
Protecting a Multiuser Web Application against

Online Password-Guessing Attacks

Francisco Corella

June 2007
Patent Granted∗

Abstract

This white paper presents a method for protecting a Web appli-
cation against online password-guessing attacks. A user logs in with
three credentials: the name of the application instance, a user ID, and
a password, where the instance name is a secret known only to the
instance users, the user ID is a secret kwnon only to the instance ad-
ministrators, and the password is a secret known only to the user. After
five consecutive bad guesses agaisnt a password, the user is locked out
and the password must be reset; furthermore, after thirty bad guesses
(not including five consecutive ones), the user is forced to change her
password. A denial-of-service attack that repeatedly locks out one user
is thwarted by changing the user ID of the victim, while such an at-
tack against multiple users is thwarted by changing the instance name.
Changing the instance name can also be used to preempt attacks by ex-
users. This method, together with a technique for securely resetting
a password, has been used in the Pomcor file-repository application
to provide the convenience of password-based authentication without
compromising security.

1 Introduction

Passwords have a bad reputation among security professionals, but they are
nevertheless the most common means of user authentication on the Web.
There are alternatives to passwords that are deemed more secure, such as

∗The technology described in this white paper is protected by U.S. Patent 8,046,827.
To inquire about licensing this technology please use the contact form of the Pomcor Web
site, at http://pomcor.com/contact-us/ .

1



hardware tokens that generate time-dependent passcodes [7], or SSL/TLS
client certificates [4, 8]. These alternatives, however, require the deploy-
ment and maintainance of cumbersome infrastuctures. Tokens have to be
distributed to users and sometimes resynchronized. Client certificates have
to be signed by a certificate authority (CA), and certificate revocation lists
have to be maintained. No alternative can compete with passwords in terms
of convenience, especially for short-lived on-demand applications.

In this white paper we examine the security challenges that arise from
the use of passwords in the context of a Web application. We show that
they are substantially different from those that arise in other computing
contexts. Two-way authentication, online password-guessing, user lockout,
and password reset are the main concerns, while offline dictionary attacks
are less of a threat than in traditional computer systems.

We show that the security challenges that arise in the Web context
can be met by a combination of well-known security techniques and a few
novel security features. Novel security features for protection against online
password-guessing and user lockout are presented in this white paper, while
a novel method for secure password reset is presented in a companion white
paper [3]. We conclude that it is possible to enjoy the convenience and ease-
of-use of password-based authentication without compromising security.

2 Password security and the Web

It is important to recognize that passwords present different security chal-
lenges in different computing environments. Securing login access to a local
timesharing machine or a file server, for example, is a different problem than
securing remote access to a Web application.

One challenge of securing local login access is protecting the passwords,
or hashes of passwords, stored in the local machine. Early Unix systems
used a password file containing salted hashes of passwords, which was world-
readable [6, 5]. This flaw made it trivial to mount offline dictionary attacks
against the passwords, and greatly contributed to the bad reputation of
password security.1

1In an offline dictionary attack the attacker is in possession of hashes of current pass-
words and uses a computer program to generate a large number of password candidates,
some of them derived from words found in dictionaries. The attacker computes the hashes
of the password candidates and compares them to the hashes known to the attacker. (A
salted hash is a hash of a password combined with a random value referred to as salt ; if
hashes are salted, the attacker must compute the hash of each candidate password com-
bined with each salt.) In an online password-guessing attack, by contrast, the attacker

2



Modern operating systems, whether derived from Unix or not, do not
expose the password file to public scrutiny. Still, the password file, or some
equivalent data structure containing hashes or salted hashes of passwords,
often resides on the same machine to which users have login access, and
sometimes physical access. A user who manages to acquire administrative
privileges may thus gain access to the data structure, and mount a dictionary
attack. Worse, administrators usually have entirely legal access to the data
structure, and a rogue administrator may easily mount a dictionary attack
to obtain user passwords.

Protecting the data structure containing the passwords or their hashes
is easier in the context of a Web application. Users access the application
through a Web server. They do not have physical access to the Web server,
and they do not have user accounts with the operating system of the Web
server; they can only interact with the Web server through the HTTP pro-
tocol. Furthermore, the password data structure may reside in a database
server or other back-end server rather than in a front-end Web server. Both
servers may be protected by firewalls. There are thus many more barriers
between a user and the password data structure.

Moreover, in the case of a user-administered application, such as the
Pomcor file-repository application, administrators perform their adminis-
trative duties through a Web interface, an extension of the Web interface
through which all users access the application. Thus administrators do not
have access to the password data structure. Indeed, they are separated from
the password data structure by as many barriers as any other user.

On the other hand, passwords face new security challenges in the context
of a Web application. An obvious one is the need to carry the password from
the user’s browser to a Web server duly authenticated as belonging to the
application front-end.

To address this challenge, cryptographers have designed protocols that
combine password-based authentication and cryptographic key exchange
over an insecure network such as the Internet [1, 10]. But there is a simpler
solution, viz. to use SSL. Today, SSL (a.k.a. TLS [4]) is well established
as the protocol of choice for key exchange and encrypted communication
on the Web. SSL is universally supported by browsers and servers, and it
is deemed to provide effective security [9], if used properly [2]. It is thus
easiest to use SSL to exchange keys, authenticate the server (using a public
key certificate signed by a CA known to the browser), and establish an en-

does not have access to hashes or salted hashes of passwords, and does not compute any
such hashes. The attacker simply tries raw credentials by attempting to log in with them.

3



crypted connection. Once the connection is established, it can be used by
the browser to send the user’s password securely to the server.

Another challenge is how to reset a password securely. This problem is
discussed, and a new solution is proposed, in a companion white paper [3].

A third challenge is how to defend against online password-guessing at-
tacks, including password capture on a different site where the user uses the
same password, and denial-of-service by user lockout. This is the focus of
this white paper.

3 Online password-guessing attacks over the In-
ternet

Online password-guessing attacks present a greater challenge on the Web
environment for several reasons:

1. A Web application (or a Web site) is accessible over the Internet from
anywhere in the world. This affords a high degree of anonymity and
impunity to an attacker.

2. If the application takes no precautions, passwords can be submitted
by a computer program running on a client machine at a rate of thou-
sands per second. Moreover, armies of thousands of bots (hijacked
computers) are readily available to an attacker for a massively parallel
attack. An attacker may thus be able to try millions of passwords per
second in the absence of countermeasures.

3. Web applications are vulnerable to password capture on a different
site. Many users, faced with the problem of having to remember pass-
words for a large number of Web sites and Web applications, simply
use the same password over and over again. An attacker can exploit
this by setting up a malicious site with the purpose of collecting user
credentials, which the attacker can then use to log in to a target ap-
plication.

Most Web applications ask for a user ID and a password as login creden-
tials, and protect themselves against online password guessing locking out
the user account identified by a given user ID after a small number of con-
secutive login attempts with that user ID but an incorrect password. The
password must then be reset, or a timeout period must elapse, before logins
to the account are permitted again.

4



This countermeasure, however, has serious drawbacks. First, it can turn
an online password-guessing attack into a denial-of-service attack, by re-
peatedly locking out the user. The denial of service may be a side effect
of the guessing attack, or it may be an intentional attack that exploits the
countermeasure.

Secondly, although it limits the number of consecutive bad guesses, it
allows an unlimited number of bad guesses, as long as they are interleaved
with valid logins by the legitimate user. An attacker who is able to watch
the user, or who can otherwise guess the time-pattern of logins, may be able
to time the password guesses so as to avoid locking out the user.

An application that relies on this countermeasure is particularly vulner-
able to an attack by an ex-user. An ex-user may know the user IDs of all
or most current users, and may launch a denial-of-service attack against all
of them at once. Alternatively, the ex-user may know the time-pattern of
logins of many current users, and may be able to mount a sustained guessing
attack against their passwords without locking them out; furthermore the
chances of success are increased if each password can be tried out against
multiple user accounts.

Finally, the countermeasure does nothing to protect the application
against password capture on a different site.

4 Proposed defense against online password guess-
ing

Our method of protection against online password-guessing attacks and re-
lated denial-of-service attacks, implemented in the Pomcor repository appli-
cation, is a combination of the following application features and counter-
measures.

1. The application is user-administered. Each application instance (i.e.
each repository, in the specific case of the Pomcor repository appli-
cation) has an administrative hierarchy consisting of the Pomcor cus-
tomer who creates the instance, referred to as the owner, and, option-
ally, users to whom the owner grants administrative privileges. The
owner and the users granted administrative privileges are referred to as
administrators. Only the owner registers with the application provider
(Pomcor); other user accounts are created by administrators using a
Web interface. The administrative hierarchy, which is also useful in
providing a secure password procedure, is described in more detail
in [3].

5



2. Each user logs in with three credentials rather than the usual two:

(a) The application instance name (the repository name, in the case
of Pomcor repository application), which is considered a secret
shared by the users of the application instance. The instance
name can be changed by the owner.

(b) A user ID, which is known only to the user and the administra-
tors. The user ID is chosen by the administrator who creates the
user account, and can be changed by an administrator (by any
administrator if the user has no administrative privileges, by the
owner if the user is herself an admnistrator).

(c) A password, known only to the user.

3. After a certain number of consecutive bad guesses against a password
(5 in the case of the Pomcor application), the user is locked out, i.e.
login is disabled for the user’s account. Bad guesses are considered to
be consecutive if there is no intervening successfully completed login
to the user’s account. All the consecutive bad guesses must be against
the same password; counting starts over if the password is changed.

4. A user who has been locked out is allowed to log in again once her
password has been reset. An administrator can reset the password
of an unprivileged user, by assiging a temporary password, known to
the administrator, to the user’s account; the user must change the
temporary password to a permanent one only to her when she logs
in. The companion white paper [3] describes a secure password reset
procedure that protects the transmission of the temporary password
from the administrator to the user. The owner can reset the password
of an administrator, and can use a rescue code, as described in [3], to
reset her own password.

5. After the total number of invalid login attempts against a password
(not necessarily consecutive ones) reaches a certain threshold (30 in
the case of the Pomcor application), the user is asked to change her
password the next time she logs in; she cannot further use her account
until she changes her password. Furthermore, any logins with a valid
password made after the threshold has been reached do not count as
”successfully completed”, for the above definition of what it means
for bad guesses to be consecutive. (The login is not ”successfully
completed” until the user changes her password, at which time the
counting of bad guesses starts over.)

6



6. When the user changes her password, she is not allowed to select as the
new password a password that has previously been used as a perma-
nent or temporary password on her user account. (On the other hand,
there is no such constraint when an administrator resets the user’s
password; otherwise the administrator could exploit the rejection of
previously-used passwords to mount an online password-guessing at-
tack with the purpose of discovering permanent passwords previously
chosen by the user; although those passwords cannot be reused for the
application, they should only be known to the user, and they must be
considered confidential in case the user makes use of them for other
purposes. The Pomcor repository application provides a random pass-
word generation facility that the administrator can use to produce a
high entropy temporary password that, with very high probability, has
not been used previously.)

5 Effectiveness

The following considerations show the effectiveness of the defense against
online password-guessing attacks:

• There is an overall limit on the number of guesses that an attacker can
make against a permanent password, equal to the sum of the limit on
consecutive bad guesses and the threshold on the total number of bad
guesses. (The overall limit is 5 + 30 = 35 for the Pomcor application.)
Indeed, after the threshold (30) is crossed, logins by the legitimate
user, if any, do not reset the counter of consecutive bad guesses; hence
the attacker can make at most a number of guesses equal to the limit
of consecutive bad guesses (5) before the logins are disabled for the
account or the legitimate user changes the password. The same pass-
word cannot be reused as a permanent password. (It can be reused as
a temporary password, but that would be an improbable coincidence,
since a permanent password for a user account is chosen by the user,
whereas a temporary password is chosen by an administrator other
than the user.)

• If a user is repeatedly locked out by an attacker, an administrator can
change the user ID for that user to thwart the attack.

• If an attacker knows the user IDs of multiple users (e.g. because the
attacker is an ex-user) and repeatedly locks them out, the owner of

7



the application instance can change the name of the instance to thwart
the attack.

• If an attacker by an ex-user is feared, the owner can preempt it by
changing the name of the application instance.

• A rogue Web site set up by an attacker with the purpose of capturing
passwords may well obtain a user’s password, and may even obtain the
user’s user ID for the application, but will not obtain the application
instance name. Hence the credentials obtained by the rogue site are
not sufficient to log in to the application.

Furthermore, the user ID is chosen and controlled by the administra-
tive hierarchy rather than by the user; this makes it less likely that
the user ID will be the same that user chooses herself for other Web
applications and Web sites, and thus less likely that it will be captured
by the rogue site.2

The mere use of the application instance name as an additional credential
increases the entropy of the set of credentials, i.e. makes it more difficult to
guess them. Of course, the application must ask for all three credentials at
once, and must give the same response if no application instance is found
with the instance name supplied as the first credential, if no user is found
with the user ID entered as second credential, or if the password is incorrect.
The Pomcor application goes further by introducing delays to ensure that
timing cannot be used to distinguish between the three possible causes of
login failure.

6 Password Databases and Automated Password
Entry

This section shows that the proposed defense against online password guess-
ing meshes well with a popular solution to the password proliferation prob-
lem.

We discussed above how users are burdened by the need to remember
passwords for many Web sites and Web applications, how they may be

2The above assumes that the rogue site is not trying to masquerade as the Pomcor
application, as would be the case, for example, in a phishing attack. For protection
against such masquerading, the Pomcor repository application relies on proper use of
SSL/TLS [2], coupled with user education.

8



tempted to use the same password for multiple sites or applications, and
how that password is then vulnerable to capture by a rogue site.

A solution to the password proliferation problem that is currently be-
coming popular is to keep Web passwords stored in a encrypted database
instead of remembering them. Several variations on this idea have been pro-
posed. The database may be managed by the browser, or by the operating
system, or by a separate application. It may physically reside on the client
machine, on a pluggable memory device, on a PDA, or on a different com-
puter reachable over the Internet. Access to the database may protected by
a master password or a biometric sensor or both.

Use of a password database introduces the risk that it may be compro-
mised, causing all passwords to be disclosed at once to an attacker. However,
if properly designed and used, a password database may be a good solution
to the password proliferation problem.

In some variations of the password database solution, passwords are
supplied automatically when needed, without the user having to enter them
manually. If the user does not type the password, the user cannot mistype it.
Therefore the user of an application that implements the proposed defense
against online password guessing will never be forced to change her password
if she uses a password database that provides automated password entry.

7 Comparison with Password Aging

It is worth comparing the technique for limiting the number of significant
negative responses that we have just described with the practice of forcing
users to change their passwords after a certain period of time, called password
aging.

Password aging has problems, some of which were pointed out long ago
by Grampp and Morris [5]. Gramp and Morris asserted then that ”the aging
of passwords is a difficult problem, yet unsolved”.

Our technique can be viewed as a form of password aging, where the
aging is caused, not by the mere passage of time, but by the accumulation
of invalid login attempts that bring an attacker closer to guessing the pass-
word by eliminating alternatives. The concept is similar to the ”aging” of
an encryption key as it produces ciphertext that may be used as input to
cryptanalysis.

One problem with traditional password aging is that it is an inconve-
nience for users. Our technique is also an inconvenience for users. We
hope, however, that it will prove less annoying, because it is better moti-

9



vated, and because the user has some control over the frequency of password
changes. Indeed, by being careful when entering her password, or by using
an encrypted password database that supplies the password automatically
as discussed above, the user may be able to keep a password indefinitely.

A secondary benefit of our technique is that the user is motivated to pay
attention to the count of bad guesses, which is shown to the user after login.
The user is thus more likely to discover extraneous login attempts indicating
a password-guessing attack, and can then thwart the attack by having her
user ID changed by an administrator.

A benefit of traditional password aging is that it limits the period of time
during which a successful attacker can use a compromised password. Our
technique does not address this concern, since a careful user, or a careful
attacker who has guessed the user’s password, can keep the same password
indefinitely.

It would be possible to add a time limit to our scheme. We do not
advocate this, however, because the resulting benefit is doubtful. Indeed,
an attacker who knows a password will often be able to guess the next
password that will be chosen by the user. For example, if the password
ends in one or more digits that make up a number, it is likely that the next
password will be the result of adding 1 to that number. We do not think it
is wise to further inconvenience users for a doubtful security benefit.

8 Conclusion

This white paper has presented a password-based authentication method
where the user’s credentials include a secret application instance name and
a secret user ID in addition to a password, where the user is locked out
after a number of consecutive bad guesses, and, furthermore, where the
user is forced to change her password after a (typically higher) number
of bad guesses with no requirement that those bad guesses be consecutive.
This method provides protection against online guessing attacks and related
denial-of-service attacks, including attacks by ex-users, and other security
benefits. Together with a secure-password-reset technique described in a
companion white paper, this technique makes it possible to enjoy the con-
venience of password-based authentication without compromising security.
Both techniques have been implemented in the Pomcor file-repository ap-
plication.

10



References

[1] S.M. Bellovin and M. Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure against Dictionary Attacks. In
IEEE Computer Society Conference on Research in Security and
Privacy, pages 72–84, 1992.

[2] Francisco Corella. On the Proper Use of SSL to Protect Form Data.
http://www.pomcor.com/whitepapers/proper use of ssl.pdf. Pomcor
Whitepaper.

[3] Francisco Corella. Secure Password Reset in a Multiuser Web
Application.
http://www.pomcor.com/whitepapers/secure password reset.pdf.
Pomcor Whitepaper.

[4] T. Dierks and C. Allen. The TLS Protocol Version 1.0.
http://tools.ietf.org/html/rfc2246, January 1999. IETF RFC 2246.

[5] F.T. Grampp and R.H. Morris. Unix Operating System Security.
AT&T Bell Laboratories Technical Journal, 8(63):1649–1672, October
1984.

[6] R. Morris and K. Thompson. Passsword Security: A Case History.
Communications of the ACM, 22(11):594–597, November 1979.

[7] M. Nystrom. The SecurID(r) SASL Mechanism.
http://tools.ietf.org/html/rfc2808, April 2000. IETF RFC 2808.

[8] W. Ford R. Housley, W. Polk and D. Solo. Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. http://tools.ietf.org/html/rfc3280, April 2002. IETF RFC
3280.

[9] D. Wagner and B. Schneier. Analysis of the SSL 3.0 Protocol.
http://www.schneier.com/paper-ssl.html.

[10] Thomas Wu. The Secure Remote Password Protocol. In Network and
Distributed System Security Symposium, March 1998.

11


