Report on the NIST Cryptographic Key Management Workshop

This is a belated report on the Cryptographic Key Management Workshop that was held by NIST on September 10-11. Karen Lewison and I went to Washington DC for the workshop, where we presented a talk on techniques for addressing the key management challenges of derived credentials.

Cryptographic key management may seem to be a dry topic, but the workshop was quite interesting, especially the second day, which looked at the future. It was attended by about 50 cryptographers, and was webcast. It began with a fascinating keynote address by Whitfield Diffie on the history of cryptographic key management. His presentation is online, but slides cannot do justice to the wealth of stories and anecdotes that he narrated.

A Framework for Designing Cryptographic Key Management Systems

The main purpose of the workshop was to discuss the current drafts of NIST Special Publication 800-130, and NIST Special Publication 800-152 and solicit comments on them. (Instructions for sending comments on draft NIST publications can be found at http://csrc.nist.gov/publications/PubsDrafts.html.) SP 800-130 is a comprehensive framework of topics that should be considered by anybody who has to specify a Cryptographic Key Management System (CKMS); since key management is an essential aspect of cryptography, the framework should be invaluable to anybody designing a system that incorporates cryptographic functionality. SP 800-152 profiles the framework for cryptographic key management systems that will be used in US Federal agencies, but goes beyond the systems themselves to cover their procurement, installation, management, and operation.

The two publications were discussed during the first day of the workshop. I cannot possibly go over the very detailed discussions that took place, so I will limit myself to repeating one comment I made regarding Section 4.7 of SP 800-130, “Anonymity, Unlinkability and Unobservability”, and expanding upon it.

Anonymity, unlinkability and unobservability are privacy features that may not be directly relevant to the authentication of Federal employees in the course of their work, but they are very relevant to the authentication of both consumers on the Web at large, and citizens who access Federal information systems. Traditional authentication by username and password provides these three privacy features; but passwords have well-known security and usability drawbacks, one of them being the difficulty of remembering many different passwords. One way of reducing the number of passwords to be remembered is to rely on a third-party identity provider (IdP), so that one password (presented to the IdP) can be used to authenticate to any number of relying parties. The Federal Government allows citizens to access government web sites through redirection to several Approved Identity Providers.

But third party login has privacy drawbacks. In usual implementations, anonymity is lost because the relying party learns the user’s identity at the IdP, unlinkability is lost by the use of that identity at multiple relying parties, and unobservability is lost because the IdP is informed of the user’s logins. Profiles of third-party login protocols approved for citizen login to government sites mitigate some of these drawbacks by asking the identity provider to provide different identities for the same user to different relying parties. This mitigates the loss of anonymity, and the loss of unlinkability to a certain extent. (Relying parties by themselves cannot track the user, but they can track the user in collusion with the IdP.) But the loss of unobservability is not mitigated, because the IdP is still informed of the user’s activities.

I believe that the Government should work to develop and promote authentication methods that eliminate passwords while preserving anonymity, unlinkability and unobservability. Cryptographic authentication with a key pair, using different key pairs for different relying parties, can be a basis for such methods.

A Look at the Future

The second day of the workshop featured presentations on capabilities of future cryptographic key management systems, ranging from innovative to futuristic. (Both days’ presentations can be found in the workshop web page.)

Tim Polk, manager of the Cryptographic Technology Group at NIST, motivated the talks that followed by going over challenges identified during the development of the CKMS framework, related to interoperability across security domains, algorithmic agility, constrained devices, privacy, and scalability. He also stressed the need to develop CKMSs that are resilient to quantum computing attacks before it is too late.

Dennis Branstad of NIST discussed security policies, stating as a goal their automated specification, negotiation and enforcement.

Anna Lysyanskaya of Brown University discussed her work on anonymous credentials. She mentioned a new technique for revocation of anonymous credentials that was presented at Crypto 2012 by Libert, Peters and Yung, and said she thought it deserved the best paper award. I believe a full version of the conference paper can be found at http://eprint.iacr.org/2012/442. I haven’t read the paper yet. Revocation of privacy-enhancing credentials is practically difficult; I have discussed the topic in several earlier posts.

Paul Lambert of Marvell Semiconductors discussed authentication and privilege management for devices connected by wireless area networks. I was glad to hear him propose the use of a raw key pair as a credential. I later proposed the same thing in the talk on derived credentials.

Lily Chen of NIST discussed the difficult key management problem of handing over a secure link as a smart phone travels from one network to another, when the networks use technologies that may be as different as UMTS and WiFi.

Sarbari Gupta of Electrosoft discussed key management in a cloud environment. She argued that the Federal Risk and Authorization Management Program (FedRAMP) does not have sufficient requirements for secure key management, and advocated the establishment of a Federal Profile for Cloud Key Management.

Elaine Barker of NIST went over the intricacies and subtleties of random bit generation, and solicited comments on Draft Special Publication 800-90B (entropy sources) and Draft Special Publication 800-90C (RBG Constructions, DRBGs and NRBGs). Comments are due December 3rd.

Rene Struik discussed a method of secure key storage and true random number generation using physical unclonable functions (PUFs). The idea is to use accidental properties of a device to generate a unique key when the device is turned on. (So I would say that his technique is closer to key generation than key storage.) Error correction is used to remove minor differences in subsequent key generations. As an additional benefit, those differences are used for random number generation. This very interesting work is related in multiple ways to our own work on mobile authentication and derived credentials; I plan to discuss it in more detail in the next blog post.

Mary Theofanos of NIST went over two case studies of usability of key management procedures: a PKI deployment, and a PIV pilot. My personal getaways: the designer of a key management system must know the users and their mental models of security; must provide multiple authentication methods, e.g. by retaining username-password as a backup for a cryptographic credential; and must not require frequent PIN changes.

The usability talk was followed by a panel that presented three use cases of cross-domain interactions. Bob Griffin of RSA discussed key management in the cloud. Saikat Saha of SafeNet discussed virtualized hardware security modules. John Leiseboer of Quintessencelabs discussed quantum key distribution; this was the first presentation I’ve attended related to quantum cryptography, and it motivated me to find out more about this futuristic topic.

Derived Credentials

Finally, I gave a presentation on mobile authentication and derived credentials, co-authored with Karen Lewison. Even though this was the last presentation at the end of a long day of talks, I was gratified that, as far as I know, nobody snuck out early to the Dogfish Head brewery across the street from the NIST campus 🙂 . Derived credentials is a NIST concept referring to credentials that, in the future, will be installed in a mobile device after the user of the device authenticates with a PIV card. Our presentation went over three techniques for implementing derived credentials that we proposed earlier in a blog post and a white paper, viz. public key cryptography without certificates, key pair regeneration as an alternative to tamper resistance, and encapsulation of cryptographic and biometric processing in a “prover black box” and a “verifier black box” to insulate app developers from the complexities of cryptography and biometrics.

But we also went beyond derived credentials, in response to a request made by Elaine Barker on behalf of Dennis Branstad before the workshop. We discussed extensions of our techniques, for authentication across security domains, for social login without passwords, and for data protection at rest without tamper resistance. Since then we have put online a whitepaper on the data protection work. We have not yet written whitepapers on authentication across security domain or social login without passwords.

Wrap-up

Tim Polk wrapped up the workshop by encouraging everybody to send comments. Although there is an official comment period for each draft publication, NIST welcomes comments at any time.

Like the workshop on privacy-enhancing technology I attended last year, this workshop was both enjoyable and very useful. I’m glad to be on the email distribution list, and I’m looking forward to the next cryptography workshop at NIST.

Techniques for Implementing Derived Credentials on Mobile Devices

Update (April 3, 2013). There is a more recent blog post with important new information on the topic of derived credentials.

Update (September 25, 2012). We made a presentation on this topic at the Cryptographic Key Management Workshop that was held on September 10-11 at NIST.

We live in the Age of Mobile, and US Federal agencies, like all enterprises, want their employees to use smart phones and tablets. But they face a serious obstacle: how to authenticate users on mobile devices securely.

As I noted in the previous post, ordinary passwords are even less secure on mobile devices than on desktops and laptops, and one-time passwords provide only limited security because they can be intercepted or observed and they remain valid for several minutes. Authentication of federal employees requires the much stronger cryptographic and biometric security provided by Personal Identity Verification (PIV) smartcards in civilian agencies and Common Access Cards (CAC) in the Department of Defense.

It is difficult to use a smartcard to authenticate a user who is accessing an application on a mobile device. A contactless card could communicate with the device via Near Field Communication (NFC), but some mobile devices, including the iPhone, are not equipped with NFC today. A card reader could communicate with the mobile device via Bluetooth or WiFi, but that requires the user to carry three pieces of equipment: the card, the phone and the card reader.

NIST is working on a better authentication solution: derived credentials, which would provide the same security strength as PIV credentials but would be stored in the mobile device rather than in a separate smartcard. The Electronic Authentication Guideline defines a derived credential as a credential issued based on proof of possession and control of a token associated with a previously issued credential, so as not to duplicate the identity proofing process.

Derived credentials are a very good idea, but they present several challenges. One challenge is the cost of verifying a client certificate chain, in terms of bandwidth, latency and battery life. Another challenge is the lack of tamper resistant storage for credentials and biometric data in mobile devices. Yet another challenge is the complexity of cryptographic and biometric technology, which most app developers are not familiar with.

I believe that these challenges can be addressed using three techniques used in the mobile authentication methods that we described in the white paper

which I summarized in the previous post. We have written another white paper,

that describes each technique separately.

The first technique eliminates the costs associated with verifying client certificate chains by using public key cryptography without certificates. The device demonstrates knowledge of a private key, and the application verifies that the hash of the associated public key matches a field of a device record stored in an enterprise directory. The device record, in turn, contains a reference to a user record, identifying the user as the owner of the device.

The second technique obviates the need for tamper-resistant storage. Tamper-resistant storage is usually needed when a PIN and/or a biometric sample is used to enable the use of a key pair, so that an attacker cannot extract the key pair and use it without providing the PIN and/or the biometric, or extract the biometric template, or mount an offline attack against the PIN. We avoid the need for tamper resistance by regerenating the key pair from the PIN or from a biometric key derived from a biometric sample and an auxiliary string. An attacker who tampers with the device gains no advantage because the only way to know if a regenerated key is the correct one is by using it for online authentication.

The third technique shields app developers from the complexities of cryptography and biometrics by encapsulating the cryptographic and biometric computations in a Prover Black Box, which can be provided as a separate native app on the mobile device, and a Verifier Black Box, which can implemented as a server appliance. The application, which may interact with the user via a browser or via a native front-end, outsources authentication to the black boxes using interapp communication facilities available at least in iOS and Android.

The white paper has figures and more details.

Convenient One-, Two- and Three-factor Authentication for Mobile Devices

Authentication methods used today on mobile devices are both inconvenient and insecure.

Ordinary passwords are difficult to type on small touch-screen displays that require switching keyboards for entering digits or punctuation. They provide even less security on mobile devices than on desktops or laptops. Due to the difficulty of typing on mobile keyboards, each character is prominently displayed after it is typed, circumventing the security provided by password input boxes that displays dots in lieu of characters. And users are motivated to choose shorter and simpler passwords, which have less entropy.

One-time passwords are often used on mobile devices due to the lack of security of ordinary passwords. Authenticating with a one-time password requires entering a PIN, obtaining the one-time password from a hard token, a soft token, a text message, or an email message, and entering the one-time password. This is a very cumbersome procedure. A one-time password is a two-factor authentication method, and is thus more secure than an ordinary password. But they have limited entropy, and they can be replayed within a time-window of several minutes. An attacker who observes or intercepts a one-time password has several minutes during which he or she can use it to log in as the legitimate user.

Social login avoids some of the inconvenience of ordinary and one-time passwords by outsourcing authentication to a social network. If the user is already logged in to the social network, he or she does not have to enter a password again. Current standards for social login are a mess, as I said in the previous post, and as confirmed by the recent resignation of the editor of the OAuth protocol. In the previous post I linked to a white paper where we propose a better social login protocol, SAAAM, well suited for mobile devices.

But while social login is useful in some cases, it is not always appropriate. There is no reason why applications should always rely on social networks to authenticate their users, or why a user should have to surrender his or her privacy to a social network in order to authenticate to an unrelated application. Also, social login does not completely solve the authentication problem, since the user still has to authenticate to the social network.

So there is a need for good authentication methods on mobile devices that do not rely on a third party. We have just written a white paper proposing one-, two- and three-factor authentication methods for mobile devices that provide strong security and are more convenient to use than ordinary or one-time passwords. They are particularly well suited for enterprise use, but are suitable for consumer use as well.

The proposed authentication methods are based on public key cryptography, but they are easy to implement and deploy. They are easy to implement because all cryptography is encapsulated in black boxes, so that developers do not have to program any cryptographic operations. They are easy to deploy because they avoid the use of certificates and do not require a public-key infrastructure.

In our one-factor authentication method the user does not have to provide any input. The device authenticates by demonstrating knowledge of a private key. A hash of the associated public key is stored in a device record, which is linked to a user record in an enterprise directory or user database.

In our two-factor authentication method, the user provides a PIN, which is used to regenerate the key pair. Because any PIN results in a well-formed key pair, the user’s PIN is not exposed to an exhaustive offline guessing attack by an attacker who steals the mobile device, opens it, and reads its persistent memory.

In our three-factor authentication method, the user provides a PIN and a biometric such as an iris scan. No biometric template is stored in the mobile device. Instead, the device contains an auxiliary string that is used in conjunction with the biometric to provide a biometric key. The biometric key is used to regenerate the key pair. The auxiliary string is encrypted by the PIN for additional security.

NSTIC Is Not Low-Hanging Fruit

In a recent tweet, Ian Glazer quoted Patrick Gallagher, director of NIST, saying at a recent White House meeting on NSTIC that the “current suite of technologies we rely on are insufficient”.

The identity technologies used today both in federal agencies and on the Web at large are indeed insufficient:

  • SSL client certificates have failed to displace passwords for Web authentication since they were introduced 17 years ago.
  • Credentials in PIV cards have failed to displace passwords in federal agencies eight years after HSPD 12; a GAO report does a good job of documenting the many obstacles faced by agencies in implementing the directive, ranging from the fact that some categories of agency employees do not have PIV cards, to the desire by employees to use Apple MAC computers and mobile devices that lack card readers. I’m glad that we don’t live in the Soviet Union and heads of agencies are not sent to the Gulag when they ignore unreasonable orders.
  • Third-party login solutions such as OpenID, as currently used on the Web, not only do not eliminate passwords, they make the password security problem worse, by facilitating phishing attacks. They also impinge on the user’s privacy, because the identity provider is told what relying parties the user logs in to.
  • Social login solutions based on OAuth, e.g. “login with Facebook”, worsen the privacy drawback of third party login by limiting the user’s choice of identity providers to those that the relying party has registered with, and by broadcasting the user’s activities to the user’s social graph. Eric Sachs of Google said at the last Internet Identity Workshop that users participating in usability testing were afraid of logging in via Facebook or Google+ because “their friends would be spammed”.

But some proponents of NSTIC do not seem to realize that. In a recent interview, Howard Schmidt went so far as to say that NSTIC is “low-hanging fruit”, because “the technology is there”. What technology would that be? In a blog post that he wrote last year shortly after the launch of NSTIC, it was clear that the technology he was considering for NSTIC was privacy-enhancing cryptography, used by Microsoft in U-Prove and by IBM in Idemix. He used the words “privacy-enhancing” in the interview, so he may have been referring to that technology in the interview as well.

(Credentials based on privacy-enhancing cryptography provide selective disclosure and unlinkability. Selective disclosure refers to the ability to combine multiple attributes in a credential but disclose only some of them when presenting the credential. Unlinkability, in the case of U-Prove, refers to the impossibility of linking the use of a credential to its issuance; Idemix also makes it impossible to link multiple uses of the same credential.)

But Idemix has never been deployed commercially, and an attempt at deploying U-Prove within the Information Cards framework failed when Microsoft discontinued CardSpace, two months before the launch of NSTIC.

Credentials based on privacy-enhancing cryptography, sometimes called anonymous credentials, have inherent drawbacks. One of them is that unlinkability makes revocation of such credentials harder than revocation of public key certificates, as I pointed out in a blog post on U-Prove and another blog post on Idemix. The difficulty of revoking credentials based on privacy-enhancing cryptography has led ABC4Trust, which can be viewed as the European counterpart of NSTIC, to propose arresting users for the purpose of revoking their credentials! See page 23, end of last paragraph, of the ABC4Trust document Architecture for Attribute-based Credential Technologies.

Another inherent drawback is that it is difficult to keep the owner of an anonymous credential from making it available for use online by others who are not entitled to it. For example, it would be difficult to prevent the owner of a proof-of-drinking-age anonymous credential (a use case often cited by proponents of anonymous credentials) from letting minors use it for a fee.

The mistaken belief that “the technology is there” explains why the NSTIC NPO has made little effort to improve on existing technology. Instead of requesting funding for research, it requested funding for pilots; a pilot is usually intended to demonstrate the usability of a newly developed technology; it assumes that the technology already exists. After the launch of NSTIC, the NPO announced three workshops, on governance, privacy and technology. The first two were held, but the workshop on technology, which was supposed to take place in September of last year, was postponed by six months and merged with the yearly NIST IDtrust workshop, which took place in March of this year. The IDtrust workshop usually includes a call for papers. But this year there was none: new ideas were not solicited.

The NSTIC NPO has been trying to “bring relying parties to the table”. Ian Glazer dubbed the recent White House meeting the NSTIC Relying Party Event. The meeting was about getting a bigger table according to the NPO blog post on the event, and about “getting people to volunteer” according the Senator Mikulski as quoted by the blog post. Earlier, Jim Sheire of the NPO convened a session entitled NSTIC How do we bring relying parties to the table? at the last Internet Identity Workshop.

One idea mentioned in the report on the IIW session for bringing relying parties to the table is to target 100 “top relying parties” in the hope of creating a snowball effect. But it’s not clear what it would mean for those 100 relying parties and any additional ones caught in the snowball, to “come to the table”. What would they do at the table? What technology would they use? OpenID? OAuth? Smart cards? Information cards? Anonymous credentials? NSTIC has not proposed any specific technology. Or would they come to the table just to talk?

There are many millions of Web sites that use passwords for user authentication. The goal should be to get all those sites to adopt an identity solution that eliminates the security risk of passwords. Web site developers will do that of their own initiative once a solution is available that is more secure and as easy to deploy as password authentication.

While the technology is not there, various technology ingredients are there, and missing ingredients could be developed. It is not difficult to conceive a roadmap that could lead to one or more good identity solutions. But success would require a concerted effort by many different parties: not only relying parties and identity and attribute providers, but also standards bodies, browser vendors, vendors of desktop and mobile operating systems, vendors of smart cards and other hardware tokens, perhaps biometric vendors, and the providers of the middleware, software libraries, and software development tools used on the Web. When I first heard of NSTIC I hoped that it would provide the impetus and the forum needed for such a concerted effort. But that has yet to happen.

One-Click OpenID: A Solution to the NASCAR Problem

OpenID allows the user to choose any identity provider, even one that the relying party has never heard of. This freedom of choice is, in my opinion, the most valuable feature of OpenID. Unfortunately, this feature comes with a difficult challenge: how to provide the relying party with the information it needs to interact with the identity provider.

OAuth does not have this problem because the relying party has to preregister with the identity provider, typically a social site, and therefore must know of the identity provider. An OAuth relying party displays one or a few buttons labeled with the logos of the social sites it supports, e.g. Facebook and Twitter, and the user chooses a site by clicking on a button. But of course freedom of choice is lost: the user can only use as identity provider a social site supported by the relying party.

The traditional OpenID user interface consists of an input box where the user types in an OpenID identifier, which serves as the starting point of an identity provider discovery process. To compete with the simplicity of picking a social site by clicking on a button, some OpenID relying parties present the user with many buttons labeled by logos of popular OpenID identity providers, in addition to the traditional input box; but this user interface has been deemed ugly and confusing to the user. The many logos have been compared to the many ads on a race car, hence the term NASCAR problem that is used to refer to the OpenID user interface challenge.

To solve the challenge we propose to let the browser keep track of the identity provider(s) that the user has signed up with. The list of identity providers will be maintained by the browser as a user preference.

An identity provider will be added to the list by explicit declaration. As the user is visiting the identity provider’s site, the provider will offer its identity service to the user. The user will accept the offer by clicking on a button or link. In the HTTP response to the browser that follows the HTTP request triggered by this action the identity provider will include an ad-hoc HTTP header containing identity provider data including the OP Endpoint URL. The browser will ask the user for permission to add the identity provider to the list and store the identity provider data.

A relying party will use a login form containing a single button, with a label such as Login with OpenID. There need not be any input box for entering an OpenID identifier, nor any buttons with logos of particular identity providers. The form will contain a new ad-hoc non-visual element <idp>. When the form is submitted, the browser will choose one identity provider from the list and send its data to the relying party as the value of the <idp> element.

Which identity provider is chosen is up to the browser. It could be the default, or an identity provider that has previously been used for the relying party, as recorded by the browser, or an identity provider explicitly chosen by the user from a menu presented by the browser. The browser could choose to permanently display a menu showing the user’s list of identity providers as part of the browser chrome.

We arrived at this solution while thinking about the NSTIC pilot that we plan to propose. In the planned proposal the identity provider issues a certificate to the browser, which the browser imports automatically. A natural extension is to let the identity provider download to the browser other data besides the certificate, such as the OP Endpoint URL. Also, a browser user interface for selecting an identity provider is akin to the user interface for selecting a client certificate that browsers already have. We realize that existing user interfaces for certificate selection are less than optimal, but we believe that this is due to lack of attention by browser manufacturers to a rarely used feature, and that better interfaces can be designed.

OpenID Providers Invited to Join in an NSTIC Pilot Proposal

NSTIC has announced funding for pilot projects. Preliminary proposals are due by March 7 and full proposals by April 23. There will be a proposer’s conference on February 15, which will be webcast live.

We are planning to submit a proposal and are inviting OpenID identity providers to join us. The proposed pilot will demonstrate a completely password-free method of user authentication where the relying party is an ordinary OpenID relying party. The identity provider will issue a public key certificate to the user, and later use it to authenticate the user upon redirection from the relying party. The relying party will not see the certificate. Since the certificate will be verified by the same party that issued it, there will be no need for certificate revocation lists. Certificate issuance will be automatic, using an extension of the HTML5 keygen mechanism that Pomcor will implement on an extension of the open source Firefox browser.

There will be two privacy features:

  1. The identity provider will supply different identifiers to different relying parties, as in the ICAM OpenID 2.0 Profile.
  2. Before authenticating the user, the identity provider will inform the user of the value of the DNT (Do Not Track) header sent by the browser, and will not track the user if the value of the header is 1.

The identity provider will:

  1. Implement a facility for issuing certificates to users, taking advantage of the keygen element of HTML5. The identity provider will obtain a public key from keygen, create a certificate that binds the public key to the user’s local identity, and download the certificate in an ad-hoc HTTP header. Pomcor will supply a Firefox extension that will import the certificate automatically.
  2. Use the certificate to authenticate the user upon redirection from the relying party. The browser will submit the certificate as a TLS client certificate. The mod_ssl module of Apache supports the use of a client certificate and makes data from the certificate available to high-level server-side programming environments such as PHP via environment variables.

For additional information you may write to us using the contact page of this site.

After CardSpace, Microsoft Calls for Research on Passwords

In February 2011 Microsoft discontinued CardSpace, a Windows application for federated login that was the deployment vehicle for the U-Prove privacy-enhancing Web authentication technology, which itself is said to have inspired the NSTIC initiative. Cormac Herley, a Microsoft researcher, and Paul van Oorshot, a professor at Carleton University, have written a paper entitled A Research Agenda Acknowledging the Persistence of Passwords that mentions the CardSpace failure and calls for research on traditional password authentication.

The paper makes two points:

  1. It blames the failure of attempts at replacing passwords on a lack of research on identifying and prioritizing the requirements to be met by alternative authentication methods.
  2. It argues that passwords have many virtues, will persist for some time, and may be the best fit in many scenarios; and it calls for research on how to better support them.

I disagree with the first point but agree with the second.

The problem with the first point is that it does not take into account the non-technical obstacles faced by alternative authentication methods. Microsoft Passport was the first attempt at Web single sign-on. It was launched when Microsoft was in the process of annihilating the Netscape browser and acquiring a monopoly in Web browsing; it originally had an outrageous privacy policy, which was later modified; and if successful it would have made Microsoft a middleman for all Web commerce. No wonder it failed.

Other single sign-on initiatives had obvious non-technical obstacles. OpenID required people to use a URL as their identity, something that could only appeal to the tiny fraction of users who understand or care about the technical underpinnings of the Web. CardSpace was a Microsoft product; that by itself must have provided motivation for all Microsoft competitors to oppose it; furthermore it only ran on Windows; and in order to support CardSpace relying party developers had to install and learn to use a complex toolkit. Again, no wonder CardSpace failed.

The non-technical obstacles faced by Passport, OpenID and CardSpace were due to lack of maturity of the Web industry. Such obstacles will slowly go away as the industry matures. Signs of maturity are appearing: there are now five major browsers that seem to understand the need for common standards; the World Wide Web consortium (W3C) has shown that it can bring them together to develop standards such as HTML5 and has already engaged them in identity work through the Identity in the Browser workshop and the identity mailing list that was set up after the workshop; and OpenID 2.0 no longer insists on users using URLs as their identities. Industries can take decades to mature, so it’s not surprising that progress is slow.

As for passwords, I agree that they have virtues, will persist, and deserve research. There is actually research on passwords going on.

Password managers are an active area of research and development by browser providers and others.

There was a session on passwords at the last Internet Identity Workshop (IIW), called by Jay Unger, where Alan Karp described his site password tool, which can be viewed as an alternative to a password manager, where passwords for different sites are computed rather than retrieved from storage. The tool computes a high entropy password for a Web site from a master password and an easy-to-remember name for the site.

I have myself been recently granted two patents on password security, which were also discussed at the IIW session on passwords:

  • One of them describes a countermeasure against online password guessing that places a hard limit on the total number of guesses that an attacker can make against a password. Besides the traditional counter of consecutive bad guesses the countermeasure uses an additional counter of total bad guesses, not necessarily consecutive. The user is asked to change her password if and when this second counter reaches a threshold, rather than at arbitrary intervals.
  • The other describes a technique for password distribution, that allows an administrator to send a temporary password to a user, e.g. after a password reset, over an unprotected channel such as ordinary email. The administrator puts a hold on the user’s account that allows no further access beyond changing the temporary password into a password chosen by the user. The administrator removes the hold only after being notified by the legitimate user that she has successfully changed the password, e.g. over the phone. In abstract terms, instead of relying on a confidential channel to send the password, the administrator relies on a channel with data-origin authentication to receive the user’s notification.

Microsoft or anybody else who wants to increase password security can license either of these patents. You may use the contact form of this site to inquire about licensing.

Credential Sharing: A Pitfall of Anonymous Credentials

There is an inherent problem with anonymous credentials such as those provided by Idemix or U-Prove: if it is not possible to tell who is presenting a credential, the legitimate owner of a credential may be willing to lend it to somebody else who is not entitled to it. For example, somebody could sell a proof-of-drinking-age credential to a minor, as noted by Jaap-Henk Hoepman in a recent blog post [1].

This problem is known in cryptography as the credential sharing or credential transferability problem, and various countermeasures have been proposed. In this post I will briefly discuss some of these countermeasures, then I will describe a new method of sharing credentials that is resistant to most of them.

A traditional countermeasure proposed by cryptographers, mentioned for example in [2], is to deter the sharing of an anonymous credential by linking it to one or more additional credentials that the user would not want to share, such as a credential that gives access to a bank account, in such a way that the sharing of the anonymous credential would imply the sharing of the additional credential(s). I shall refer to this countermeasure as the “credential linking countermeasure”. I find this countermeasure unrealistic, because few people would escrow their bank account for the privilege of using an anonymous credential.

In her presentation [3] at the recent NIST Meeting on Privacy-Enhancing Cryptography [4], Anna Lysyanskaya said that it is a misconception to think that “if all transactions are private, you can’t detect and prevent identity fraud”. But the countermeasure that she proposes for preventing identity fraud is to limit how many times a credential is used and to disclose the user’s identity if the limit is exceeded. However this can only be done in cases where a credential only allows the legitimate user to access a resource a limited number of times, and I can think of few such cases in the realm of Web authentication. Lysyanskaya gives as an example a subscription to an online newspaper, but such subscriptions typically provide unlimited access for a monthly fee. I shall refer to this countermeasure as the “limited use countermeasure”.

Lysyanskaya’s presentation also mentions identity escrow as useful for conducting an investigation if “something goes very, very wrong”.

At the panel on Privacy in the Identification Domain at the same meeting Lysyanskaya also proposed binding an anonymous credential to a biometric. The relying party would check the biometric and then forget it to keep the presentation anonymous. But if the relying party can be trusted to forget the biometric, it may as well be trusted to forget the entire credential presentation, in which case an anonymous credential is not necessary.

An interesting approach to binding a biometric to a credential while keeping the user anonymous can be found in [5]. The biometric is checked by a tamper-proof smartcard trusted by the relying party, but a so-called warden trusted by the user is placed between the smartcard and the relying party, and mediates the presentation protocol to ensure that no information that could be used to identify or track the user is communicated by the smart card to the relying party.

However, if what we are looking for is an authentication solution that will replace passwords on the Web at large, biometric-based countermeasures are not good candidates because of their cost.

Update. In a response to this post on the Identity Commons mailing list Terry Boult has pointed out that cameras and microphones are pretty ubiquitous and said that, in volume, fingerprint sensors are cheaper than smartcard readers.

In his blog post [1], Hoepman suggested that, to prevent the sharing of an anonymous credential, the credential could be stored in the owner’s identity card, presumably referring to the national identity card that citizens carry in the Netherlands and other European countries. This is a good idea because lending the card would put the owner at risk of impersonation by the borrower. I shall refer to this as the “identity card countermeasure”.

Rather than storing a proof of age credential as an additional credential in a national identity card, anonymous proof of age could be accomplished by proving in zero knowledge that a birthdate attribute of a national identity credential (or, in the United States, of a driver’s license credential) lies in an open interval ending 21 years before the present time; Idemix implements such proofs. The identity credential could be stored in a smartcard or perhaps in a tamper-proof module within a smart phone or a personal computer. I’ll refer to this countermeasure as the “selective disclosure countermeasure”. As in the simpler identity card countermeasure, the legitimate user of the credential would be deterred from sharing the credential with another person because of the risk of impersonation.

But this countermeasure, like most of the above ones, does not help with the following method of sharing credentials.

A Countermeasure-Resistant Method of Sharing Credentials

An owner of a credential can make the credential available for use by another person without giving a copy of the credential to that other person. Instead, the owner can allow that other person to act as a proxy, or man-in-the-middle, between the owner and a relying party in a credential presentation. (Note that this is not a man-in-the-middle attack because the man in the middle cooperates with the owner.)

For example, somebody of drinking age could install his or her national identity credential or driver’s license credential on a Web server, either by copying the credential to the server or, if the credential is contained in a tamper-proof device, by connecting the device to the server. The credential owner could then allow minors to buy liquor by proxying a proof of drinking age based on the birthdate attribute in the credential. (Minors would need a special user agent to do the proxying, but the owner could make such user agent available for download from the same server where the credential is installed.) The owner could find a surreptitious way of charging a fee for the service.

This method of sharing a credential, which could be called proxy-based sharing, defeats most of the countermeasures mentioned above. Biometric-based countermeasures don’t work because the owner of the credential can input the biometric. Credential linking countermeasures don’t work because the secret of the credential is not shared. The identity card countermeasure and the selective disclosure countermeasure don’t work because the owner is in control of what proofs are proxied and can refuse to proxy proofs that could allow impersonation. The limited use countermeasure could work but, as I said above, I can think of few Web authentication cases where it would be applicable.

Are there any other countermeasures that would prevent or inhibit this kind of sharing? If a minor were trying to buy liquor using an identity credential and a payment credential, the merchant could require the minor to prove in zero-knowledge that the secret keys underlying both credentials are the same. That would defeat the sharing scheme by making the owner of the identity credential for pay for the purchase. However there are proof-of-age cases that do not require a purchase. For example, an adult site may be required to ask for proof of age without or before asking for payment.

The only generally applicable countermeasure that I can think of to defeat proxy-based sharing is the identity escrow scheme that Lysyanskaya referred to in her talk [3]. Using provable encryption, as available in Idemix, a liquor merchant could ask the user agent to provide the identity of the owner of the credential as an encrypted attribute that could be decrypted, say, by a judge. (The encrypted attribute would be randomized for unlinkability.) The user agent would include the encrypted attribute in the presentation proof after asking the user for permission to do so.

Unfortunately this requires the user to trust the government. This may not be a problem for most people in many countries. But it undermines one of the motivations for using privacy-enhancing technologies that I discussed in a previous blog [6].

References

[1] Jaap-Henk Hoepman. On using identity cards to store anonymous credentials. November 16, 2011. Blog post, at http://blog.xot.nl/2011/11/16/on-using-identity-cards-to-store-anonymous-credentials/.
 
[2] Jan Camenisch and Anna Lysyanskaya. An Efficient System for Non-transferable Anonymous Credentials with Optional Anonymity Revocation. In Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques: Advances in Cryptology (EUROCRYPT 01). 2001. Research report available from http://www.zurich.ibm.com/security/privacy/.
 
[3] Anna Lysyanskaya. Conditional And Revocable Anonymity. Presentation at the NIST Meeting on Privacy-Enhancing Cryptography. December 8-9, 2011. Slides available at http://csrc.nist.gov/groups/ST/PEC2011/presentations2011/lysyanskaya.pdf.
 
[4] NIST Meeting on Privacy-Enhancing Cryptography. December 8-9, 2011. At NIST Meeting on Privacy-Enhancing Cryptography.
 
[5] Russell Impagliazzo and Sara Miner More. Anonymous Credentials with Biometrically-Enforced Non-Transferability. In Proceedings of the 2003 ACM workshop on Privacy in the electronic society (WPES 03).
 
[6] Francisco Corella. Are Privacy-Enhancing Technologies Really Needed for NSTIC? October 13, 2011. Blog post, at http://pomcor.com/2011/10/13/are-privacy-enhancing-technologies-really-needed-for-nstic/.
 

Trip Report: Meeting on Privacy-Enhancing Cryptography at NIST

Last week I participated in the Meeting on Privacy-Enhancing Cryptography at NIST. The meeting was organized by Rene Peralta, who brought together a diverse international group of cryptographers and privacy stakeholders. The agenda is online with links to the workshop presentations.

The presentations covered many applications of privacy-enhancing cryptography, including auctions with encrypted bids, database search and data stream filtering with hidden queries, smart metering, encryption-based access control to medical records, format-preserving encryption of credit card data, and of course authentication. There was a talk on U-Prove by Christian Paquin, and a talk on Idemix by Gregory Neven. There were also talks on several techniques besides anonymous credentials that could be used to implement privacy-friendly authentication: group signatures, direct anonymous attestation, and EPID (Enhanced Privacy ID). Kazue Sako’s talk described several possible applications of group signatures, including a method of paying anonymously with a credit card.

A striking demonstration of the practical benefits of privacy-enhancing cryptography was the presentation on the Danish auctions of sugar beets contracts by Thomas Toft. A contract gives a farmer the right to grow a certain quantity of beets for delivery to Danisco, the only Danish sugar producer. A yearly auction allows farmers to sell and buy contracts. Each farmer submits a binding bid, consisting of a supply curve or a demand curve. The curves are aggregated into a market supply curve and a market demand curve, whose intersection determines the market clearing price at which transactions take place. What’s remarkable is that farmers submit encrypted bids, and bids are never decrypted. The market clearing price is obtained by computations on encrypted data, using secure multiparty computation techniques. Auctions have been successfully held every year since 2008.

I was asked to participate in the panel on Privacy in the Identification Domain and to start the discussion by presenting a few slides summarizing my series of blog posts on privacy-enhancing technologies and NSTIC. In response to my slides, Gregory Neven of IBM reported that a credential presentation takes less than one second on his laptop, and Brian La Macchia of Microsoft pointed out that deployment is difficult for public key certificates as well as for privacy-friendly credentials. There were discussions with Gregory Neven on revocation and with Anna Lysyanskaya on how to avoid the sharing of anonymous credentials; these are big topics that deserve their own blog posts, which I plan to write soon, so I won’t say any more here. Jeremy Grant brought the audience up to date about NSTIC, which has received funding and is getting ready to launch pilots. Then there was a wide ranging discussion.