
Secure Password Reset in a Multiuser Web

Application

Francisco Corella

June 2007
Patent Granted∗

Abstract

This white paper presents a solution to the user lockout problem
in the context of a multiuser Web application. Each application in-
stance is managed by an administrative hierarchy consisting of the
owner of the instance and, optionally, other users to whom the owner
delegates administrative privileges. When a user forgets her password,
an administrator resets it and simultaneously places a security hold on
the user’s account. This security hold prevents access to the applica-
tion while allowing the user to change the temporary password set by
the administrator. The administrator lifts the security hold only after
being satisfied that the user has successfully changed the temporary
password. A rescue code lets the owner reset her own password. This
technique can be combined with a technique presented in a companion
white paper for protection against online password-guessing attacks,
making it possible to enjoy the ease of use of password-based authen-
tication without compromising security. Both techniques have been
implemented in the Pomcor file-repository application.

1 Introduction

Passwords are the most popular means of user authentication on the Web.
This is because they are familiar to users and have great features: they
are easy to use, they require no distribution of hardware to users, and they
require no preexisting IT infrastructure such as a certification authority

∗The technology described in this white paper is protected by U.S. Patent 7,975,292.
To inquire about licensing this technology please use the contact form of the Pomcor Web
site, at http://pomcor.com/contact-us/ .

1



that issues and revokes client certificates or a server that validates time-
dependent passcodes. A password can be transmitted securely from a Web
browser to a Web server using the SSL/TLS protocol [2], which provides an
encrypted connection after authenticating the server.

Passwords, however have two well-known drawbacks:

1. They are susceptible to being guessed by an attacker, because they
have low entropy and because they are often reused.

2. A user can be locked out by forgetting her password, or as a side effect
of any mechanism that limits the number of guesses that can be made
against a password.

A companion white paper [1] discusses the first drawback and presents
techniques, implemented in the Pomcor file-repository application, that make
passwords resilient to password-guessing attacks.

This paper discusses the second drawback and presents a technique for
solving the user-lockout problem, which has also been implemented in the
Pomcor repository application.

2 The user-lockout problem

A challenging problem when using password-based authentication is what
to do when the user is locked out, i.e. when she cannot log in. A user may
be locked out for two reasons:

1. Because she has forgotten her password, or another component of her
login credentials such as a user ID; or

2. Because login has been disabled for the user’s account after several in-
valid login attempts, as a security measure against a password-guessing
attack. The attempts may have been made by an attacker, or by the
user herself, who may have repeatedly mistyped the password.

Many Web sites and Web applications address the user-lockout problem
by using security questions as an alternative login mechanism. As the user
account is created, the user chooses one or more questions whose answers
she is unlikely to forget, and provides the answers. Later, if the user cannot
log in using her password, she is allowed to authenticate herself by answering
the security questions instead.

But security questions are not a good solution, for two reasons.

2



First, in spite of their name, they reduce security. A single question
whose answer is publicly available information, such as the traditional mother’s
maiden name question, amounts to a security hole. A single question whose
answer is not publicly available is nevertheless insecure, since the answer
has very low entropy, often being a single word found in a dictionary, whose
range is further restricted by the question. Even multiple questions to be
answered simultaneously may provide less entropy than a password.

Secondly, while the answers to the security questions may be easier to
remember than a password, it is still possible that the user will forget one
of them, or will be locked out by repeatedly mistyping them. Therefore, yet
another mechanism must be provided to rescue the user in this case. Thus
security questions do not actually solve the problem.

Since long before the Web, a solution to the user-lockout problem has
been used by IT organizations. When the user is locked out, she contacts
an administrator or help desk, and the IT organization resets the user’s
password; this results in a temporary password that the user later changes
to one known only to her. This solution relies on the availability of a con-
fidential out-of-band channel by which the IT organization communicates
the temporary password to the user. Such a channel can be, for example,
internal email deemed to be confidential, or a telephone conversation, or a
face-to-face meeting.

Password-reset by an administrator is rarely used on the Web, because
there is usually no confidential out-of-band channel between the adminis-
trator and the user. But the Pomcor repository application uses a new
technique that lets allows an administrator to reset a password securely
even in the absence of a confidential channel, and is thus suitable for a Web
application.

3 Administration of a Multiuser Web Application
by End-Users

The Pomcor repository application lets a small group of users share files
for the purpose of online collaboration. An application instance, i.e. a file
repository, can be created automatically by a customer upon demand, on
the Web; the customer then becomes the first user and the owner of the
repository.

The Pomcor repository application is user-administered. The owner of
a repository creates, manages, and deletes user accounts for her application
instance, using an easy-to-use Web interface. Furthermore, the owner can

3



delegate administrative privileges to some of the other users, making them
joint administrators of the repository.

More precisely, there is a three-level hierarchy, consisting of unprivileged
users (level 1), administrators other than the owner (level 2), and the owner
(level 3). A user with administrative privileges at a given level (2 or 3) can
create and manage user accounts at a lower lever.

It is worth emphasizing that the administrative hierarchy pertains to a
specific application instance, and does not include Pomcor personnel. Once
a repository has been created, new users do not register with Pomcor; user
accounts are created by application-instance administrators, who are them-
selves users of the repository.

An application-instance administrator can reset the password of a user
at a lower privilege level. The fact that the administrator is an end-user, and
that the owner can delegate administrative privileges, is by itself sufficient
to provide a means of securely resetting a password in many cases. The
owner of the repository can grant administrative privileges in such a way
that each user is personally known to, and perhaps even works at the same
location as, an administrator. A user and an administrator who personally
know each other will often be able to find a communication channel deemed
to ensure confidentiality for transmission of the temporary password from
the administrator to the user.

There will be cases, however, where a confidential channel is not avail-
able. For those cases, the Pomcor repository application provides a mecha-
nism for protecting the user’s account as the user’s password is reset.

4 The Security-Hold Mechanism

As an administrator resets a user’s password, she has the option of placing
a special security hold on the user’s account. The effect of this security hold
is to prevent access to the account, except for the purpose of changing the
temporary password to a permanent password.

When the user logs in with a temporary password, she is taken to a
compulsory-change-of-password page where she is asked to change it to
a permanent password known only to her (permanent here means non-
temporary; it does not mean immutable). After she does so, if there is
no security hold, she is taken to a welcome page and can start using the
repository.

If, on the other hand, a security hold has been placed on her user account,
she is not allowed to make any further use of the account after she changes

4



her password. Instead, she is instructed to contact an administrator, ask
that the security hold be lifted, and then log in again. When an administra-
tor receives the user’s request to lift the security hold, she verifies that the
request comes from the legitimate user and that the user has successfully
changed the temporary password, before acting upon the request.

An attacker may snoop the temporary password and use it to log in
before the legitimater user. The attacker is then taken to the compulsory-
change-of-password page, and can change the temporary password to a per-
manent one. However, if the administrator has placed a security hold on
the account, the attacker cannot further access the repository until the hold
is lifted; if the attacker tries to log in again, with any password, the login
is rejected as invalid. The attacker may ask an administrator to lift the
security hold, but it is assumed that an administrator will not grant the
request if it does not come from the legitimate user. The legitimate user
may try to log in, but will not be able to do so, and will contact an admin-
istrator to complain about this. The administrator will not lift the security
hold, because administrators are instructed to only lift the security hold if
the legitimate user has been able to change her password, which is not the
case. The administrator will instead reset the password again and send a
new temporary password to the user, thus foiling the attack.

It should be noted that this mechanism relies on the fact that the admin-
istrator can verify the identity of the user when the user makes the request
that the security hold be lifted. As pointed out above, one purpose of the
three-level hierarchy is to let the owner create adminstrator accounts so that
each user is personally known to an administrator. When the administrator
knows the user, she can easily verify her identity; for example, she may rec-
ognize the sound of the user’s voice during a phone conservation, or ascertain
the user’s identity in an exchange of email messages.

In more general terms, the security-hold mechanism can be viewed as
lowering the security requirements placed on the communication channel
between the user and the administrator. Without the security hold, a chan-
nel with confidentiality protection is needed, so that the administrator can
send the temporary password to the user without revealing it to an attacker.
With the security hold, all that is needed is a channel that provides data-
origin authentication (with replay protection) for messages from the user to
the administrator, so that the administrator can verify that the request to
lift the security hold comes from the legitimate user.

5



5 The Owner’s Rescue Code

When an unprivileged user is locked out, any administrator can reset her
password. When an administrator other than the owner is locked out, the
owner can reset her password. What if the owner is locked out?

The Pomcor repository application solves this last remaining problem
by providing the owner with a rescue code when the repository is created.
The owner is instructed to print the page that provides the code and save
it in a secure location such as a safe deposit box. When the owner is locked
out, she enters the code at the bottom of the login page, instead of entering
her usual login credentials at the top of the page, and she is then taken to
a rescue page, where she can reset her own password.

The rescue code differs from a password as follows:

1. It is very long, and it is not chosen by the user. Therefore the user
cannot be expected to remember it, and must instead save it on paper;
this is acceptable because the rescue code is not intended for everyday
use.

2. It has high entropy, and therefore it is not necessary to limit the num-
ber of invalid attempts at using it; consequently the owner cannot lock
herself out by repeatedly mistyping the rescue code.

3. It is used by itself, whereas a password is customarily used in conjunc-
tion a user ID. Thus the owner cannot lock herself out by forgetting
her user ID is she knows the rescue code.

4. It cannot be changed, and thus it remains valid throughout the lifetime
of the repository; the owner cannot lock herself out by changing the
code but neglecting to replace the piece of paper containing the code
in the safe deposit box.

In the Pomcor file-repository application the password is used as part of
the user’s login credentials, which also include the user ID and the repository
name, as described in the companion white paper [1]. The rescue code
can be used by itself because: (i) it has sufficient entropy by itself; (ii) it
implicitly refers to the owner’s account, which obviates the need for the user
to specifiy a user ID; and (iii) it contains sufficient information to identify
the repository, which obviates the need for the user to specify a repository
name.

In addition to letting the owner reset her password, the rescue page lets
the owner view her user ID and the name of the repository, in case she has

6



forgotten one or the other. It also lets the owner change the user ID, or the
repository name, or both; this may be desirable in some cases, as described
in the companion white paper [1].

The rescue code is a last-resort solution. If the owner looses the rescue
code, she is locked out forever. Pomcor Support cannot rescue the user
because that would render the application instance vulnerable to social en-
gineering attacks. The only remedy to the lockout is to delete the repository
and create a new one. The owner may ask another user to download the
files from the repository before it is deleted, and upload them to the new
repository after it is created. Pomcor support will honor an unauthenticated
request to delete the repository after taking precautions against a denial-of-
service attack.

The idea of keeping the rescue code in a safe deposit box is similar to the
idea of keeping a second copy of a password or cryptographic key in backup
reliable storage, mentioned in [3, p. 358]; but there are two differences:

1. The rescue code is not just the owner’s password; it is a different means
of accessing the repository that is self-sufficent and immutable. If the
owner were simply told to keep her password in a safe deposit box,
she could still lock herself out by forgetting her user ID or the name
of the repository. If the owner were told to keep a backup copy of her
complete login credentials (repository name, user ID and password)
in a safe deposit box, she could still lock herself out by forgetting to
update the backup copy after changing one of the credentials.

2. The rescue code is only used to rescue the user at the top of the
application-instance hierarchy, i.e. the owner of the repository. It
would not be reasonable to ask every user to keep a rescue code in a
safe deposit box, and to lock the user out irreversibly if she cannot
produce it; but it seems reasonable to put this burden on the owner
and top administrator of a multiuser Web application instance.

6 Conclusion

This white paper has shown how the Pomcor file-repository application
solves the user-lockout problem effectively and without compromising se-
curity.

To recapitulate: The application is user-administered; i.e., each applica-
tion instance is administered by users of the instance. When a user other

7



than the owner is locked out, an administrator with a higher level of admin-
istrative privileges than the user can reset the user’s password. Furthermore,
the administrator can set a security hold on the user’s account to protect
the transmission of the temporary password. The security hold lets the user
change the temporary password to a permanent password known only to
her, but prevents further access to the respository. The administrator lifts
the security hold only after being satisfied that the legitimate user has suc-
cessfully changed the password. When the owner is locked out, she uses
a rescue code, provided when the repository was created, to reset her own
password.

The technique that has been described in this white paper removes one
of two drawbacks that passwords have when used for user authentication on
the Web. The companion white paper [1] describes another technique, which
makes passwords resilient to password-guessing attacks over the Internet and
thus removes the other drawback. Together, these two techniques make it
possible to benefit from the convenience of password-based authentication
in Web applications without compromising security.

References

[1] Francisco Corella. Protecting a
Multiuser Web Application against On-Line Password-Guessing Attacks.
http://www.pomcor.com/whitepapers/protecting against password guessing attacks.pdf.
Pomcor Whitepaper.

[2] T. Dierks and C. Allen. The TLS Protocol Version 1.0.
http://tools.ietf.org/html/rfc2246, January 1999. IETF RFC 2246.

[3] N. Ferguson and B. Schneier. Practical Cryptography. Wiley
Publishing, Inc., 2003.

8


