A Method of Browsing Hierarchically Displayed
Data in a Constrained Space
Francisco Corella

June 2010

1. Motivation

Computer systems often display data hierarchically and provide a user interface for
browsing such hierarchically displayed data. Most operating systems, for example,
have a hierarchical file system comprised of folders and files and provide a user
interface for browsing the hierarchy of folders and files.

In the last few years, some Web applications have resorted to assigning tags to data
such as bookmarks, photos, or email messages, as a means of organizing and
retrieving such data [1]. Tagged data is not inherently hierarchical, but can be
displayed and browsed hierarchically, as explained below in Section 3.

The social bookmarking application Delicious, for example, lets users assign tags to
bookmarks, and displays tags and bookmarks hierarchically in a browser sidebar.
Figure 1 shows a screenshot of a Mac computer where of a window of the Firefox
browser occupies most of the screen. The Delicious sidebar, provided by the
Delicious plug-in for Firefox, can be seen on the left side of the window.

The latest version of Noflail Search lets users run a given query on many different
search engines, uses tags to organize the collection of engines, and displays tags and
engines hierarchically in a panel entitled Search Engines, called the Engines panel.
Figure 2 shows a screenshot of a Mac computer with Noflail Search running in a
window of the Safari browser. The Engines panel is the second vertical panel from
the left. Figure 3 show a close up view of the same Engines panel.

Sometimes a user interface must display a hierarchy of data in a constrained space.
The Delicious Sidebar, for example, must be narrow because most of the space
available in the browser window containing the sidebar must be dedicated to
displaying Web pages. The size of the Engines panel of Noflail Search is constrained
by the fact that it must share the space available to the Noflail Search application with
up to three other panels and a number of other user-interface elements.

Traditional user interfaces methods of browsing hierarchical data are not well suited
for use in a constrained space. Their drawbacks are most apparent when used to
display hierarchies with a large branching factor. The present method of browsing
hierarchical data that is well suited use in a constrained space, even when the
branching factor of the hierarchy is very large.

Section 2 defines a few concepts pertaining to hierarchically defined data. Section 3
explains how tagged data can be browsed hierarchically, and points out that the
branching factor of hierarchically browsed tagged data can be very large. Section 4



describes traditional methods of browsing hierarchical data and points out their
drawbacks. Section 5 describes the new method of browsing hierarchical data.

2. Hierarchies

For the present purposes, a hierarchy can be defined as a (finite) collection of nodes,
each node being either a data node (D-node) or a hierarchy node (H-node), and a
parent-child relation among nodes such that a D-node has no children, and there are
no directed cycles (i.e. there are no cycles where each node is a child of the previous
node). A node can have zero, one, or more than one parents. A node with no parents
1s said to be a root. A node can also have zero, one, or more than one children. The
number of children is called the branching factor of the node. The children of a node
that are D-nodes will be called D-children, and those that are H-nodes will be called
H-children.

The collection of folders (or directories) and files in a file system is an example of
such a hierarchy, with the folders being H-nodes and the files being D-nodes. Notice
that, while D-nodes have children, there can also be H-nodes without children (empty
folders in the example).

3. Browsing tagged data as a hierarchy

Tags assigned to a data collection can be used to search the collection. For example, a
user could enter a tag in a search box to retrieve all data items that have been assigned
that tag. A user could also enter a set of tags to retrieve data items each of which has
been assigned all of those tags.

But tags can also be used to build a hierarchy on the data, which will be called below
the tag hierarchy, and allow the user to browse that hierarchy. The tag hierarchy can
be defined as follows:

o The D-nodes are the data items.

a The H-nodes are the sets of co-occurring tags, the tags in a set being said to be
co-occurring if and only if there exists a data-item tagged by all of them. The
empty set is an H-node, which will be called the empty H-node.

0 An H-node is a parent of a data item (a D-node) if and only if every tag in the
H-node has been assigned to the data item. The empty H-node is a parent of
those data items that have been assigned no tags.

o A first H-node is a parent of a second H-node if and only if the first H-node is
not the empty H-node and the second H-node consists of all the tags of the
first H-node plus one additional tag.

The roots of this hierarchy are the empty set, whose children are the data items with
no tags, and the H-nodes consisting of only one tag. (The above definition explicitly
excludes the empty H-node from being a parent of another H-node, as a matter of
browsing convenience. Without that exclusion, the empty H-node would be the only
root of the hierarchy.)

Tag hierarchies usually have large branching factors. Consider for example an
ordinary file system with folders and files. A (larger) tag hierarchy can be derived
from the folder-and-file hierarchy by assigning each folder as a tag to all the files



contained in the folder and its (recursively defined) subfolders. If the original folder-
and-file hierarchy has a single root (the root folder), then the derived tag hierarchy has
one root with a very large branching factor. The root of the derived tag hierarchy is
an H-node consisting of a single tag, that tag being the root folder. All files are D-
children of the root in the tag hierarchy; and, for every folder other than the root
folder, the root of the tag hierarchy has an H-child consisting of that folder plus the
root folder.

Hierarchies with large branching factors are difficult for users to browse. A goal of
this invention is to facilitate the browsing of tag hierarchies and other hierarchies with
large branching factors even within a constrained space.

4. Prior art methods of browsing hierarchical data
Several methods have been used in the past for browsing hierarchical data.

A first method consists of displaying together the H-children and the D-children of a
current node in a single area of the display, and providing means of navigation to
display the children of a different node in the same area. When the hierarchy is a file
system, those means of navigation often include clicking or double-clicking on an H-
node (a folder) to display the children of that H-node instead of those of the current
node.

A second method is like the first method, except that clicking or double-clicking on an
H-node displays the children of the H-node in a different area of the screen, multiple
such areas being visible simultaneously.

A third method consists of displaying the hierarchy vertically as a list of nodes, and
expanding or contracting the list as the user browses. An icon is associated with each
node and can be in two states “closed” or “open”. When the user clicks on a closed
icon, the icon changes to the open state, and the children of the H-node are inserted
into the list, below the H-node and indented to the right. When the user later clicks on
the item in the open state, the icon changes to the closed state and the children, or
more generally the descendants, of the H-node listed after the H-node are removed.

A fourth method consists of displaying the hierarchy vertically as a list consisting
only of H-nodes. Two icons are associated with each H-node. Clicking on one of the
icons inserts into the list of nodes the H-children of the H-node. Clicking on the other
icon has the same effect, plus the additional effect of displaying both the H-children
and the D-children of the H-node in a separate area of the display.

A fifth method, used by the Delicious sidebar displays a vertical list of H-nodes, like
the fourth method, one H-node to a line. Two icons may be associated with each H-
node, but only one of them is active, the other being decorative. The inactive icon is
an image of a kind of paper tag. The active icon is a triangle, which can be in a
“closed” state pointing to the right or an “open” state pointing down. Inactive icons
and active icons in the “open” and “closed” state can be seen in Figure 1. Clicking on
an active icon in the closed state causes the icon to change to the open state and the H-
children of the associated H-node to be inserted below the H-node, indented to the
right. However these H-children do not have an associated active icon, and cannot be



further expanded to show their own H-children. Thus a non-indented line
corresponds to an H-node that consists of a single tag, which is used to label the line;
and an indented line corresponds an H-node that consists of two tags, the tag of the H-
node in the closest non-indented line above the indented line, and an additional tag,
which is used to label the indented line. Clicking anywhere on an H-node line, except
on the active icon if one is present in the line, causes the line to become highlighted
by a blue background and the D-children of the H-node to be displayed in a separate
display area that occupies the bottom half of the sidebar. This area is labeled
“Bookmarks”, the D-nodes of the hierarchy being bookmarks of Web pages. Figure 1
shows the Bookmarks area containing the two D-children of the H-node consisting of
the single tag “ItalianEnglish”.

All these methods have substantial drawbacks when used in a constrained space,
particularly when used for hierarchies with large branching factors.

The first method, because it relies on navigation, imposes on the user the burden of
remembering the structure of the hierarchy to avoid getting lost. Furthermore,
because H-children and D-children are displayed in the same area of the screen, if
space constraints require that area to be small, H-children may be hard to find when
there are too many D-children. For example, the user may not realize that H-children
are present if none of them is visible without scrolling. Conversely, D-children may
be hard to find if there are too many H-children.

The second method has the drawback of requiring multiple areas of the screen to be
visible simultaneously, which may be hard to achieve in a constrained space, in
addition to the second drawback of the first method.

The third method does not use navigation, and hence does not have the first of the
drawbacks of the first method. But it has the second drawback of the first method:
when the user clicks on an H-node, if the size available to display the vertical list of
nodes is small due to space constraints, and the branching factor for the H-node is
large, most of the children will not be visible without scrolling. D-children may then
be hard to find if there are too many H-children, and H-children may be hard to find if
there are too many D-children.

The fourth method requires two different areas of the display, which is a drawback if
there are space constraints. Further it has the same drawback of displaying D-children
and H-children together as the first and third methods.

The fifth method requires two different areas of the display. This is a drawback if
space is scarce, as is the case for the Delicious sidebar. Because two different areas
are required, only half of the sidebar is used to display the list of H-nodes.

5. Description of the present method

The present method can be used in a constrained space to browse hierarchies with
large branching factors without the drawbacks of the prior art methods. In Noflail
Search it is used to browse a tagged collection of search engines in the Engines panel
as shown in Figure 3.



The Engines panel displays a tag-hierarchy, where the D-nodes are search engines
such as “Allrecipes” or “Myrecipes”, and the H-nodes are sets of tags assigned to
search engines, tags such as “Recipes”, “Reference”, “Shopping”, “Books”, or
“Electronics”. The tag-hierarchy is displayed as a vertical list of both D-nodes and H-
nodes, one node per line. A line listing a D-node, i.e. a search engine, contains the
icon and name of the search engine; there are two of them in the Engines panel of
Figure 3, listing the D-nodes “Allrecipes” and “Myrecipes’; all the other lines listing
H-nodes. A line listing an H-node contains a triangle icon, which is sometimes
omitted (invisible), a folder icon, the name of a tag belonging to the H-node, and the
number of D-children of the H-node. Only one tag is shown even if the H-node is a
set of multiple tags. The other tags in the set are those shown in ancestor lines. (A
first line is said to be an ancestor of a second line if and only if it is above and less
indented than the second line, and there is no line between the first and second line
that is at least as indented as the first line.) For example the line showing the tag
“Books” lists the H-node containing the tags “Shopping” and “Books”.

A triangle icon has two states. It may be “closed”, pointing to the right, or “open”,
pointing down. For example the line showing the tag “Shopping” in Figure 3 has an
open triangle icon, while the line showing the tag “Books” has a closed triangle icon.
A folder icon also has two states, “closed” and “open”, indicated by self-explanatory
graphics. For example, the line showing the tag “Recipes” in Figure 3 has an open
folder icon, while all other folder icons in the figure are closed.

When a line listing an H-node has a closed triangle and a closed folder, and the user
clicks on the closed triangle, Noflail Search changes the state of the triangle icon to
“open” and inserts the H-children of the H-node under the line, indented to the right.
(If the H-node has no H-children the triangle icon is omitted.) Figure 4 shows the
state of the Engines panel of Figure 3 after the user clicks on the closed triangle in the
“Books” line. The H-node of the “Books” line, which consists of the two tags
“Shopping” and “Books” happens to have three H-children, which are the three H-
nodes obtained by adding the tags “Electronics”, “Games” and “Media” respectively
to the two tags “Shopping” and “Books”.

If the triangle and folder are both closed and the user clicks on the folder, Noflail
Search changes the state of the folder icon to “open” and inserts the D-children of the
U-node under the line, indented to the right. (An H-node always has D-children,
since it consists of a set of co-occurring tags.) Figure 5 shows the state of the Engines
panel of Figure 3 after the user clicks on the closed folder icon. As indicated on the
“Books” line, the H-node of the line has three D-children, which are the search
engines “Amazon Books”, “Half.com” and “Powell’s”.

Only one of the two icons in an H-node line can be open at any one time. If the
triangle is open, the H-node line is followed by descendant lines (lines of which the
H-node line is an ancestor line) listing the H-children of the H-node indented to the
right, possibly interspersed with lines listing grand children and further descendants of
the H-node. When the user clicks on the open triangle, Noflail Search changes the
state of the triangle icon to “closed” and removes all the descendant lines.



The user may also click on a closed triangle icon when the folder icon in the same H-
node line is open, or on a closed folder icon when the triangle icon in the same H-
node line is visible and open.

When a line listing an H-node has a closed triangle icon and an open folder icon, and
the user clicks on the closed triangle icon, Noflail Search performs the following four
steps: it changes the triangle icon to the “open” state; it changes the folder icon to the
“closed” state; it removes the lines listing the D-children of the H-node that follow the
line that lists the H-node; and it inserts lines listing the H-children of the H-node,
indented to the right.

Similarly, when a line listing an H-node has a closed folder icon and an open triangle
icon, and the user clicks on the closed folder icon, Noflail Search performs the
following four steps: it changes the folder icon to the “open” state; it changes the
triangle icon to the “closed” state; it removes the descendant lines of the line that lists
the H-node; and it inserts lines listing the D-children of the H-node, indented to the
right.

Thus, when the Engines panel is as shown in Figure 5 and the user clicks on the
closed triangle icon of the “Books” line, the Engines panel becomes as shown in
Figure 4. And when the Engines panel is as shown in Figure 4 and the user clicks on
the closed folder icon of the “Books” line, the Engines panel becomes as shown in
Figure 5.

This method of browsing a tag hierarchy differs from the prior art methods as follows.

a It does not require navigation, by contrast with the first prior art method. Thus
it does not impose on the user the burden of remembering the structure of the
hierarchy.

a It displays H-children and D-children separately, by contrast with the first,
second, third and fourth prior art methods, so that H-children are not be
crowded out by too many D-children, nor D-children by too many H-children,
particularly in a constrained space.

a It does not use more than one area of the display, by contrast with the second,
fourth and fifth prior methods, and is therefore more suitable for use in a
constrained space.



	A Method of Browsing Hierarchically Displayed Data in a Constrained Space
	1. Motivation
	2. Hierarchies
	3. Browsing tagged data as a hierarchy
	4. Prior art methods of browsing hierarchical data
	5. Description of the present method

