One of the saddest failings of Internet technology is the lack of security for online credit card transactions. In in-store transactions, the cardholder authenticates by presenting the card, and card counterfeiting has been made much more difficult by the addition of a chip to the card. But in online transactions, the cardholder is still authenticated by his or her knowledge of credit card and cardholder data, a weak secret known by many.
Credit card networks have been trying to provide security for online transactions for a long time. In the nineties they proposed a complicated cryptographic protocol called SET (Secure Electronic Transactions) that was never deployed. Then they came up with a simpler protocol called 3-D Secure, where the merchant redirects the cardholder’ browser to the issuing bank, which asks the cardholder to authenticate with a password. 3-D Secure is rarely used in the US and unevenly used in other countries, due to the friction that it causes and the risk of transaction abandonment; lately some issuers have been asking for a second authentication factor, adding more friction. Now the networks have come up with version 2 of 3-D Secure, which removes friction for low risk transactions by introducing a “frictionless flow”. But the frictionless flow does not authenticate the cardholder. Instead, the merchant sends device and cardholder data to the issuer through a back channel, potentially violating the cardholder’s privacy.
Last August we wrote a blog post and a paper proposing a scheme for authenticating the cardholder without friction using a cryptographic payment credential consisting of a public key certificate and the associated private key. We have recently written a revised version of the paper with major improvements to the scheme. The paper will be presented next month at HCII 2019 in Orlando.
Continue reading “Online Cardholder Authentication without Accessing the Card Issuer’s Site”