Last week I made a presentation to the GlobalPlatform 2014 TEE Conference, co-authored with Karen Lewison, on how to provide virtual tamper resistance for derived credentials and other data stored in a Trusted Execution Environment (TEE). I’ve put the slides online as an animated PowerPoint presentation with speaker notes.
An earlier post, also available on the conference blog, summarized the presentation. In this post I want to go over a technique for implementing virtual tamper resistance that we have not discussed before. The technique is illustrated with animation in slides 9 and 10. The speaker notes explain the animation steps.Virtual tamper resistance is achieved by storing data in a device, encrypted under a data protection key that is entrusted to a key storage service and retrieved from the service after the device authenticates to the service using a device authentication credential, which is regenerated from a protocredential and a PIN. (Some other secret or combination of secrets not stored in the device can be used instead of a PIN, including biometric samples or outputs of physical unclonable functions.) The data protection key is called “credential encryption key” in the presentation, which focuses on the protection of derived credentials. The gist of the technique is that all PINs produce well-formed device authentication credentials, Continue reading “Implementing Virtual Tamper Resistance without a Secure Channel”