential, as explained below in Section 2.4.

1.4 Outline of the Rest of the Paper

In Section 2 we describe the case where the mobile application has a native front-end, and
the PBB is embedded in the native front-end. The VBB may be a generic appliance, or it
may be application-specific.

In Section 3 we describe the case where mobile devices are deployed by an enterprise,
the term meant broadly to include commercial enterprises, federal agencies, military units,
and other organizations. The enterprise has control over what applications are installed on
the devices, so that all installed applications are trusted. Instead of embedding the PBB
into the application, the application plays the role of client in a protocol that outsources
authentication to the PBB, which is implemented as a separate native application. The
PBB can thus be shared by multiple native enterprise applications; more significantly, the
PBB can then be used by web-based mobile applications accessed through a mobile browser.
The same VBB can be used by all the mobile applications in the enterprise. It may be
implemented as a generic server appliance, or it may be application-specific.

In Section 4 we recommend mobile operating system improvements that would obviate
the need to trust all installed applications in the enterprise case; and we point out that the
PBB could be embedded in a mobile operating system.

In Section 5 we explain how the proposed authentication methods can also be used on
desktop or laptop computers using browser extensions.

In Section 7 we conclude by recapitulating the benefits of our solution.

2 Embedding the Prover in a Native Application

Figure 1 shows the architecture of a mobile application that uses a PBB embedded in a
native front-end. For ease of exposition we shall refer to the native front-end and the PBB
as separate entities, even though the PBB is part of the front-end.

The application comprises a native front-end, an online back-end, a VBB implemented
as a generic server appliance, and a database where the back-end stores user records and
mobile device records. To simplify the description we will assume throughout this paper
that the database is a relational database with a table of user records and a table of device
records, but other storage architectures can be used, such as a NoSQL database or an LDAP
directory. Each user record includes a user handle that uniquely identifies the record. We
use the term handle rather the term key used in the database literature to avoid confusion

5

Figure 1. PBB embedded in native app, generic VBB appliance

Mobile device

Client app
back-end

Database

Client app
front-end

PBB VBB

5

2

3

1

4

6

7

URL of VBB

Authn token

Device handle
Authn token

Device handle
Authn token

HoPK

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID
PoK = Proof of knowledge
HoPK = Hash of public key
Authn = Authentication

Device
record

Public key
PoK of private key

Authn token

Authn token

8

Device handle
HoPK User handle

User
record

HoPK

Device handle

User handle

HoPK

. . .

.
.

.

User handle

6

with the term key as used in cryptography. Each device record comprises a device handle
that uniquely identifies the record and user handle that refers to the record of the user who
owns the device.1 There may be multiple device records referencing the same user record,
e.g. a record for a smart phone and a record for a tablet, both owned by the same user.

The PBB contains a mobile credential created when the user registers the device with
the mobile application. The mobile credential consists of a device handle and a key pair
pertaining to a public key cryptosystem, such as RSA, DSA, or ECDSA. The device handle
plays the same role that a username plays in a username-and-password credential. The key
pair may be explicit or implicit. An explicit key pair is physically stored in the PBB. An
implicit key pair is not actually stored; it is generated at registration time, then regener-
ated at authentication time from secondary authentication factors, as explained below in
sections 2.3 and 2.4. A hash of the public key component of the key pair is stored in the
device record. The hash is computed using a cryptographic hash function such as SHA-256.

Connections between the native front-end and the online back-end are protected by
TLS, with server or both client and server authentication as specified below. Connections
between the back-end and the database, and between the back-end and the VBB, are
protected by TLS, unless they take place over an intranet that is deemed secure, in which
case the connections may be in the clear.

2.1 Authentication process

The authentication process may begin when the user launches the native front-end, or when
the user clicks on a login button, or when the user initiates a transaction that requires
authentication. It comprises the following steps, indicated by circled numbers in Figure 1.

In step 1, the native front-end passes the URL of the VBB to the PBB, and asks the
PBB to authenticate to the VBB.

In step 2, the PBB retrieves the stored key pair, or regenerates it after requesting ad-
ditional authentication factors from the user if multi-factor authentication is being used.
Then it sends the public key component of the key pair to the VBB and demonstrates
knowledge of the private key component; for one-factor authentication, this can be accom-
plished using a TLS extension where the TLS client authenticates to the server using a key
pair without a certificate, as specified in [9].

But for two- and three-factor authentication the public key requires confidentiality
protection, for reasons given below in sections 2.3 and 2.4, whereas in the TLS handshake
the client’s public key is sent in the clear.

The TLS protocol, or at least the extension of [9], could be improved by postponing
client authentication until after the client’s ChangeCipherSpec message.2 Before such TLS
improvements are available, the PBB can use an ordinary TLS connection with server
authentication only, as follows: after the connection is established, the PBB sends its
public key, the VBB sends a nonce, and the PBB sends another nonce and a signature on

1In an LDAP directory, the device record would be a child of the user record in the directory information
tree.

2This change to the TLS handshake, which would increase user privacy when client authentication is
used, has been discussed in the TLS working group.

7

a hash of both nonces computed with the private key.3

In step 3, the VBB generates a random high-entropy authentication token, computes
the hash of the public key, and creates a short-term authentication record containing the
token and the hash. (The record will be used later by the application back-end to retrieve
the hash of the public key upon presentation of the token, and will be deleted when the
back-end obtains the hash or after a short, configurable expiration time.) The VBB sends
the authentication token to the PBB over the TLS connection that was established in
step 2, after which it closes the connection.

If the key pair of the mobile credential pertains to a public-key encryption cryptosystem
such as RSA, and the VBB also uses an encryption key pair for authentication, and the
PBB knows the public key of the PBB, then steps 2 and 3 can be replaced with a simple
two-step protocol that does not require the establishment of a TLS connection. The PBB
sends the public key of the mobile credential to the VBB, encrypted under a symmetric key
that is itself encrypted under the public key of the VBB. (An RSA public key is too large
to be encrypted directly under another RSA public key, if the moduli are of same size.)
Then the VBB sends the authentication token to the PBB encrypted under the public key
of the mobile credential. There is no need for the PBB to demonstrate knowledge of the
private key because, if it does not know the private key, it will not be able to decrypt and
use the authentication token.

In step 4 the PBB passes the authentication token to the native front-end, together
with the device handle.

In step 5 the native front-end authenticates to the online back-end, without cryptog-
raphy, by sending the device handle and authentication token over a TLS connection with
server authentication.

In step 6 the back-end sends the authentication token to the VBB in the body of an
HTTP POST request.

In step 7 the VBB uses the authentication token to locate the authentication record. It
obtains the hash of the public key from the authentication record, deletes the authentication
record, and sends the hash to the application back-end in the HTTP response to the HTTP
POST request received in step 6.

In step 8 the back-end issues a query against the relational database that specifies a
join of the table of device records and the table of user records, looking for a device record
that contains the device handle and the hash of the public key, and a user record referenced
by a user handle contained in the device record; the query fetches data such as the user
handle. Authentication is successful if the query finds the specified records.

If authentication is successful, the back-end may log the user in by creating a session
record containing a session ID and the device and user handles, and sending the session ID
to the client front-end, which uses it for authentication while the session remains valid.

3To reduce the number of roundtrips, the PBB could sign a random string obtained from the TLS layer,
jointly generated by the TLS client and server.

8

Figure 2. PBB embedded in native app, application-specific VBB

Mobile device

Client app
back-end

Client app
front-end

PBB VBB

6

2

4

1

5

7

8

URL of VBB

Authn token

Authn token

Authn token

Public key
PoK of private key

Device handle

Authn token

User handle

Authn token

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID
PoK = Proof of knowledge
HoPK = Hash of public key
Authn = Authentication

User handle

Device handle
HoPK User handle

3

Database

Device
record

User
record

Device handle

User handle

HoPK

. . .

.
.

.

User handle

9

2.2 Application-specific VBB

Figure 2 shows a possible variant of the authentication process in the case where the VBB is
specific to the application instead of being a generic server appliance. The VBB knows the
structure of the database and accesses it on behalf of the client application, thus simplifying
the client application. In step 2 the PBB sends the device handle to the VBB in addition
to sending the public key and demonstrating knowledge of the private key. The VBB uses
the device handle and the hash of the public key to access the database in step 3 and obtain
data such as the user handle, which it stores in the authentication record. When the client
application back-end receives the authentication token, it uses it to retrieve the data from
the authentication record without having to access the database.

2.3 Two-Factor Authentication

A simple way of providing two-factor authentication would be to encrypt the private key
with a key-encryption key derived from a passcode, such as a PIN. But in the absence of a
tamper-resistant Trusted Platform Module (TPM),4 a sophisticated attacker with physical
access to the device might be able break into it and read the encrypted private key stored
in persistent memory. It would then be trivial for the attacker to mount an offline attack,
trying passcodes until one is found that produces a decrypted private key matching the
public key. The match can be tested by checking that a signature produced by the private
key can be verified with the public key. Encrypting the entire key pair rather than just the
private key would not help, since passcodes could be tested by checking if they produce a
well-formed key pair.

Instead, in our two-factor authentication method, the passcode is used to regenerate
the key pair from the mobile credential. Any passcode produces a well-formed key pair,
so passcodes cannot be tested offline using only data extracted from the mobile device. If
the attacker does not have direct access to the database, a passcode can only be tested by
attempting to authenticate with the key pair it produces, using the authentication process
of Section 2.1. An attacker who tampers with the phone and reads its persistent memory
has no advantage over an attacker who simply tries passcodes by typing them in as part
of a normal authentication procedure. If the application back-end limits the number of
guesses to five, a 6-digit PIN should provide a reasonable amount of entropy.

Of course, the attacker will be able to mount an offline attack against the passcode if he
or she knows the public key, or a hash or other data derived from the public key. Therefore
this method of preventing an offline attack requires confidentiality protection for the public
key when it is transmitted from the PBB to the VBB in step 2, and for the hash of the
public key stored in the device record.5

4Smart phones equipped with Near-Field Communication (NFC) have a “secure element” that is some-
times described as being tamper resistant. But the level of tamper resistance is not specified, and, to
our knowledge, no NFC secure element has yet been certified by NIST as tamper resistent. Furthermore,
the NFC architecture requires the secure element to be accessible to an online Trusted Service Manager
(TSM). And iPhones are not equipped with NFC. Google Wallet originally used an NFC secure element
to store credit card numbers, but it now stores them online.

5Traditionally, in public key cryptography the public key is, naturally, public. The public key of an

10

To regenerate the key pair, we propose to use RSA [10, §8.2] as the public key cryp-
tosystem, and keep the prime factors p, q of the RSA modulus n = pq in the PBB. When
creating the key pair, instead of using a small encryption exponent e such as e = 3 or
e = 65537 and computing the decryption exponent as d = e−1 (modφ), φ = (p− 1)(q − 1),
we propose to derive d from the passcode and compute e = d−1 (modφ).

The decryption exponent d is derived from the passcode, from a random seed s of
sufficient length (e.g. 256 bits), from φ, and from the set S of small prime factors of φ,
a prime factor being deemed to be small if it is less than 100. The process of deriving d,
using a process variable d, is as follows:

1. A randomized extended hash of the passcode with random seed s, of same byte length
as the modulus6, is computed and assigned to d. (A randomized extended hash of
any byte length can be computed using the P hash mechanism of the TLS protocol
[14, §5], which uses a hash function such as SHA-256 [15], the HMAC mechanism
[16], a secret, which in this case is the passcode, and a random seed, in this case s,
to produce a cryptographic hash of the secret and the seed of the desired length.)

2. If d if divisible by one or more elements of S, d is repeatedly divided by such elements,
the result of each division being assigned to d, until no such elements remain.

The decryption exponent d is the value of d at the end of the process. If the resulting
d is not relatively prime with φ, we start over, choosing different prime factors p, q for
the modulus. The probability of d and φ not being relatively prime after any common
prime factors less than 100 have been removed from d is similar to the probability of two
random numbers having common prime factors greater than 100, which is less thatn 0.2%
[17, Appendix A].

Instead of storing the private key d and the public key (n, e) in the PBB, we store p,
q and s. (The set S may be stored as well to facilitate to derivation of d.) The mobile
credential is the tuple (h, p, q, s), where h is the device handle, which uniquely identifies
the device record. The key pair is later regenerated from the mobile credential by using
the above process to derive d, then computing n = pq and e = d−1 (modφ).

Notice that p and q can be computed from the key pair [10, §8.2.2(i)], so storing p and
q is no less secure that storing the key pair, or the private key and a certificate containing
the public key. Notice, however, that d can be computed from p, q and e. Therefore it is
important to store the hash of the public key in the database rather than the public key
itself, so that an attacker who breaks into the database in addition to reading the persistent

encryption key pair must be public so that anybody can send an encrypted message to the party that
knows the private key. The public key of a signature key pair must be public so that anybody can verify a
signature produced with the private key. However, when a key pair is used for authentication without third
party involvement, i.e. when it is used for user continuity verification, there is no reason why the public key,
or a hash of the public key, cannot be a shared secret between the user and the party that authenticates
the user. The hash of the public key should be protected just like the salted hash of a password. Notice,
however, that a security breach that gives an attacker access to the hash of the public key is much less
serious than one that gives access to a salted hash of a password. In the present case, to exploit the breach,
the attacker would also have to gain physical access to the mobile device, tamper with it, and read its
persistent memory, in order to be able to mount an offline attack against the passcode.

6We do not use a shorter hash in order to avoid attacks against short decryption exponents [11, 12, 13].

11

memory of the mobile device must make the additional effort of mounting an offline attack
against the passcode to obtain d, rather than just computing d from p, q and e.

The two-factor authentication process is the same as the one-factor process of Sec-
tion 2.1, except that the PBB prompts the user for the passcode in step 2 and uses it to
regenerate the key pair.

2.4 Three-Factor Authentication

Several methods have been described for deriving a key from a biometric sample and an
auxiliary string [18, 19, 20, 21]. The derived key is sometimes called a biometric key. The
auxiliary string is derived from an original biometric sample and a random string. Biometric
samples that are similar enough to the original biometric sample consistently produce the
same biometric key. The original biometric sample cannot be recovered from the auxiliary
string.

For our three-factor authentication method, we propose to use an RSA key pair as the
first factor, a passcode such as a PIN as the second factor and a biometric sample, such as
a an iris image obtained by a camera available on the mobile device, as the third factor.
The passcode is used to protect an auxiliary string, and the biometric sample is used to
produce a biometric key using the auxiliary string, by one of the methods described in the
literature.

The auxiliary string is stored in the PBB, encrypted by x-oring it with a randomized
extended hash of the passcode. The randomized extended hash, of same bit length as
the auxiliary string, is computed using the TLS P hash function and a random seed s,
as explained above in Section 2.3. We shall call a the encrypted auxiliary string. Offline
attacks are prevented as in the two-factor case, by storing in the PBB the prime factors p,
q of the modulus n = pq of the key pair rather than the key pair itself, and regenerating
the key pair before use. The key pair is regenerated from the biometric key and a random
seed s′ (different from the random seed s used to compute the randomized extended hash
of the of the passcode) as in the two-factor case, with the biometric key playing the role
that was played by the passcode in the two-factor case. The mobile credential is the tuple
(h, s, a, s′, p, q), where h is the device handle.

The three-factor authentication process is the same as the one-factor process of Sec-
tion 2.1, except that, in step 2, the PBB obtains the passcode and the biometric sample
from the user, and uses them to regenerate the key pair. To recapitulate, the PBB performs
step 2 as follows:

1. It prompts the user for the passcode.

2. It computes the randomized extended hash of the passcode using the random seed s
and decrypts the auxiliary string by x-oring the randomized extended hash with the
encrypted auxiliary string a.

3. It obtains the biometric sample from the user.

4. It uses the decrypted auxiliary string and the biometric sample to derive the biometric
key.

12

5. It regenerates the key pair from the biometric key, the random seed s′, and the prime
factors p and q.

6. It sends the public key to the VBB and demonstrates knowledge of the private key.

2.5 Registration

The user may register the mobile device for use with a preexisting user account, or may
register as a user and create a new user account at the same time as he or she registers the
device for use with the account. In either case the device may be registered as part of the
process of installing the native front-end in the mobile device, or after installation of the
front-end.

In the case where the VBB is a generic server appliance the registration process is similar
to the authentication process described above in Section 2.1 and illustrated in Figure 1. It
comprises the following nine steps.

Step 1 depends on whether the user is creating a new account or registering a new
device with a preexisting account.

To create a new user account and register the device with the new account, the user
provides user data to the native front-end, e.g., by filling out a registration form.

To register the device for use with a preexisting account, the user uses a preexisting
credential to demonstrate ownership of the account. That preexisting credential could be a
username-and-password credential that the user uses on desktop or laptop computers, or it
could be a temporary PIN or password provided to the user for the purpose of registering
the new device. In either case the user provides his or her preexisting credential to the
native front-end.

In step 2, the native front-end passes the URL of the VBB to the PBB, and asks the
PBB to create a mobile credential and authenticate to the VBB.

In step 3 the PBB creates a mobile credential, sends the public key to the VBB and
demonstrates knowledge of the private key.

Creation of the mobile credential depends on the number of authentication factors being
used.

In the case of one-factor authentication, the mobile credential consists of the device
handle that will uniquely identify the device record in the database, and a key pair. The
PBB generates the device handle and the key pair, and stores them; the device handle
is generated as a random high-entropy string, which will be different from other device
handles in the database with high probability. The PBB sends the public key to the VBB,
and demonstrates knowledge of the private key.

In the case of two-factor authentication, the PBB generates the prime factors p and q
of an RSA modulus, asks the user for a passcode such as a PIN, and computes the RSA
private and public keys from p, q, the passcode and a random seed s as described above in
Section 2.3. (Random seeds must not be reused. A fresh random seed must be generated for
each mobile credential.) The mobile credential is (h, p, q, s), where h is the device handle,
generated as a random high-entropy string. The PBB sends the public key to the VBB,
and demonstrates knowledge of the private key. The PBB discards the public and private
keys after using them, keeping only the mobile credential (h, p, q, s).

13

In the case of three-factor authentication, the PBB obtains from the user a biometric
sample and a passcode such as a PIN. It generates a random string and computes an
auxiliary string and a biometric key from the biometric sample and the random string.
(In a subsequent authentication process, the same biometric key will be derived from the
auxiliary string and a presented biometric sample, if the presented biometric sample is
close enough to the original biometric sample provided during registration.) It computes
a randomized extended hash of the passcode from a fresh random seed s as described in
Section 2.3, and x-ors it with the auxiliary string to obtain an encrypted auxiliary string a.
It generates the prime factors p and q of an RSA modulus and computes the RSA private
and public keys from p, q, the biometric key and a random seed s′ as described above in
Section 2.4. The mobile credential is the tuple (h, s, a, s′, p, q), where h is the device handle,
generated as a random high-entropy string. The PBB sends the public key to the VBB
and demonstrates knowledge of the private key. The PBB discards the public and private
keys after using them, keeping only the mobile credential (h, s, a, s′, p, q).

Steps 4 and 5 are as steps 3 and 4 of the authentication protocol of Section 2.1.
In step 6 the native front-end sends the device handle and the authentication token to

the back-end as in step 5 of the authentication protocol of Section 2.1. In addition to the
handle and the token, the native front-end also sends to the back-end:

• The user data obtained from the user in step 1, if the user is creating a new account;
or

• The preexisting credential obtained from the user in step 1, if the user is registering
the device for use with a preexisting account.

Steps 7 and 8 are as steps 6 and 7 of the authentication protocol of Section 2.1.
In step 9, the back-end interacts with the database using the device handle received

from the front-end in step 6 and the hash of the public key received from the VBB in step 8,
as follows:

• If a new account is being created, the back-end creates a user record containing the
user data obtained in step 1 and a user handle that uniquely identifies the record, as
well as a device record containing the device handle received in step 6, the user handle
that identifies the user record, and the hash of the public key received in step 8.

• If the device is being registered for use with a preexisting account, the back-end uses
the preexisting credential obtained in step 1 to locate the user record, authenticate
the user, and obtain the user handle that uniquely identifies the user record.7 Then
the back-end creates a device record containing the device handle received in step 6,
the user handle, and the hash of the public key obtained in step 8.

7If the preexisting credential is a username-and-password credential, the username is used to locate the
user record, and the user is authenticated by comparing a hash of the presented password and a salt stored
in the user record against a hash stored in the user record. If the preexisting credential is a temporary
credential consisting of a temporary PIN or password, the temporary credential is stored in the clear in
the user record, and can thus be used to locate the user record, the user being authenticated if the record
can be found.

14

In the case where the VBB is application-specific, the registration process is similar to
the authentication process described above in Section 2.2 and illustrated in Figure 2.

3 Enterprise Use Case

Mobile operating systems including iOS and Android provide interapp communication fa-
cilities that allow native applications to send messages to each other. A native application
can ask the operating system to deliver a URL to another native application. There are
two kinds of URLs, which we shall call web URLs and native URLs. A web URL uses the
scheme http or the scheme https. The operating system delivers it to the default browser
and causes the default browser to send an HTTP GET request targetting the URL over a
network. A native URL identifies a native application installed on the same device. The
operating system delivers it to the native application, which does not forward it to the
network.

Both iOS [22] and Android [23] implement native URLs using custom schemes, a custom
scheme identifying the native application to which the message is to be sent. As in an
HTTP GET request, a native URL is both the address and the contents of the message.
The native application parses it to extract parameters, usually encoded in a so-called query-
string portion of the URL.

An important aspect of this communication method is how it interacts with the HTTP
redirection mechanism. When a browser receives an HTTP redirection response to a request
that it has sent over a network, if the URL specified by the redirection is a native URL, the
browser sends that URL to the native application identified by the URL, via the operating
system.

We propose to use these interapp communication facilities to implement a protocol
where the mobile application, which will be referred to as the client application, outsources
authentication to the PBB, implemented as a separate native application. Unfortunately,
as currently implemented by iOS and Android, interapp communication might allow a
malicious application to receive a message intended for a different application.8 For that
reason, the security of the protocol depends on all installed applications being trusted.
The protocol is therefore best suited for the case where mobile devices are deployed by an
enterprise that exerts control over what applications are installed on the devices. (The term
enterprise is meant broadly to include commercial enterprises, federal agencies, military
units, and other organizations.) Notice that such control is not incompatible with a Bring-
Your-Own-Device (BYOD) program that allows employees to use their own devices, because
some Mobile Device Managers (MDMs) provide application inventory control for BYOD
devices. We refer to this case as the enterprise use case.

The outsourcing protocol allows the PBB to be shared by any number of native appli-
cations as described in the next section; furthermore, the PBB can be used by web-based

8A custom scheme is registered at run time with the operating system of the device, and a native
application is free to register any custom scheme it wants. System behavior is undefined if a malicious
application registers a scheme previously registered by a legitimate application, or one that a legitimate
application will register later.

15

mobile applications that interact with the user via a web browser. The outsourcing proto-
col also allows the same VBB to be used by all the mobile applications in the enterprise,
whether web-based or having a native front-end.

3.1 Authentication to a Native Application

Figure 3 shows the process of authenticating to a client application that has a native front-
end in the enterprise use case, using a VBB implemented as generic server appliance.

We shall use the term endpoint to refer to a metaphorical “point” of a web server or
native application that can receive HTTP POST requests, HTTP GET requets, or native
URL messages. Each endpoint has a URL that does not have a query string. An HTTP
POST request is addressed to the endpoint URL, with request parameters passed in the
body of the request. An HTTP GET request or a native URL message is addressed to the
endpoint URL augmented with a query string consisting of a question mark (“?”) followed
by one or more parameters separated by ampersands (“&”), each parameter being encoded
as a parameter name followed by an equal sign (“=”) and a parameter value.9

The PBB has an outsourcing endpoint where the native front-end sends an outsourc-
ing request, and the native front-end has a callback endpoint where the PBB sends a
reply to the outsourcing request. The VBB is implemented as an appliance. It has a
device-authentication endpoint where the PBB sends an authentication request, and a
hash-retrieval endpoint from which the online back-end of the client application retrieves
the hash of the public key.10

As in Figure 1, a database contains a user record and a device record that references
the user record. The device record contains a device handle that uniquely identifies it, a
user handle that refers to the user record, and the hash of the public key component of a
key pair. In one-factor authentication, the handle and the key pair are stored in the PBB,
as a mobile credential. In two- and three-factor authentication the handle is stored in the
PBB and the key pair is regenerated from a mobile credential before it is used, as described
above in sections 2.3 and 2.4.

The authentication process has eight steps, similar to the eight steps of the authentica-
tion process of Section 2.1.

In step 1, the native front-end sends a message to the outsourcing endpoint of the PBB,
using a native URL with the following parameters:

• The URL of the callback endpoint of the native front-end of the client application.

• The URL of the device-authentication endpoint of the VBB.

• An optional transaction ID that the client application may use internally to remember
the context of the authentication transaction.

9More accurately, an endpoint could be defined as the procedure, or event listener, that is invoked when
the HTTP request or native URL message is received; the request parameters are passed to that procedure.

10The VBB endpoints were not shown in Figure 1 only because the concept had not been introduced
yet. There is no difference between the VBB of Figure 1 and that of Figure 2.

16

Figure 3. Native app, native PBB, generic VBB

Mobile device

Client app
back-end

Client app
front-end

PBB VBB

5

2

3

1

4

6

7

URL of CBE
URL of VBB
Optional TID

Authn token

Status
Device handle
Authn token
Optional TID

Device handle
Authn token

HoPK

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID
PoK = Proof of knowledge
HoPK = Hash of public key
Authn = Authentication
CBE = Callback endpoint
OSE = Outsourcing endpoint
DAE = Device authentication endpoint
HRE = Hash retrieval endpoint

Public key
PoK of private key

Authn token

HoPK

Authn token

CBE

OSE

DAE

HRE

8

Device handle
HoPK User handle

Database

Device
record

User
record

Device handle

User handle

HoPK

. . .

.
.

.

User handle

17

Steps 2 and 3 are as in the case of an embedded PBB, described above in Section 2.1.
In step 4 the PBB sends the authentication token obtained from the VBB in step 3

to the callback endpoint of the native front-end, along with the device handle, a status
code indicating success (assuming device authentication was successful) and the optional
transaction ID, if one was received by the PBB from the native front-end in step 1.

Steps 5-8 are as in the embedded PBB case of Section 2.1.

3.2 Authentication to a Web-based Application

Figure 4 shows the process of authenticating to a web-based client application in the en-
terprise use case.

The native front-end of the client application is replaced with the default web browser
of the mobile device. The callback endpoint is now located on the online client application,
and its URL is a web URL that uses the https scheme rather than a native URL that uses
a custom scheme.

Whereas all native applications installed in the mobile device are trusted, web-based
applications cannot all be trusted, since the browser provides access to any application on
the world-wide web. The authentication process must therefore be hardened to cope with
possible malicious web-based client applications. Notice, however, that the same PBB and
VBB can be used for both native and web-based clients.

The user interacts with the client application via the browser, and the process is initiated
as a result of an HTTP request sent by the browser to the online client, e.g. an HTTP
request that requires authentication and is not accompanied by a login session cookie.

In step 1, the client issues an HTTP redirection (302) response to the HTTP request,
redirecting the browser to a native URL that targets the outsourcing endpoint of the PBB,
with the following parameters:

• The URL of the callback endpoint of the online client.

• The URL of the device-authentication endpoint of the VBB.

• A random high-entropy transaction ID, which identifies the authentication transac-
tion.

The HTTP response also sets a cookie in the browser containing the same transaction ID.
Notice that the transaction ID, which was optional in the authentication process of

Section 3.1, is compulsory here. This is because it now plays a security role in addition to
helping the client remember the context of the authentication transaction. The transaction
ID is sent to the PBB as a parameter and set in the browser as a cookie. In step 4, the
client will receive a transaction ID from the PBB as a parameter and another transaction
ID from the browser as a cookie. The client will then verify that the two transaction IDs
are the same. This prevents a login-as-attacker attack described below in connection with
step 4.

Steps 2 and 3 are as when authenticating to a native application using a VBB imple-
mented as a generic server appliance and either an embedded PBB (Section 2.1, Figure 1)
or a PBB implemented as a separate native PBB (Section 3.2, Figure 3), except for one

18

Figure 4. Web-based app, native PBB, generic VBB

Mobile device

Web-based
client app

Browser

PBB VBB

1

2

3

4

5

6

URL of CBE
URL of VBB

TID

Public key
PoK of private key

URL of CBE

Authn token

Authn token
URL of CBE HoPK

Authn token

URL of CBE

HoPK

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID
PoK = Proof of knowledge
HoPK = Hash of public key
Authn = Authentication
CBE = Callback endpoint
OSE = Outsourcing endpoint
DAE = Device authentication endpoint
HRE = Hash retrieval endpoint

URL of CBE
URL of VBB

 TID
TID Cookie

Status
Device handle
Authn token

TID
TID Cookie

DAE

CBE

OSE HRE

7

Device handle
HoPK User handle

Status
Device handle
Authn token
TID

Database

Device
record

User
record

Device handle

User handle

HoPK

. . .

.
.

.

User handle

19

important difference. The PBB sends to the VBB the URL of the client callback endpoint,
and the VBB stores it as an additional field of the authentication record. The reason for
this will become apparent below in connection with step 5.

In step 4, the PBB constructs a client callback URL by augmenting the URL of the
callback endpoint received from the client with a query-string comprising the following
parameters:

• A status indicating that the outsourced device authentication succeeded (assuming
that the PBB did obtain an authentication token from the VBB).

• The device handle.

• The authentication token.

• The transaction ID received from the client in step 1.

The PBB asks the operating system of the mobile device to deliver the client callback URL
to its destination. The client callback URL is a web URL, which the operating system
delivers to the default browser. The browser sends an HTTP GET request to the URL
received from the operating system, adding a cookie HTTP header to the request, which
contains the transaction ID set as a cookie in step 1.

In step 5, the client checks that the status parameter indicates success and the trans-
action ID parameter in the callback URL coincides with the transaction ID in the cookie
header. If either check fails, the authentication process fails.

The transaction ID check prevents an attack similar to the Login CSRF attack of [24]
by an insider who is a legitimate user of the client application, in which the attacker would
cause a victim user to submit an authentication token for the attacker’s account to the client
application, causing the victim user to authenticate as the attacker. The attacker could be
an employee of a company and the victim could be the CEO. The incorrect authentication
could cause the CEO to log in to an account owned by the attacker without realizing it,
and to enter sensitive data into the attacker’s account, making it available to the attacker.
Without the transaction ID check the attack could be easily mounted by using a client
callback URL including the attacker’s authentication token as the URL of a link in a web
page controlled by the attacker, luring the victim into the page, and tricking the victim
into clicking on the link. The transaction ID check prevents the attack because the attacker
cannot set a cookie in the victim’s browser that will be sent to the client application.

Still within step 5, if the status check and the transaction ID check are successful, the
client sends the authentication token to the VBB in the body of an HTTP POST request,
together with the URL of its callback endpoint, which is used here as an identifier of the
client application. By sending the URL of its callback endpoint, the client application
self-asserts its own identity. The reason for this will become apparent momentarily.

In step 6 the VBB uses the authentication token to locate the authentication record,
obtaining the hash of the public key and the callback endpoint URL stored in the authen-
tication record.

The authentication fails if the callback endpoint URL in the record differs from the one
received from the client application in step 5. This prevents another insider attack, where

20

an attacker, who is a user, sets up a malicious web-based application and lures a victim
user into authenticating to the malicious application with a mobile device; the malicious
application obtains an authentication token pertaining to the victim’s device in step 4 but
does not perform step 5; the attacker authenticates to the legitimate application but, in
step 4, substitutes the token pertaining to the victim’s device obtained by the malicious
application for the token pertaining to the attacker’s own device, and thus authenticates as
the victim. Checking that the URL of the callback endpoint sent by the client application
in step 5 coincides with the one stored in the record prevents the attacker from substituting
an authentication token intended for the malicious application when authenticating to the
legitimate application.

Still within step 6, if the callback endpoint URLs agree, the VBB deletes the authenti-
cation record, and sends the hash of the public key to the client application in the HTTP
response to the HTTP POST request received in step 5.

In step 7, as in step 8 of the authentication process for a native application (sections 2.1
and 3.1, figures 1 and 3), the back-end issues a query against the relational database that
specifies a join of the table of device records and the table of user records, looking for a
device record that contains the device handle and the hash of the public key, and a user
record referenced by a user handle contained in the device record; the query fetches data
such as the user handle. Authentication is successful if the query finds the specified records.

If authentication is successful, the back-end may log the user in by creating a session
record containing a session ID and the device and user handles, and setting the session ID
in the browser as an authentication cookie.

3.3 Enterprise-specific VBB

Figures 5 and 6 illustrate the use of an enterprise-specific VBB to authenticate to enterprise
mobile applications that use a native front-end or a browser, respectively. As in the case
of an application-specific VBB (Section 2.2, Figure 2), the VBB knows the structure of
the database and accesses it on behalf of the client application, thus simplifying the client
application. The Device Authentication Endpoint (DAE) of figures 3 and 4 has been
renamed User Authentication Endpoint (UAE) and the Hash Retrieval Endpoint (HRE)
has been renamed User-data Retrieval Endpoint (URE).

The PBB sends the device handle to the VBB, and the VBB uses it together with
the hash of the public key to access the database in step 3 and obtain data such as the
user handle, which it stores in the authentication record. When the client application
back-end receives the authentication token, it uses the token to retrieve the data from the
authentication record without having to access the database.

3.4 Registration in the Enterprise Use Case

In the enterprise use case, the device is registered once to create a mobile credential in
the PBB, which can then be used for authentication to all the mobile applications in the
enterprise, both native and web-based. Registration is accomplished using a registration
application that plays a role similar to that of the client application in the authentication

21

Figure 5. Native app, native PBB, enterprise-specific VBB

Mobile device

Client app
back-end

Client app
front-end

PBB VBB

6

2

4

1

5

7

8

URL of CBE
URL of VBB
Optional TID

Authn token

Status
Authn token
Optional TID

Authn token

Public key
PoK of private key

Device handle

Authn token

User handle

Authn token

CBE

OSE

UAE

URE

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID
PoK = Proof of knowledge
HoPK = Hash of public key
Authn = Authentication
CBE = Callback endpoint
OSE = Outsourcing endpoint
UAE = User authentication endpoint
URE = User-data retrieval endpoint

User handle

Device handle
HoPK User data

3

Database

Device
record

User
record

Device handle

User handle

HoPK

. . .

.
.

.

User handle

22

Figure 6. Mobile web-based app, native PBB, enterprise-specific VBB

Mobile device

Web-based
client app

Browser

PBB VBB

1

2

4

5

6

7
Public key

PoK of private key
URL of CBE

Device handle

Authn token

Status
Authn token
TID

Authn token
URL of CBE

Authn token

URL of CBE

User handle

URL of CBE
URL of VBB

 TID
TID Cookie

Status
Authn token

TID
TID Cookie

UAE

CBE

OSE URE

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID
PoK = Proof of knowledge
HoPK = Hash of public key
Authn = Authentication
Attrs = Attributes
CBE = Callback endpoint
OSE = Outsourcing endpoint
UAE = User authentication endpoint
URE = User-data retrieval endpoint

User data

Device handle
HoPK User handle

3

Database

Device
record

User
record

Device handle

User handle

HoPK

. . .

.
.

.

User handle

23

process. All the cryptographic operations of the registration process are encapsulated in
the PBB and the VBB. The registration application, like the client application, performs
no cryptographic operations. The PBB has a registration endpoint, and the registration
application has a callback endpoint.

We will only describe the registration application in the case where the VBB is a generic
server appliance. The case of an enterprise-specific VBB is similar.

The registration application may be web-based or it may have a native front-end.

3.4.1 Registration Application with Native Front-End

If the registration application has a native front-end, the registration process is the same
as the one described in Section 2.5 except for the fact that the native front-end and the
PBB communicate through the interapp communication facility rather than through an
API provided by the embedded PBB.

3.4.2 Web-Based Registration Application

If the registration application is web-based, the registration process comprises the following
eight steps.

In step 1, the user enters user data to create a new user account, or a preexisting
credential to register the device with a preexisting account. The user data or preexisting
credential is conveyed by the browser to the web-based registration application in an HTTP
request.

In step 2, the web-based registration application creates a transaction context referenced
by a random high-entropy transaction ID, where it remembers the user data or preexisting
credential received in step 1. Then it issues an HTTP redirection (302) response to the
HTTP request, redirecting the browser to the registration endpoint of the PBB, with the
following parameters:

• The URL of the callback endpoint of the registration application.

• The URL of the device-authentication endpoint of the VBB.

• The transaction ID.

The HTTP response also sets a cookie in the browser containing the transaction ID.
In step 3 the PBB creates a mobile credential as in step 3 of the registration process

of Section 2.5. Then it sends the public key and the URL of the callback endpoint to the
VBB, and it demonstrates knowledge of the private key to the VBB.

Steps 4-7 are like steps 3-6 of the authentication process of Section 3.2 and Figure 4.
In step 8, the web-based registration application uses the transaction ID received in

step 5 and uses it to recall the user data or preexisting credential obtained in step 1. Then
it creates a device record in the database, or both a device record and a user record, as in
step 9 of the registration process of Section 2.5.

24

4 Recommended Mobile Operating System Improve-

ments

The interapp communication facilities provided today by iOS and Android could be im-
proved as follows. Instead of using a different custom scheme for each application, a single
scheme, e.g. app could be registered with IANA11 for the purpose of building native URLs.
A native URL could then consist of that scheme, followed as in a web URL by “://”, a
DNS domain name, a path and a query string. An example of a native URL would then
be:

app://example.com/path/to/endpoint?name1=value1&name2=value2

The DNS domain name would belong to the developer12 of the application, and would be
registered with the operating system of the mobile device at installation time (rather than
at run time) for use in native URLs of application endpoints. The operating system would
verify that the developer owns the domain name in one of two ways:

• By verifying that the application is downloaded from the named domain, or from a
broader domain, over a TLS connection, using a server certificate chain rooted in a
CA trusted by the operating system, or

• By verifying that the code is signed with a private key whose corresponding public
key is bound to the named domain, or to a broader domain, by a certificate backed by
a certificate chain rooted in a CA trusted by the operating system. (The certificate
could be issued specifically for code signing, or it could be a TLS server certificate.)

Once these improvements have been made, it will be possible to use an authentication
outsourcing protocol even in cases where not all installed applications can be trusted.

In addition to such improvements, an operating system could embed the functionality of
the PBB within itself, so that applications can count on authentication outsourcing being
available. Either a custom scheme registered with IANA, or a DNS domain name owned
by the OS provider could be used to build the URLs of the device-authentication endpoint
and the hash-retrieval endpoint.

5 Authentication on Desktops or Laptops

The authentication methods described above are motivated by the need to make authen-
tication simpler and more secure on mobile devices. But authentication on desktops and

11 URL schemes are supposed to be registered with IANA [25], but the custom schemes of native
applications are not. (There is an informal database of iOS custom schemes [26] but it is not sanctioned by
Apple or the IETF. We do not know of any database of custom schemes for Android.) Custom schemes may
thus conflict with registered schemes, and two native applications may choose the same custom scheme.
As mentioned above, a custom scheme conflict might allow a malicious application to receive a message
intended for a legitimate application.

12By developer we mean the individual or organization who has control over the application.

25

laptops is also in need of improvement, and it would simplify authentication for web appli-
cations if they could use the same methods on mobile devices as on desktops or laptops.

Two obstacles make it difficult to use the proposed mobile authentication methods on
traditional desktop or laptop computers.

The first obstacle is the lack of the interapp communication facility described above
in the preamble of Section 3. As the computing architecture of mobile devices becomes
more on more popular, desktop operating systems may well implement the same interapp
communication features found in mobile OSes, but this will take time. This obstacle rules
out the use cases of figures 3-6.

The second obstacle is the fact that native applications are much less popular on desk-
tops and laptops than on mobile devices, for a variety of reasons. This makes the use cases
of figures 1-2 much less useful for desktop OSes than for mobile OSes.

We propose to overcome these obstacles by implementing the PBB as a browser ex-
tension capable of intercepting an HTTP redirect response addressed to a native URL, as
illustrated in figures 7 and 8. (Most browsers have facilities that allow developers to create
functionality extensions, variously called extensions, plug-ins, add-ons, helper objects, etc.)

Figure 7 shows the case where the VBB is a generic server appliance. It is identical to
Figure 4, except for the fact that the PBB is embedded in the browser instead of being a
separate native application.

In step 1, the PBB browser extension intercepts the HTTP redirect response that con-
veys the URL of the callback endpoint, the URL of the VBB, and the transaction ID to
the outsourcing endpoint of the PBB.

In step 4, the PBB browser extension causes the browser to send an HTTP GET request
that conveys the status, device handle, authentication token and transaction ID to the client
callback endpoint in the query string of the callback URL; standard browser software adds
the cookie that was set in step 1.

Similarly, Figure 8 shows the case where the VBB is application or enterprise-specific.
It is to Figure 6 what Figure 7 is to Figure 4.

6 PBB as a Mobile Browser Extension

In the previous section we have proposed to implement the PBB as a browser extension to
enable the implementation of the proposed authentication methods on desktops and lap-
tops. But a PBB implemented as a browser extension may also be useful in mobile devices.
In particular, it would be useful for authentication to web-based mobile applications on
mobile devices in which some of the installed applications may be malicious.

7 Conclusion

We have proposed one-, two-, and three-factor authentication methods for mobile applica-
tions, both web-based applications and applications having a native front-end, that compare
favorably with the authentication methods used today. The proposed methods are based

26

Figure 7. Web-based app, PBB browser plugin, generic VBB

Desktop, laptop or
mobile device

Web-based
client app

Browser

PBB
browser

extension

VBB

1

2

3

4

5

6

URL of CBE
URL of VBB

TID

Authn token

Authn token
URL of CBE HoPK

Authn token

URL of CBE

HoPK

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID
PoK = Proof of knowledge
HoPK = Hash of public key
Authn = Authentication
CBE = Callback endpoint
OSE = Outsourcing endpoint
DAE = Device authentication endpoint
HRE = Hash retrieval endpoint

URL of CBE
URL of VBB

 TID
TID Cookie

Status
Device handle
Authn token

TID
TID Cookie

DAE

CBE

OSE HRE

8

Device handle
HoPK User handle

Status
Device handle
Authn token
TID

Public key
PoK of private key

URL of CBE

Database

Device
record

User
record

Device handle

User handle

HoPK

. . .

.
.

.

User handle

27

Figure 8. Web-based app, PBB browser plugin
application or enterprise-specific VBB

Desktop, laptop or
mobile device

Web-based
client app

Browser

PBB
browser

extension

VBB

1

2

4

5

6

7
Public key

PoK of private key
URL of CBE

Device handle

Authn token

Status
Authn token
TID

Authn token
URL of CBE

Authn token

URL of CBE

User handle

URL of CBE
URL of VBB

 TID
TID Cookie

Status
Authn token

TID
TID Cookie

DAE

CBE

OSE DRE

PBB = Prover Black Box
VBB = Verifier Black Box
TID = Transaction ID
PoK = Proof of knowledge
HoPK = Hash of public key
Authn = Authentication
Attrs = Attributes
CBE = Callback endpoint
OSE = Outsourcing endpoint
DAE = Device authentication endpoint
DRE = Data retrieval endpoint

User data

Device handle
HoPK User handle

3

Database

Device
record

User
record

Device handle

User handle

HoPK

. . .

.
.

.

User handle

28

on public key cryptography, but they do not use certificates, and their cryptographic func-
tionality is encapsulated in two black boxes, a prover black box (PBB) and a verifier black
box (VBB).

The proposed one-factor method requires no user input and provides the strong security
of public-key cryptography. By contrast, the one-factor method used today consists of en-
tering a username-and-password credential, which provides little security and is difficult to
type on a small touch-screen keyboard. The proposed two-factor method only requires the
user to enter a passcode such as a PIN, which is used to regenerate a key pair. By contrast,
the two-factor method used today consists of entering a PIN or a password to generate or
request a one-time password; obtaining the one-time password from a hard token, a soft
token, a text message, or an email message; and entering the one-time password, which
provides only relative security because it remains valid for several minutes. In the proposed
three-factor method, the user enters a passcode such as a PIN and provides a biometric
such as an iris image to generate a biometric key that in turn is used to regenerate a key
pair.

In two- and three-factor authentication, the passcode is protected against offline attack
from a sophisticated attacker who tampers with the device and reads its persistent memory.
In three-factor authentication, neither the original biometric sample nor a biometric tem-
plate are stored in the device, and both the passcode and the biometric key are protected
against offline attack even in the absence of tamper resistance.

We have described several deployment scenarios that can be used with today’s mobile
devices, some where the PBB is embedded in the native front-end of a mobile application,
some where the PBB is a separate native application, and some where the PBB is imple-
mented as a browser extension. A PBB implemented as a native application is suitable
for an enterprise setting where all applications installed in the mobile device are trusted.
A PBB implemented as a browser extension extends the scope of the proposed methods
beyond mobile devices to traditional desktop and laptop computers.

We have recommended mobile operating system improvements that would allow a single
PBB implemented as a native application to be used securely by any number of native or
web-based applications even if not all native applications installed on the device can be
trusted. We have also pointed out that the functionality of the PBB could be embedded
in the operating system.

References

[1] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password Memorability and
Security: Empirical Results. IEEE Security & Privacy, 2004.
http://homepages.cs.ncl.ac.uk/jeff.yan/jyan_ieee_pwd.pdf.

[2] Joseph Bonneau. Measuring Password Reuse Empirically, February 2011.
http://www.lightbluetouchpaper.org/2011/02/09/

measuring-password-re-use-empirically/.

29

http://homepages.cs.ncl.ac.uk/jeff.yan/jyan_ieee_pwd.pdf
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/

[3] Ian Paul. Update: LinkedIn Confirms Account Passwords Hacked, June 6, 2012.
http://www.pcworld.com/article/257045/update_linkedin_confirms_

account_passwords_hacked.html.

[4] Rich Newman. Why Some Password Security is a Waste of Time, February 5, 2012.
http://richnewman.wordpress.com/2012/02/05/

why-some-password-security-is-a-waste-of-time/.

[5] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet
X.509 Public Key Infrastructure Certificate and CRL Profile, May 2008.
http://datatracker.ietf.org/doc/rfc5280/.

[6] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP, June 1999.
http://tools.ietf.org/html/rfc2560.

[7] ITU-T. Introduction to ASN.1.
http://www.itu.int/ITU-T/asn1/introduction/index.htm.

[8] Government Accountability Office. PERSONAL ID VERIFICATION - Agencies
Should Set a Higher Priority on Using the Capabilities of Standardized Identification
Cards, September 2011. http://www.gao.gov/new.items/d11751.pdf.

[9] P. Wouters et al. TLS Out-of-Band Public Key Validation, April 25, 2012. Internet
draft. Work in progress.
http://tools.ietf.org/html/draft-ietf-tls-oob-pubkey-03.

[10] Alfred J. Menezes and Paul C. Van Oorschot and Scott A. Vanstone and R. L. Rivest.
Handbook of Applied Cryptography, 1997. http://cacr.uwaterloo.ca/hac/.

[11] Michael J. Wiener. Cryptanalysis of short rsa secret exponents. IEEE Transactions
on Information Theory, 36:553–558, 1990.

[12] Eric R. Verheul and Henk C. A. van Tilborg. Cryptanalysis of ’less short’ rsa secret
exponents. Appl. Algebra Eng. Commun. Comput., 8(5):425–435, 1997.

[13] Dan Boneh and Glenn Durfee. Cryptanalysis of rsa with private key d less than

n0.292. IEEE Transactions on Information Theory, 46(4):1339, 2000.

[14] T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2,
August 2008. http://tools.ietf.org/html/rfc5246.

[15] NIST. FIPS PUB 180-4 Secure Hash Standard, March 2012.
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

[16] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication, February 1997. http://tools.ietf.org/html/rfc2104.

30

http://www.pcworld.com/article/257045/update_linkedin_confirms_account_passwords_hacked.html
http://www.pcworld.com/article/257045/update_linkedin_confirms_account_passwords_hacked.html
http://richnewman.wordpress.com/2012/02/05/why-some-password-security-is-a-waste-of-time/
http://richnewman.wordpress.com/2012/02/05/why-some-password-security-is-a-waste-of-time/
http://datatracker.ietf.org/doc/rfc5280/
http://tools.ietf.org/html/rfc2560
http://www.itu.int/ITU-T/asn1/introduction/index.htm
http://www.gao.gov/new.items/d11751.pdf
http://tools.ietf.org/html/draft-ietf-tls-oob-pubkey-03
http://cacr.uwaterloo.ca/hac/
http://tools.ietf.org/html/rfc5246
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/rfc2104

[17] F. Corella and K. Lewison. Techniques for Implementing Derived Credentials.
Pomcor whitepaper. http://pomcor.com/whitepapers/DerivedCredentials.pdf.

[18] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on
Computing, 3(1):97–139, 2008.

[19] Xavier Boyen. Reusable Cryptographic Fuzzy Extractors. In ACM CCS 2004, ACM,
pages 82–91. ACM Press, 2004.

[20] F. Hao, R. Anderson, and J. Daugman. Combining Cryptography with Biometrics
Effectively. IEEE Trans. Comput., 55(9):1081–1088, 2006.

[21] C. Rathgeb and A. Uhl. A Survey on Biometric Cryptosystems and Cancelable
Biometrics. EURASIP Journal on Information Security, 3, 2011.
http://jis.eurasipjournals.com/content/2011/1/3.

[22] Apple Inc. iOS Programming Guide: Communicating with other Apps;
Implementing Custom URL Schemes.
http://developer.apple.com/library/ios/#documentation/iPhone/

Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/

AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW2.

[23] Google. IntentFilter. http:
//developer.android.com/reference/android/content/IntentFilter.html.

[24] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for Cross-Site Request
Forgery. In Proceedings of the 15th ACM Conference on Computer and
Communications Security, 2007.
http://www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf.

[25] IANA. URI Schemes. http://www.iana.org/assignments/uri-schemes.html.

[26] Zwapp. One Million App Schemes. http://onemillionappschemes.com/.

31

http://pomcor.com/whitepapers/DerivedCredentials.pdf
http://jis.eurasipjournals.com/content/2011/1/3
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW2
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW2
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW2
http://developer.android.com/reference/android/content/IntentFilter.html
http://developer.android.com/reference/android/content/IntentFilter.html
http://www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf
http://www.iana.org/assignments/uri-schemes.html
http://onemillionappschemes.com/

	Introduction
	Drawbacks of Current User Authentication Methods on Mobile Devices
	Ordinary Passwords
	One-Time Passwords

	Drawbacks of Public Key Certificates
	Our Solution: Public Key Cryptography Without Certificates
	Outline of the Rest of the Paper

	Embedding the Prover in a Native Application
	Authentication process
	Application-specific VBB
	Two-Factor Authentication
	Three-Factor Authentication
	Registration

	Enterprise Use Case
	Authentication to a Native Application
	Authentication to a Web-based Application
	Enterprise-specific VBB
	Registration in the Enterprise Use Case
	Registration Application with Native Front-End
	Web-Based Registration Application

	Recommended Mobile Operating System Improvements
	Authentication on Desktops or Laptops
	PBB as a Mobile Browser Extension
	Conclusion

