
PKAuth: A Social Login Protocol
for Unregistered Applications
Francisco Corella

Pomcor
fcorella@pomcor.com

Karen P. Lewison
Pomcor

kplewison@pomcor.com

Abstract—Social login is a double-redirection mechanism
whereby a Web application delegates user authentication to
a social site and obtains access to the user’s social context.
Today social login is implemented using OAuth, which requires
registration of the application with the site for authentication of
the application to the site and identification of the application
to the user by the site. As social login gains in popularity, this
may lead to a situation where every application must register
with the dominant social site (currently Facebook) just to be
able to authenticate its users, and the dominant social site has
the power to disable any application on the Web by revoking its
registration.

PKAuth is a protocol for social login that does not require
registration and yet provides strong application authentication
and identification. It relies for that purpose on the public key
infrastructure of the Web. The application submits its TLS
certificate as client certificate in a TLS handshake, and the site
identifies the application to the user by displaying the information
contained in the certificate. Additional information about the
application may be provided to the site by a holder-of-key
assertion or by optional prior registration.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grant 1013594. The
authors would like to thank Marius Scurtescu for a detailed
reading of an earlier paper on PKAuth and many useful
comments, and him and other subscribers to the OAuth mailing
list and to the OpenID mailing list for very helpful discussions,
which can be found in the archives of those lists.

I. INTRODUCTION

Social login [1] is a user authentication method used by
Web applications that uses a double redirection mechanism.
The application redirects the user’s browser to a social site
such as Facebook, Twitter or LinkedIn, which authenticates
the user and then redirects the browser back to the application,
conveying to the application the fact that the user has been
successfully authenticated; the details vary from one protocol
to the next. The application obtains from the site user identity
data, including a user identifier relative to the site and other
data such as the user’s full name, avatar, birthday and/or
verified email address. It also obtains subsequent access to
the user’s social context, including the ability to retrieve a list
of related users and the ability to broadcast messages such as
updates or tweets on behalf of the user. The application does
not obtain the user’s credentials for the site.

Social login via Facebook, Twitter and LinkedIn is imple-
mented today using early versions of OAuth 2.0. OAuth is

a protocol originally conceived as an authorization protocol;
version 2.0 is currently being specified by an IETF working
group. OAuth requires prior registration of the application with
the site. The site uses the registration process to establish a
shared secret used to authenticate the application, and to obtain
information that it uses to identify the application to the user
as it asks the user for permission to execute the social login
protocol and provide the application with access to the user’s
account.

But compulsory registration is a dangerous thing. Since so-
cial login has compelling advantages for users and application
providers, it may well become the de facto user authentication
method of the Web. When that happens, if social login requires
registration, every application will have to register with the
dominant social site (currently Facebook) just to be able to
authenticate its users. The dominant site will then have the
power to disable any application on the Web by revoking its
registration. This will be bad for the Web and for all parties
involved, including the dominant social site, which will no
doubt face regulation by governments.

In this paper we propose a protocol, called PKAuth, de-
signed for social login, that provides strong security without
requiring registration of the application with the social site,
nor prior knowledge of the site by the application. The name
of the protocol comes from the fact that it relies on the public
key infrastructure of the Web. The social site uses the TLS
certificate of the application, obtained in the course of a TLS
handshake, to authenticate the application and identify it to the
user. (TLS is also known as SSL.) Information in the certificate
may be augmented by a holder-of-key assertion made by a
party trusted by the social site, or by information verified by
the site in the course of an optional registration process.

PKAuth belongs to a class of double-redirection protocols
that includes Microsoft Passport (now Windows Live ID [2]),
SAML Browser SSO Profile [3, section 4.1], OpenID [4],
OAuth 1.0 [5], and the version of OAuth currently under
development, OAuth 2.0 [6]. These protocols allow an ap-
plication to delegate authentication to a site, or a user to
delegate authorization to access the user’s account on a site
to an application, or both.1 Besides not requiring registration,
PKAuth avoids several security flaws that can be found in

1The site, however, is not necessarily a social site. We use the words “site”
and “application” to refer to roles played in the protocol, without implying
that there is an essential distinction between a Web site and a Web application.



other protocols of this class.
PKAuth is a federated authentication protocol like OpenID,

and an authorization protocol like OAuth, but rather than
combining the two protocol as proposed in [7] or [8], it
combines the best ideas of OpenID and OAuth while avoiding
the flaws. PKAuth also features new ways of supporting
browser-resident applications and native applications running
on desktops and mobile platforms such as smart phones and
tablets.

The rest of the paper is organized as follows. Section II
describes security flaws in redirection protocols that are ad-
dressed by PKAuth, including flaws described by prior work,
and a new flaw that we discovered and is now being heatedly
discussed on the OAuth mailing list. Section III is a high-
level description of PKAuth. It includes an overview of the
protocol flow in section III-E, a detailed protocol flow in sec-
tion III-F, and protocol security considerations in section III-G.
Section IV recapitulates and points out how PKAuth could be
used for decentralized social networking.

II. AVOIDING DOUBLE-REDIRECTION VULNERABILITIES

PKAuth addresses vulnerabilities that affect other double-
redirection protocols.

As we were designing PKAuth, we thought of the following
attack. As the user’s browser is redirected back from the site
to the application’s callback endpoint, the attacker intercepts
or observes the redirected request sent by the browser to the
application. Interception is a man-in-the-middle attack where
the attacker obtains the redirected request and does not relay it
to the application. Observation is a passive attack. Both types
of attack can be mounted, e.g., using a rogue WiFi access
point [9]. Having obtained the redirected request, the attacker
sends it to the callback endpoint of the application from the
attacker’s own browser. The attacker can thus impersonate the
user vis-a-vis the application, and can use the application to
access the user’s account at the site.

The attack can be prevented easily by requiring TLS pro-
tection for the callback endpoint of the application, so we
included this requirement in the design of PKAuth.

Then we observed that none of the above-mentioned double
redirection protocols requires TLS protection for the callback
endpoint. Furthermore, developer documentation provided by
at least one social network uses http rather than https in
examples of redirect URLs that target the callback endpoint.
As a result, it seems that many applications that use OpenID
or OAuth today do not protect the callback endpoint and are
vulnerable to the attack.

We surveyed the literature to see if the attack had been
mentioned before. It is not mentioned in Kormann et al.’s
security analysis of Microsoft Passport [10], nor in the security
considerations section of OpenID 2.0 [11], nor in the security
considerations section of OAuth 1.0 [5], nor in Barnes et al.’s
paper on the OAuth security model (which does not actually
discuss the double redirection mechanism) [12]. The section on
the Browser SSO Profile of the security and privacy consider-
ations document for SAML version 2.0 [13, section 7.1.1] has

a blanket warning against man-in-the-middle attacks, but does
not mention this particular attack, and the SAML Browser SSO
Profile itself [3, section 4.1] does not require TLS. Gross [14]
briefly mentions the possibility of a man-in-the-middle attack
between the browser and the callback endpoint against version
1.1 of the SAML Browser SSO Profile, but does not draw any
consequences, and the subsequent analysis of version 2.0 by
Gross et al. [15] does not mention the attack.

There are two attack variants besides the basic attack
described above. In one variant, the attacker intercepts or
observes an authentication cookie sent by the application to
the browser in response to the redirected request. This variant
is also prevented by requiring TLS at the callback endpoint.
In the other variant, the attacker intercepts or observes the
redirect response from the site to the browser which precedes
the redirected request from the browser to the application. This
redirect response is typically a response to a request from the
browser to the site that authenticates the user by submitting
a username and password or an authentication cookie. One
would think that such request and its response would be
protected by TLS, preventing the attack. But social networks
do not always provide such protection. PKAuth explicitly
requires it.2

PKAuth addresses several other vulnerabilities that affect
double redirection protocols: phishing attacks, information
leaks through referrer headers, login cross-site request forgery
(CSRF) attacks, denial-of-service attacks on the callback end-
point, and denial-of-service attacks by storage exhaustion.
Phishing attacks have been discussed by Kormann et al. [10]
in connection with Microsoft Password, and by many critics of
OpenId such as Laurie [16]. Leakage through referrer headers
has been discussed by Gross et al. [15]. We explain these
vulnerabilities and how PKAuth addresses them throughout
section III, and more particularly in the security considerations
section III-G.

III. PKAUTH

This section is not a formal specification of PKAuth. It
is only a high-level description of the protocol, omitting
discussion of error handling and details such as the names
and encodings of parameters. On the other hand it explains
how the site and the application can implement the protocol,
referring to storage of information in database records and
cookies. Such explanations are usually omitted from protocol
specifications, but they help understand the protocol and
evaluate its security.

A. Application Types

PKAuth can be used with an application of any of the
following types:

2When we discovered the attack we saw that the latest draft of OAuth 2.0
did not require TLS for the callback endpoint, so we explained the attack to
the IETF OAuth working group. After many arguments, the working group is
now realizing that the attack threat is real and having a heated discussion on
whether TLS should be required for the callback endpoint. The working group
has been transferred from the application area of the IETF to the security area
due to the intensity of the discussion of this security issue.



1) A traditional Web application running on a Web server.
2) A browser-resident application, such as an AJAX appli-

cation implemented in Javascript or a rich application
implemented in Flash, Flex or Silverlight. A browser-
resident application is downloaded from a Web server
and has a server-side component running on that server.

3) A native application running on a desktop, laptop, or
netbook under a desktop operating system such as Win-
dows, MAC OS, or Linux, or on a mobile platform such
as a smart phone or tablet under an operating system
such as iOS, Android, or Windows Mobile. A native
application may or may not rely on an ancillary Web
server.

The protocol flow is the same for all three types of applica-
tions, and the social site does not need to know what type
of application it is interacting with, as far as the protocol is
concerned.

B. POST Redirection

While PKAuth uses a double-redirection mechanism, it does
not use traditional redirections. A traditional redirection is a
GET redirection, consisting of an HTTP redirect response,
followed by a GET request. The parameters passed by the
redirection are embedded in the redirection URI and may
therefore be leaked via referrer headers, the browser history,
or server logs.

PKAuth uses instead POST redirections. A POST redirec-
tion is implemented by downloading or otherwise creating a
form, with POST as submission method. The parameters of the
redirection are encoded as hidden inputs, and Javascript code is
used to automatically submit the form. If Javascript is disabled
in the browser, the user can click a button to submit the form;
but in today’s Web, Javascript is unlikely to be disabled.

POST redirections are also used in the SAML Browser SSO
profile [3, section 4.1] in OpenID [11].

C. Certificates and certificate chains

Every application must have an application certificate signed
by a CA and backed by a certificate chain ending in a generally
trusted root certificate.

The application certificate of a traditional Web application
is a TLS certificate, which the application uses as a client
certificate when authenticating to the site, and as a server
certificate when authenticating to the user’s browser.

The application certificate of a browser-resident application
is also a TLS certificate. The certificate and the corresponding
private key are kept in the server-side component of the
application. The certificate is used as a client certificate to
authenticate connections to the site proxied through the Web
server, and as a server certificate for authentication to the
browser.

The application certificate of a native application is used to
sign application instance certificates. An instance of a native
application running on the user’s machine has a TLS certificate
and corresponding private key. The TLS certificate is signed by
the application, and backed by the application certificate and

certificate chain. The instance uses the instance certificate to
authenticate itself to the site. In the case where the application
uses an ancillary Web server, the application certificate is also
used as a TLS server certificate by the ancillary Web server.

A native application certificate will be recognizable by a
special key purpose in the extended key usage field of the
X.509 certificate.

D. Optional Registration

Although PKAuth does not require the application to reg-
ister with the site, it does not preclude it. Registration is
optional. During the optional registration process the site
obtains information about the application and stores it in a
registration record, which may be updated as needed from
time to time. The information is later used to identify the
application to the user as the protocol is executed.

If an application registers with the site, it must register
an application certificate signed by a CA and backed by a
certificate chain ending in a generally trusted root certificate. If
the application’s certificate, or a CA certificate in the certificate
chain, expires or is revoked, the application must update the
registration.

In addition to the information contained in the application’s
certificate and certificate chain, the site may collect other
information about the application during the optional regis-
tration process, store it in the registration record, and use it as
additional information to identify the application to the user
during an execution of the protocol.

E. Protocol Flow Overview

The following is a summary of the protocol flow. Each step
us explained in more detail in the next section.

1) The user specifies a social site.
2) The application discovers a direct request endpoint for

the site, a user interaction endpoint, and one or more
access endpoints including an identity-data access end-
point.

3) The application generates an application presession key
and an application presession token containing the pre-
session key and signed by the application for later
verification by the application itself. The application
sends a request to the direct request endpoint, including
the presession token, a callback URI, and a specification
of the desired identity data and the desired scope and
duration of subsequent access to the user’s site account.
The application authenticates itself with a TLS client
certificate and an optional holder-of-key assertion. The
site creates a site presession record and returns a site
presession key that refers to the site presession record.

4) After receiving an acknowledgement of the direct re-
quest, the application redirects the browser to the site,
passing the site presession key, and setting a cookie with
the application presession key in the browser.

5) The site verifies that the user is logged in to the site,
identifies the application to the user, and asks the user
for permission to proceed.



6) The site deletes the site presession record and creates an
access session record referenced by an access token. It
redirects the browser to the application, passing the ac-
cess token and the application presession token, to which
the browser adds the cookie containing the application
presession key.

7) The application uses the access token to obtain user
identity data from the site’s identity-data access end-
point.

8) The application logs the user in.
9) The application further uses the access token to access

the user’s social context at the site by sending requests
to site access endpoints.

F. Protocol Flow Details

Step 1 – User specifies social site: The application invites
the user to log in and gives the user the option of being
authenticated by a social site. The application may offer the
user a choice of sites, and may use XAuth [17] to suggest a
site to which the user is currently logged in. The application
must allow the user to specify a site that is yet unknown to the
application by typing in the domain name of the site, or by
using an ad-hoc search facility. As the user types in a domain
name, the application may suggest completions.

Note. The application should allow the user to refer to a
site using an alternative domain name that differs from the
official domain name of the site by the presence or absence
of a “www” prefix. The site should redirect URIs that use the
alternative domain name to URIs that use the official domain
name.

Step 2 – Application discovers site endpoints: Once the
user has specified a site, the application downloads a file,
the “site info file,” from a well known location to be deter-
mined (e.g. from a URI of the form https://SITE-NAME/.well-
known/RELATIVE-PATH where SITE-NAME is the official do-
main name of the site, and RELATIVE-PATH is a relative path
to be registered with the Well-Known URI registry once the
Well-Known URI standard [18] has been adopted). The site
info file specifies the URIs of a direct request endpoint, a user
interaction endpoint, and one or more access endpoints that
provide access to user accounts. One of the access endpoints
is an identity-data access endpoint that can be used to obtain
user identity data including a user identifier that is unique
relative to the site, and other user data such as the user’s full
name, the user’s birthday, the user’s photo or avatar, and/or a
verified email address.

All site endpoints are TLS endpoints, i.e. endpoints whose
URIs use the https scheme. The host portion of those URIs
must coincide with, or be a subdomain of, the official domain
name of the site.

Step 3 – Application sends direct request: The application
sends an HTTP POST request to the direct request endpoint
of the site. This direct request is sent over a TLS connection
with authentication provided by a client certificate.

If the application is a traditional application or a browser-
resident application, it uses as client certificate an application

certificate signed by a CA and backed by a certificate chain
ending in a generally trusted root certificate.

If the application is a browser-resident application, it proxies
the direct request through its server-side component, and in the
proxied connection, the server-side component authenticates
itself to the site using the application certificate. The client-
side component running in the browser must authenticate itself
to the server-side component to avoid an open proxy, but this
is a matter internal to the application.

If the application is a native application, the instance of
the application running on the user’s machine uses as client
certificate an instance certificate signed by the application and
backed by the application certificate.

In all cases, if the application has registered with the site,
the application certificate and certificate chain must be the
ones registered with the site.

The direct request includes the following parameters:
• Optionally, if the application has registered with the site,

a registration key assigned during registration.
• The URI of a callback endpoint (the callback URI)

exposed by the application.
If the application is a traditional Web application or a
browser-resident application, the callback endpoint is a
TLS endpoint, and the application authenticates itself
at that endpoint using as server certificate the same
application certificate that it uses as a client certificate
to send a direct request.
If the application is a native application that relies on
an ancillary Web server, the callback endpoint is a TLS
endpoint, and the application authenticates itself at that
endpoint using as server certificate the same application
certificate that it uses to back instance certificates used
as client certificates.
If the application is a native application that does not rely
on an ancillary Web server, the callback endpoint is local
to the user’s machine. If the user’s machine has a local
Web server, the callback URI may be a local URI (i.e. a
URI whose host portion is localhost or a local IP address,
a local IP address being one whose first octet is 127). The
local Web server is then configured to dispatch requests
that target the local URI to the application. If the user’s
machine is a mobile platform, the callback URI may use a
custom scheme that the application is registered to handle.

• Optionally, a holder-of-key assertion, such as a SAML
holder-of-key assertion [3, section 3.1], that binds the
application certificate to additional information that may
be used to identify the application to the user.

• A specification of the identity data that the application
wishes to obtain from the site.

• A specification of the scope and duration of subsequent
access to the user’s account that the application wishes
to obtain from the site.

• An application presession token, used as a countermea-
sure against login CSRF as explained below in sec-
tion III-G7, and against a denial-of-service attack on the
callback endpoint, as explained below in section III-G6.



The application presession token is a virtual presession
record (i.e. a record that is signed rather than stored),
which is the concatenation of the following fields:

– A high entropy random presession key,
– A timestamp,
– The official domain name of the site, and
– A signature of the above fields computed by the

application for later verification by the application
itself.

The application does not store the presession token nor the
information it contains, except that it keeps in memory the
presession key until it receives a response to the direct request.

When it receives the direct request, the site verifies the TLS
client certificate and its certificate chain as the connection is
established, checking in particular that the certificates have not
expired and are not revoked, and that the chain ends in a root
certificate trusted by the site.

The site derives the application certificate and certificate
chain from the client certificate and chain. If the certificate
that backs the client certificate (the first certificate in the
client certificate chain) is a native application certificate, as
indicated by an extended key usage field, the application cer-
tificate is that native application certificate, and the application
certificate chain is the rest of the client certificate chain.
Otherwise the application certificate and chain coincide with
the client certificate and chain. If the direct request includes a
registration key parameter, the site verifies that the application
certificate and chain derived are the ones that were registered.

If the callback URI is not a local URI, the site verifies
that the host portion of the callback URI coincides with the
domain name specified in the subject field of the application
certificate.

If the direct request includes a holder-of-key assertion, the
site verifies the assertion against a collection of assertion
authorities that it trusts.

The site creates a site presession record, containing:
• A random, high-entropy site presession key, which can

be used to retrieve the record.
• All the parameters in the direct request.
• The client certificate and certificate chain presented by

the application, which include the application certificate
and its certificate chain as explained above.

Then it returns the site presession key to the application in the
HTTP response. (Notice that there is a site presession key and
an application presession key.)

Step 4 – Application redirects browser to site: When the
application receives the site presession key, it redirects the
browser to the site using a POST redirection as described
above in section III-B, passing the site presession key as only
parameter, and setting a cookie in the user’s browser whose
value is the application presession key.

If the application is a traditional application, the POST
redirection is in response to the user’s request for a social
login in step 1. The HTTP response to that request sets the
cookie, downloads the form, and downloads Javascript code
that submits the form.

If the application is a browser-resident application, the
POST redirection is accomplished by creating a form in a
window, tab or frame and submitting it. The cookie is set
directly by the browser-resident code.

If the application is a native application, the POST redi-
rection is accomplished in two steps. First, the application
launches an external browser and points it to the URI of an ap-
plication endpoint, called the pre-redirection URI. The applica-
tion responds to the request from the external browser targeting
the pre-redirection URI by setting the cookie, downloading the
form, and downloading Javascript code that submits the form.
The pre-redirection URI, like the callback URI, may be a TLS
URI targeting an ancillary Web server, or a local URI, or a
URI with a custom scheme. It must be structured so that it
can set a cookie that will later be sent by the browser to the
callback URI.

Step 5 – Site verifies user is logged in, identifies application
to user, asks permission: When the site receives the redirected
request, it verifies that the user is already logged in at the site,
e.g. as determined by the presence of a site authentication
cookie in the browser, rejecting the request if this is not the
case.

The site uses the site presession key contained in the request
to retrieve the site presession record.

The site identifies the application to the user by displaying:

1) The information contained in the application certificate,
found in the site presession record. The site displays all
the fields in the application certificate that have relevant
information about the application, indicating which of
them are known to have been verified by the CA that
signed the certificate.

2) The names of the CAs that are the subjects of the
certificates in the certificate chain that backs the applica-
tion certificate, found in the site presession record, with
the option to display additional information about those
CAs.

3) If the application has registered with the site, any addi-
tional identifying information present in the registration
record.

4) If an assertion is present in the site session record, the
information about the application stated by the assertion.

5) The callback URI.
6) The following information extracted from the callback

URI:
• If the scheme of the URI is https, the registered-

domain portion of the host portion of the URI.
• If the URI is local, an indication that the browser

will be redirected to a local application running in
the user’s machine.

• If the URI has a custom scheme, any information
that the site may have on how the custom scheme
is usually handled in various platforms, particularly
in the user’s platform if the site can guess what it
is.

The site asks the user permission to identify the user to the



application, and provide the application with identity data and
subsequent access to the user’s account. The site may restrict
the identity data and the scope and duration of access to be
provided, and may allow the user to restrict them further.

To grant permission, the user is asked to click a button that
is a part of a form with a POST submission method. The form
must target a TLS endpoint of the site, and must be protected
against CSRF as described below in section III-G5.

Step 6 – Site redirects browser to application: When the
user grants permission, the site sets up a session that will
allow the application to access the user’s account. The session
is implemented by an access record, where the site stores:

• A random high-entropy string, called an access token,
that can be used to retrieve the record.

• An identifier that uniquely identifies the user among all
registered users of the site

• A specification of additional identity data to be provided
in addition to the identifier, based on the request by
the application found in the presession record, and any
restrictions applied by the site or the user.

• The scope and duration of subsequent access to be
provided to the user’s account, based on the request by
the application found in the presession record, and any
restrictions applied by the site or the user.

• The client certificate and certificate chain used by the
application in step 3 and found in the site presession
record, or, equivalently, a cryptographic hash of the
concatenation of the certificate and chain.

Then the site deletes the site presession record and redirects the
user’s browser to the callback URI (using a POST redirection),
passing the following information:

1) A status parameter indicating that the request succeeded.
2) The application presession token that the application sent

in step 3 and was stored in the site presesssion record.
3) The access token.
4) A specification of the identity data obtainable with the

access token.
5) A specification of the scope and duration of subsequent

access obtainable with the access token.
If the application is a traditional Web application, it receives
this information directly through the callback endpoint.

If the application is a browser-resident application, it re-
ceives the information via its server-side component, which
sets cookies to convey the redirection parameters to the client-
side component running in the user’s browser. The cookies
can be set without application-specific programming using a
generic middleware module such as an Apache module that
encodes into cookies the values of any POST parameters.

If the application is a native Web application and the
callback URI targets an ancillary Web server, the application
instance running on the user’s machine receives the informa-
tion via the ancillary server, which copies the body of the
redirected HTTP request to the body of the HTTP response and
sets the content-type header of the response to a media type
handled by the application. Again this can be achieved without

application-specific programming using a generic middleware
module such as an Apache module that copies the body of
any POST request to the body of the response.

If the application is a native Web application and the
callback URI is local or has a custom scheme, the instance
of the application running on the user’s machine receives the
information directly through the callback endpoint.

In all cases the application verifies its own signature in the
presession token and verifies that the token is reasonably recent
and is accompanied by a cookie containing the presession key
found in the token. If so, the application uses the official do-
main name of the site found in the presession token to retrieve
the site info file as it did in step 2. (The application may cache
the site info file, as discussed below in section III-G8.)

Step 7 – Application uses access token to obtain user
identity data: The application sends a request to the identity-
data access endpoint found in the site info file, including the
access token as a parameter, and authenticating itself using the
same TLS client certificate and certificate chain used in step
3. The identity-data access endpoint uses the access token to
locate the access record, and verifies that the client certificate
and certificate chain are those stored in the access record, or
that the cryptographic hash of the client certificate and chain
coincides with the one stored in the record.

In response to the request the site provides an identifier that
uniquely identifies the user among the users of the site, and
the identity data specified in the access record.

Step 8 Application logs user in: The application uses the
combination of the user identifier provided by the site and
the official domain name of the site found in the presession
token as an identifier for the user within the application. We
refer to such an identifier as a remote identifier. The user may
have multiple remote identifiers, as well as a local identifier
associated with local credentials such as an ordinary user ID
and password.

When the site provides the user identifier, the application
looks for a user account that is associated with that identifier.
If it finds one, it creates a login session for the user, and sets
an authentication cookie in the browser. The application may
use the identity data provided by the site to update the user’s
account or to register the user if no account is found.

Step 9 Application accesses user’s social context: The
application further uses the access token from time to time to
access the user’s social context by sending access requests to
site access endpoints found in the site info file. The application
includes the access token with each request, and authenticates
itself using the same TLS client certificate and certificate chain
used in step 3. The site verifies the access token and the client
certificate and certificate chain as in step 7.

G. Security Considerations

1) Reliance on the Browser: The site relies on the browser
to deliver the access token to the application that was identified
to the user. Security hinges on the fact that the application
was identified to the user based on information contained in
the certificate with which the application authenticated itself



to the site when establishing the very same connection through
which it communicated the callback URI to the site, viz. the
direct request connection.

The fact that the site has to rely on the browser is a security
weakness. The browser has its own root certificate store,
which may contain CA certificates that the site does not trust.
Furthermore, if an attacker attempts the man-in-the-middle
attack between the browser and the application discussed in
section II, the browser will detect an invalid certificate, but
will only issue a warning to the user. The user may ignore the
warning based on the fact that the site has previously identified
the correct application to the user in step 5.

With the current state of Web technology, this weakness
seems unavoidable. However, we plan to propose new stan-
dards that will allow the site to tell the browser what certificate
it should expect at the callback endpoint (viz. the same
certificate that the application used in step 3). If a different
certificate is presented at the callback endpoint, the browser
will then refuse to connect instead of just warning the user.

2) Host Portion of Callback URI: The site checks that the
host portion of a non-local callback URI coincides with the
domain name specified in the subject field of the application
certificate. This is not essential: the site could allow the
application to use a differenty domain name and a different
certificate to receive connections at the callback URI. The
protocol requires it for the sake of defense in depth.

3) Role of Authentication in Steps 7 and 9: Since the site
relies on the browser to deliver the access token to the correct
application, the fact that the application authenticates itself
with a client certificate when using the access token is not
essential. It is useful, however, for two reasons.

First, it plays a role of defense in depth. If the access
token is delivered to an application controlled by an attacker,
e.g. because the attacker has been able to plant a bogus CA
certificate in the root certificate store of the user’s browser,
the attacker will be able to submit the access token to the
callback endpoint of the legitimate application, impersonating
the user vis-a-vis the application and gaining access to the site
through the application. But the attacker will be constrained
by having to go through the application. Without application
authentication, the attacker would be able to access the site
directly and the attack might be able to do more damage;
furthermore, the application may be blamed for the attack.

Second, it prevents an attack where a rogue application
controlled by the attacker legitimately obtains an access token,
intended for the rogue application, and uses it to impersonate
the user vis-a-vis a legitimate application. With application
authentication in step 7, the site will reject the access token
intended for the rogue application when presented by the legit-
imate application and the attack will fail. However, this attack
can be prevented more simply by the legitimate application
declaring its identity to the site in step 7 without proving it.

4) Phishing Attacks: Double redirection protocols such as
OpenID and OAuth are highly vulnerable to phishing attacks
[10], [16]. A malicious application may redirect a user to a
site that impersonates a legitimate site and obtains the user’s

credentials for the legitimate site. If the site endpoint is not
protected by TLS the user is defenseless against the attack.
Even if the endpoint uses TLS, the user may be easily tricked,
as explained by Kormann et al. [10]. Furthermore making users
accustomed to providing credentials after a redirection is bad
for the Web, because it facilitates phishing attacks in general.

PKAuth avoids this vulnerability by requiring the user
to be already logged in at the site when the application
delegates authentication to the site. This countermeasure is
currently used by OpenID providers such as WordPress. But
the countermeasure is more effective when its use is required
by the protocol rather than being left to the discretion of
particular implementations.

5) CSRF Attacks against the Site: The fact that the user
is already logged in to the site makes it possible to use a
traditional technique to provide protection against CSRF for
the form that contains the button used by the user to grant
permission. The form can have a hidden field whose value is
a high-entropy random string contained in the login session
record.

6) Denial of Service Attacks on the Callback Endpoint:
One purpose of the application presession token is to mitigate
denial-of-service attacks against the callback endpoint of the
application. Without it, an attacker could submit many bogus
access tokens to the callback endpoint which the application
would have to forward unconditionally to the site’s identity-
data access point, possibly causing the site to lock out the
application or revoke its registration. The presession token
serves as a countermeasure because a presession token with a
valid signature can only be obtained by an authenticated user
of the site.

In case of attack by an authenticated user, the application
can send the presession token to the site, and the site can
use the token to identify the attacker. The site will have the
burden to decide whether it is the user or the application that
is responsible for the sending bogus tokens.

7) Login CSRF Attacks against the Application: The pur-
pose of the setting the cookie with the application presession
key in step 4 is to prevent a modified version of the login
CSRF attack described in [19]. Without it, an attacker who
is a legitimate user of the site and the application could
legitimately obtain an access token and a presession token, and
trick the user into submitting them to the callback endpoint,
causing the user to log in to the application as the attacker.
Consequences of a user logging in as an attacker are explained
in [19].

8) Denial of Service by Storage Exhaustion: To avoid a
denial of service by storage exhaustion, the application avoids
keeping storage allocated while waiting for the user to be
authenticated by the site. That is the reason for not creating a
physical application presession record, using instead a signed
presession token, which plays the role of a virtual presession
record. While the application does not keep storage allocated
before authentication, it may use a cache of bounded size to
remember information that can be retrieved again if necessary,
such as the contents of the site info file.



The site allocates a presession record when it receives the
direct request in step 3 before user authentication. But the
user is required to be already logged in, so the site does
not keep storage allocated while waiting for input from an
unauthenticated user.

The access record is a physical record because it is created
for an authenticated user. The site could use a virtual access
record instead by including all the access information in the
access token and signing the token. But that would require a
mechanism for revoking access tokens.

IV. CONCLUSION

We have proposed a social login protocol that allows a Web
application to delegate user authentication to a social site and
thereby gain access to the user’s social context. We envision
PKAuth as a successor to OAuth, the protocol used today to
implement the “Login With Facebook” button and similar so-
cial login facilities. Whereas OAuth requires prior registration
of the application with the social site, in PKAuth registration is
optional. A social site using PKAuth could choose to require
registration, for example, only for applications that perform
sensitive tasks such as account administration on behalf of
users.

PKAuth is primarily intended as a solution for a looming
danger on the Web: the danger that, as social login becomes
more and more popular, all applications will have to register
with the dominant social site, and the social site will gain the
power to disable any application by revoking its registration,
an undesirable situation for all parties involved, including the
dominant social site.

But PKAuth also provides other technical and societal
benefits. As technical benefits, we have seen that PKAuth
solves several security problems that affect similar double-
redirection protocols, and provides new ways of supporting
modern browser-resident and native applications. As a societal
benefit, PKAuth should enable the emergence of decentralized
social networks, by allowing social sites within a decentralized
network to access each other’s data without prior registration.

Much work remains to be done. What we have proposed
is only a high-level description of the protocol. The protocol
must be fleshed out with precise parameter encodings, error
handling, and interoperable means of specifying and obtaining
identity data and access to a user’s social context. Reference
implementations must then be developed, independent imple-
mentations must demonstrate interoperability, and a standard
must be published by a standards body.

REFERENCES

[1] Janrain (we believe that the term social login was coined by
Janrain). [Online]. Available: http://www.janrain.com/products/engage/
social-login

[2] Microsoft, “Windows Live ID.” [Online]. Available: http://passport.net
[3] J. Hughes et al., “Profiles for the OASIS Security Assertion Markup

Language (SAML) V2.0. OASIS Standard,” March 2005. [Online].
Available: http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.
0-os.pdf

[4] Wikipedia, “OpenID.” [Online]. Available: http://en.wikipedia.org/wiki/
OpenID

[5] E. Hammer-Lahav, “The OAuth 1.0 Protocol,” April 2010, IETF RFC
5849. [Online]. Available: http://tools.ietf.org/html/rfc5849

[6] ——, “The OAuth 2.0 Protocol Framework, Version 13,”
February 16, 2011. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-oauth-v2-13

[7] OpenID OAuth Hybrid Working Group, “OpenID and OAuth
Hybrid Extension.” [Online]. Available: http://wiki.openid.net/w/page/
12995194/OpenID-and-OAuth-Hybrid-Extension

[8] D. Recordon, “OpenID Connect.” [Online]. Available: http:
//openidconnect.com/

[9] P. Moceri and T. Ruths, “Cafe Cracks: Attacks on Unsecured
Wireless Networks.” [Online]. Available: http://www1.cse.wustl.edu/
∼jain/cse571-07/cafecrack.htm

[10] D. P. Kormann and A. D. Rubin, “Risks of the passport single signon
protocol,” Computer Networks, vol. 33, pp. 51–58, 2000. [Online].
Available: http://avirubin.com/passport.html

[11] OpenID Foundation, “OpenID Authentication 2.0 Final,”
December 5, 2007. [Online]. Available: http://openid.net/specs/
openid-authentication-2 0.html

[12] R. Barnes and M. Lepinski, “The OAuth Security Model for
Delegated Authorization,” July 8, 2009. [Online]. Available: http:
//tools.ietf.org/html/draft-barnes-oauth-model-01

[13] F. Hirsch, R. Philpott, and E. Maler, “Security and Privacy
Considerations for the OASIS Security Assertion Markup Language
(SAML) V2.0,” March 2005. [Online]. Available: http://docs.oasis-open.
org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf

[14] T. Gross, “Security analysis of the SAML single sign-on browser/artifact
profile,” in Proceedings of the Computer Security Applications
Conference, 2003, pp. 298–307. [Online]. Available: http://www.acsac.
org/2003/papers/73.pdf

[15] T. Gross and B. Pfitzmann, “SAML artifact information flow
revisited,” IBM Zurich Research Laboratory, Tech. Rep., 2006.
[Online]. Available: http://www.zurich.ibm.com/security/publications/
2006/GrPf06.SAML-Artifacts.rz3643.pdf

[16] B. Laurie, “OpenID: Phishing Heaven,” January 19, 2007. [Online].
Available: http://www.links.org/?p=187

[17] XAuth Community, “Xauth spec.” [Online]. Available: http://xauth.org/
spec/

[18] M. Nottingham and E. Hammer-Lahav, “Defining well-known URIs,”
December 30, 2009. [Online]. Available: http://tools.ietf.org/html/
draft-nottingham-site-meta-05

[19] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for
cross-site request forgery,” in Proceedings of the 15th ACM Conference
on Computer and Communications Security, 2007. [Online]. Available:
http://www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf

http://www.janrain.com/products/engage/social-login
http://www.janrain.com/products/engage/social-login
http://passport.net
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://en.wikipedia.org/wiki/OpenID
http://en.wikipedia.org/wiki/OpenID
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/draft-ietf-oauth-v2-13
http://tools.ietf.org/html/draft-ietf-oauth-v2-13
http://wiki.openid.net/w/page/12995194/OpenID-and-OAuth-Hybrid-Extension
http://wiki.openid.net/w/page/12995194/OpenID-and-OAuth-Hybrid-Extension
http://openidconnect.com/
http://openidconnect.com/
http://www1.cse.wustl.edu/~jain/cse571-07/cafecrack.htm
http://www1.cse.wustl.edu/~jain/cse571-07/cafecrack.htm
http://avirubin.com/passport.html
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://tools.ietf.org/html/draft-barnes-oauth-model-01
http://tools.ietf.org/html/draft-barnes-oauth-model-01
http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
http://www.acsac.org/2003/papers/73.pdf
http://www.acsac.org/2003/papers/73.pdf
http://www.zurich.ibm.com/security/publications/2006/GrPf06.SAML-Artifacts.rz3643.pdf
http://www.zurich.ibm.com/security/publications/2006/GrPf06.SAML-Artifacts.rz3643.pdf
http://www.links.org/?p=187
http://xauth.org/spec/
http://xauth.org/spec/
http://tools.ietf.org/html/draft-nottingham-site-meta-05
http://tools.ietf.org/html/draft-nottingham-site-meta-05
http://www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf

	Introduction
	Avoiding Double-Redirection Vulnerabilities
	PKAuth
	Application Types
	POST Redirection
	Certificates and certificate chains
	Optional Registration
	Protocol Flow Overview
	Protocol Flow Details
	Security Considerations
	Reliance on the Browser
	Host Portion of Callback URI
	Role of Authentication in Steps 7 and 9
	Phishing Attacks
	CSRF Attacks against the Site
	Denial of Service Attacks on the Callback Endpoint
	Login CSRF Attacks against the Application
	Denial of Service by Storage Exhaustion


	Conclusion
	References

